Болезни Военный билет Призыв

Основные линии поверхности вращения. Поверхности и тела вращения

Поверхности вращения – поверхности, образованные вращением произвольной образующей вокруг неподвижной оси (рис. 51, а). Направляющей поверхности вращения является окружность постоянного (цилиндр) или переменного радиуса (конус, сфера). Нормальное – перпендикулярное оси вращения сечение любой поверхности вращения, представляет собой окружность с центром на ее оси.

Рис. 51. Поверхность вращения: а – основные линии на поверхности вращения; б – представление поверхности вращения в виде сети

Направляющие называют также параллелями поверхности вращения. Плоскости параллелей перпендикулярны к оси поверхности. Наибольшую из параллелей называют экватором поверхности, наименьшую – горлом. Плоскости, проходящие через ось поверхности вращения, называют меридиональными, а линии, по которым они пересекают поверхность – меридианами. Поверхность вращения можно представить параллелями или меридианами поверхности, а также сетью, состоящей из параллелей и меридианов (рис. 51, б).

Поверхность вращения называют закрытой, если меридиональное сечение поверхности является замкнутой кривой линией, пересекающей ось поверхности в двух точках.

При вращении вокруг оси плоской или пространственной алгебраической кривой n-го порядка образуется алгебраическая поверхность вращения, в общем случае, 2n–го порядка. Если кривая второго порядка вращается вокруг своей оси, то она образует поверхность второго порядка.

В зависимости от вида образующей различают:

Торовые поверхности – поверхности, образованные вращением окружности или дуги окружности:




Рис. 52. Торовые поверхности: а – сфера; b – открытый тор (кольцо); c – закрытый тор; d – глобоид

  • Сфера образуется вращением окружности вокруг оси, проходящей через ее центр (рис. 52, а).
  • Тор образуется вращением окружности вокруг оси, лежащей в плоскости этой окружности и не проходящей через ее центр (тор является поверхностью четвертого порядка). Различают открытый тор , образованный вращением окружности вокруг оси, которая не пересекает образующую (рис. 52, б) и закрытый тор , образованный вращением окружности вокруг оси, которая пересекает образующую окружность или касается ее (рис. 52, в).
  • Глобоид образуется вращением окружности достаточно большого радиуса вокруг оси, которая не пересекает образующую (рис. 52, г).

Эллипсоид вращения образуется вращением эллипса вокруг его оси. Если за ось вращения принята большая ось эллипса, эллипсоид вращения называют вытянутым (рис. 53. а), если малая – сжатым или сфероидом (рис. 53, б). Земной шар, например, по форме близок к сфероиду



Рис. 53. Поверхности вращения: а – вытянутый эллипсоид; б – сфероид

Параболоид вращения образуется вращением параболы вокруг ее оси (рис. 54). Параболоиды вращения используются в качестве отражающей поверхности в прожекторах и фарах автомобилей для получения параллельного светового пучка.


Рис. 54. Параболоид вращения

Гиперболоид вращения образуется вращением гиперболы. Различают однополостный гиперболоид (рис. 55, а), образованный вращением гиперболы вокруг ее мнимой оси, и двуполостный гиперболоид (рис. 55, б), образованный вращением гиперболы вокруг ее действительной оси.

А. Поверхности вращения общего вида (рис. 157).

Поверхностью вращения общего вида называют поверхность, которая образуется произвольной кривой (плоской или пространственной) при ее вращении вокруг неподвижной оси .

В состав определителя поверхности вращения входит образующая g, ось вращения i и условие о том, что эта образующая вращается вокруг оси i:

Ф (g, i); .

Каждая точка образующей (А, В, С, D, Е) при вращении вокруг оси i описывает окружность с центром на оси вращения. Эти окружности называют параллелями . Наибольшую и наименьшую параллель называют соответственно экватором и горлом (шейкой).

Плоскости α, проходящие через ось поверхности вращения, называют меридиональными , а линии, по которым они пересекают поверхность, - меридианами .

Меридиональную плоскость α 1 , параллельную плоскости проекции, принято называть главной меридиональной плоскостью , а линию ее пересечения с поверхностью вращения - главным меридианом *.

Задание поверхности вращения на эпюре Монжа проекциями геометрических фигур, входящих в состав его определителя, хотя и однозначно определяет поверхность, но обладает одним недостатком, заключающимся в том, что при таком задании трудно представить форму поверхности. Поэтому при задании поверхности вращения обычно указывают проекции ее оси, главного меридиана и экватора (иногда указывают окружность, по которой поверхность вращения пересекается с плоскостью проекции).

При этом указывают только горизонтальную проекцию экватора (или параллели) и фронтальную проекцию главного меридиана**.

Б. Частные виды поверхностей вращения.

В технике, в частности в машиностроении, поверхности вращения находят широкое применение. Это объясняется распространенностью вращательного движения и простотой обработки поверхностей вращения на станках. Особенно распространены поверхности, имеющие в меридиональном сечении кривую второго порядка или две прямые, на которые распадается эта кривая.

Рассмотрим некоторые частные виды поверхностей вращения. Возьмем в качестве образующей окружность. В зависимости от взаимного расположения окружности (или ее дуги) и оси вращения можно получить различные поверхности.

Тором называется поверхность, которая может быть получена при вращении окружности g вокруг оси i, не проходящей через ее центр О ***.

В зависимости от соотношения величин R - радиуса образующей окружности и расстояния t от центра окружности до оси вращения поверхности тора подразделяют на:

открытый тор (или кольцо) при R

закрытый тор при R ≥ t - окружность пересекает ось вращения или касается ее (табл. 7, рис. 158,6).

Сфера образуется в том случае, когда центр окружности принадлежит оси вращения О ∈ i, т. е. сферу можно рассматривать как частный случай тора, у которого t = 0 (табл. 7, рис. 158,в).

3. Глобоид.

Образующей этой поверхности является дуга окружности, плоскость которой может, в общем случае, не совпадать с осью вращения (табл. 7, рис. 158,г). Чертежи на рис. 162 дают представление об ор-

* На рис. 157 показаны не меридиональные плоскости α и α 1 , а полуплоскости, расположенные по одну сторону от оси вращения i. Соответственно на рисунке показаны только половина меридиана и главного меридиана.

** Здесь речь идет о поверхности, ось вращения которой i ⊥ π 1 . Если ось вращения (i ⊥ π 2 , то следует указывать фронтальную проекцию экватора и горизонтальную проекцию главного меридиана.

Поверхность тора может быть получена и в том случае, когда плоскость окружности пересекает ось поверхности. Следует иметь в виду, что в отличие от остальных поверхностей вращения, ббразующая которых - кривая второго порядка (или прямая), поверхность тора является поверхностью не второго, а четвертого порядка.

Таблица 7. Поверхности вращения; частные виды. Подкласс 2. Ф (g, i); .

тогональных проекциях тора (рис. 162,а и б), сферы (рис. 162,в), глобоида (рис. 162,г). Так как поверхности вращения, изображенные на рис. 162, симметричны относительно оси i, то при i ⊥ π 1 их горизонтальные проекции симметричны относительно горизонтальной оси; поэтому можно вычерчивать не всю горизонтальную проекцию, а лишь ее половину, как это сделано на рис. 162 (конечно, если условия задачи не требуют изображать ее полностью).


4. Эллипсоид вращения.

Этот вид поверхности образуется при вращении эллипса вокруг его оси, при этом, если за ось вращения принять малую ось , то получим сжатый эллипсоид вращения (рис. 159,с); когда вращение осуществляется вокруг большой оси [АВ] , образуется поверхность вытянутого эллипсоида вращения (рис. 159,6).

Рассмотренные поверхности вращения: тор, сфера, эллипсоид относятся к замкнутым поверхностям. Кроме замкнутых поверхностей вращения существуют незамкнутые поверхности, которые образуются, в частности, при вращении параболы, гиперболы и прямой (линий, имеющих несобственные точки).

5. Параболоид вращения.

Для того чтобы получить параболоид вращения, в определителе поверхности вращения за образующую g следует принять параболу, а за ось вращения i - ее ось (рис. 160). Для задания параболоида вращения на эпюре Монжа достаточно указать проекции образующей g и оси i.

6. Гиперболоид вращения.

При вращении гиперболы можно получить две различные поверхности:

а) однополостный гиперболоид вращения *, образуется при вращении гиперболы g вокруг ее мнимой оси i 1 (рис. 161,а);

б) двуполостный гиперболоид вращения, образуется при вращении гиперболы вокруг ее действительной оси i (рис. 161,6).

7. Коническая и цилиндрическая поверхности вращения.

Эти поверхности можно получить путем вращения прямой g вокруг оси i. Коническая и цилиндрическая поверхности были подробно рассмотрены в § 35 (см. рис. 147, 151 и 148, 152).

8.ПОВЕРХНОСТИ ВРАЩЕНИЯ

Если перемещение образующей линии представляет собой вращение вокруг некоторой неподвижной прямой (оси), то образованная в этом случае поверхность называется поверхностью вращения (рис.2.3.45).

Образующая линия может быть плоской или пространственной кривой, а также прямой. Каждая точка, например В(В 1 , В 2), образующей линии l(l 1 , l 2)при вращении вокруг оси i(i 1 , i 2) описывает окружность, которая располагается в плоскости, перпендикулярной оси вращения (рис. 2.3.45). Эти окружности называются параллелями. Следовательно, плоскости, перпендикулярные оси, пересекают поверхность вращения по параллелям. Линия, например, m(m 1 , m 2) пересечения поверхности вращения плоскостью ( 1), проходящей через ось, называется меридианом. Все меридианы поверхности вращения конгруэнтны. Меридиан l(l 1 , l 2), который является результатом пересечения поверхности вращения с плоскостью уровня ( 1), называется главным. Проекция главного меридиана на плоскость, которой параллельна плоскость уровня, является очерковой линией соответствующей проекции поверхности вращения. Множество всех параллелей или меридианов представляет собой непрерывный каркас поверхности вращения. Через каждую точку поверхности проходит одна параллель и один меридиан. Проекции точки располагаются на соответствующих проекциях параллели или меридиана. Задать точку на поверхности или построить вторую проекцию точки, если одна задана, можно при помощи параллели или меридиана, которые проходят через эту точку. Геометрическая часть определителя поверхности вращения состоит из оси вращения i и образующей линии l. Чертеж поверхности вращения будет простейшим, если ось вращения расположить перпендикулярно одной из плоскостей проекций, а в качестве образующей линии взять главный меридиан (рис. 2.3.45, б). Алгоритмическая часть определителя поверхности вращения состоит из операции вращения образующей l вокруг оси i и построения каркаса параллелей необходимой плотности. При проектировании различных инженерных сооружений, машин и механизмов наибольшее распространение получили поверхности, образующиеся вращением прямой линии и кривых второго порядка.

а. Поверхности, образуемые вращением прямой (линейчатые поверхности вращения)

Вращением прямой линии образуются: 1) цилиндр вращения, если прямая l параллельна оси i (рис. 2.3.46); 2)конус вращения, если прямая l пересекает ос i (рис. 2.3.47); 3)однополостный гиперболоид вращения, если прямая l(ВС) скрещивается с осью i (рис. 2.3.48).

Рис. 2.3.46

Поверхность (рис. 2.3.48) имеет две образующие линии l(ВС) и l"(В"С"), наклоненные в разные стороны и пересекающиеся в точке (А), принадлежащей наименьшей параллели. Отрезок ОА является кратчайшим расстоянием между образующей и осью. Таким образом, на поверхности однополостного гиперболоида располагаются два семейства прямолинейных образующих. Все образующие одного семейства - скрещивающиеся прямые.

Рис. 2.3.47

Каждая образующая одного семейства пересекает все образующие другого. Через каждую точку поверхности проходят две образующие разных семейств. Меридианом поверхности является гипербола. Все рассмотренные линейчатые поверхности вращения являются поверхностями второго порядка. Построение проекций точки, принадлежащей каждой из них, можно выполнить при помощи параллели или прямолинейной образующей, проходящих через нее.

Рис. 2.3.48

б. Поверхности, образуемые вращением кривых второго порядка вокруг их осей

1. Сфера образуется вращением окружности вокруг ее диаметра (рис. 2.3.49). 2. Эллипсоид вращения образуется вращением эллипса вокруг большой или малой оси. 3. Параболоид вращения образуется вращением параболы вокруг ее оси.

Рис. 2.3.49

4. Однополостный гиперболоид вращения образуется вращением гиперболы вокруг ее мнимой оси. Эта поверхность образуется также вращением прямой (рис. 2.3.48 справа). 5. Двуполостный гиперболоид вращения образуется вращением гиперболы вокруг ее действительной оси. При вращении асимптот гиперболы образуется конус вращения, который называется асимптотическим по отношению к поверхности гиперболоида. Все рассмотренные поверхности вращения являются поверхностями второго порядка. Построение проекции точки, принадлежащей каждой из них, можно выполнить при помощи параллели, проходящей через эту точку. в. Поверхности, образуемые вращением кривых второго порядка вокруг оси, не являющейся осью кривой, но расположенной в ее плоскости Существует теорема: "При вращении плоской или пространственной алгебраической кривой n-го порядка вокруг произвольной оси образуется алгебраическая поверхность вращения, имеющая в общем случае порядок 2n". Из этой теоремы следует, что при вращении кривой второго порядка вокруг оси, не являющейся осью кривой, но расположенной в ее плоскости, образуется поверхность четвертого порядка. Наиболее распространенной поверхностью четвертого порядка является тор.

Рис. 2.3.50

Тором называется поверхность, образованная вращением окружности вокруг оси, принадлежащей плоскости окружности, но не проходящей через ее центр. При этом ось вращения может пересекать окружность, касаться ее и располагаться вне окружности. В первых двух случаях тор называется закрытым, в последнем - открытым, или кольцом. На рис. 2.3.50 изображены проекции тора-кольца. Являясь поверхностью четвертого порядка, тор пересекается произвольной прямой в четырех точках, произвольной плоскостью по кривой четвертого порядка.

Рис. 2.3.50,1(анимационный) Эта кривая распадается на две окружности (параллели), если плоскость перпендикулярна оси тора (плоскость на рис. 2.3.50), на две окружности (меридиан), если плоскость проходит через ось тора(плоскости Г и Г" на рис. 2.3.50), на две окружности, если плоскость проходит через центр тора и касается его меридиана (плоскость). Проекции точки, например М, принадлежащей поверхности тора, можно построить при помощи параллели (рис. 2.3.50). На рис. 2.3.51 показана динамическая сцена формообразования поверхности тора.

Линия пересечения двух поверхностей второго порядка в общем случае представляет собой алгебраическую кривую четвертого порядка. В частных случаях она может распадаться на линии низших порядков, сумма порядков которых равна четырем: а) на четыре прямые - 1 + 1 + 1 + 1 (рис. 4.56, a). Общие образующие m, m", n, n", по которым пересекаются два цилиндра с параллельными осями, являются частями распавшейся кривой;

б) на две прямые и кривую второго порядка - 1 + 1 +2 (рис. 4.56, б); в) на прямую и кривую третьего порядка - 1 + 3; г) на две кривые второго порядка - 2+2 (рис. 4.57, 4.58, 4.59). Признаки распадения кривой четвертого порядка на две кривые второго порядка сформулированы в следующих теоремах: Теорема 1 . Если две поверхности второго порядка пересекаются по одной плоской кривой (1 - 5 - 2 - 6 на рис. 4.57), то они пересекаются еще по одной кривой, которая тоже будет плоской (3 - 5 - 4 - 6 на рис. 4.57).

Примечание. Плоская кривая, принадлежащая поверхности второго порядка, является кривой второго порядка. Теорема 2. Если две поверхности второго порядка имеют касание в двух точках (1 и 2 на рис. 4.58), то линия их пересечения распадается на две кривые второго порядка, плоскости которых проходят через прямую, соединяющую точки касания. Сфера, имеющая двойное касание с поверхностью второго порядка (рис. 4.59), может быть использована для нахождения круговых сечений тех поверхностей второго порядка, которые их имеют. Пусть требуется найти круговые сечения эллиптического цилиндра (рис. 4.59). Проведем сферу с центром на оси цилиндра и диаметром, равным длине отрезка /1 - 2/ - большой оси эллипса. Эта сфера будет касаться двух образующих цилиндра в точках 1 и 2. Линия пересечения со сферой распадается на две окружности, расположенные в профильно проецирующих плоскостях и". Полученные окружности определяют два семейства круговых сечений эллиптического цилиндра.Теорема 3 (теорема Монжа ). Если две поверхности второго порядка описаны около третьей или вписаны в не<(рис. 4.60), то линия их пересечения распадается на две кривые второго порядка, плоскости которых проходят через прямую, соединяющую точки пересечения линий касания (прямая 5 - 6). Теорема Монжа является частным случаем теоремы 2. Построение проекций указанных выше кривых второго порядка (рис. 4.58, 4.58, 4.59, 4.60) ясно из чертежей.

Заканчивая рассмотрение второй позиционной задачи на пересечение поверхностей, приведем несколько динамических сцен, демонстрирующих процесс взаимного пересечения поверхностей. На рис.4.61 показано пересечение поверхностей сферы и эллиптическогo цилиндра. На рис. 4.62 сфера пересекается с пирамидой, а на рис. 4.63 показано пересечение двух кривых поверхностей.

К поверхностям вращения относятся поверхности, образующиеся вращением линии l вокруг прямой i, представляющей собой ось вращения. Они могут быть линейчатыми, например конус или цилиндр вращения, и нелинейчатыми или криволинейными, например сфера. Определитель поверхности вращения включает образующую l и ось i. Криволинейная поверхность вращения образуется при вращении лю-

Каждая точка образующей при вращении описывает окружность, плоскость которой перпендикулярна оси вращения. Такие окружности поверхности вращения называются параллелями. Наибольшую из параллелей называют экватором. Экватор.определяет горизонтальный очерк поверхности, если i _|_ П 1 . В этом случае параллелями являются горизонтали hэтой поверхности.

Кривые поверхности вращения, образующиеся в результате пересечения поверхности плоскостями, проходящими через ось вращения, называются меридианами. Все меридианы одной поверхности конгруэнтны. Фронтальный меридиан называют главным меридианом; он определяет фронтальный очерк поверхности вращения. Профильный меридиан определяет профильный очерк поверхности вращения.

Строить точку на криволинейных поверхностях вращения удобнее всего с помощью параллелей поверхности. На рис. 103 точка М построена на параллели h 4 .

Поверхности вращения нашли самое широкое применение в технике. Они ограничивают поверхности большинства машиностроительных деталей.

Коническая поверхность вращения образуется вращением прямой i вокруг пересекающейся с ней прямой - оси i (рис. 104, а). Точка М на поверхности построена с помощью образующей l и параллели h. Эту поверхность называют еще конусом вращения или прямым круговым конусом.

Цилиндрическая поверхность вращения образуется вращением прямой l вокруг параллельной ей оси i (рис. 104, б). Эту поверхность называют еще цилиндром или прямым круговым цилиндром.

Сфера, образуется вращением окружности вокруг ее диаметра (рис. 104, в). Точка A на поверхности сферы принадлежит главному

меридиану f, точка В - экватору h, а точка М построена на вспомогательной параллели h".

Тор образуется вращением окружности или ее дуги вокруг оси, лежащей в плоскости окружности. Если ось расположена в пределах образующейся окружности, то такой тор называется закрытым (рис. 105, а). Если ось вращения находится вне окружности, то такой тор называется открытым (рис. 105, б). Открытый тор называется еще кольцом.

Поверхности вращения могут быть образованы и другими кривыми второго порядка. Эллипсоид вращения (рис. 106, а) образуется вращением эллипса вокруг одной из его осей; параболоид вращения (рис. 106, б) - вращением параболы вокруг ее оси; гиперболоид вращения однополостный (рис. 106, в) образуется вращением гиперболы вокруг мнимой оси, а двуполостный (рис. 106, г) - вращением гиперболы вокруг действительной оси.


В общем случае поверхности изображаются не ограниченными в направлении распространения образующих линий (см. рис. 97, 98). Для решения конкретных задач и получения геометрических фигур ограничиваются плоскостями обреза. Например, чтобы получить круговой цилиндр, необходимо ограничить участок цилиндрической поверхности плоскостями обреза (см. рис. 104, б). В результате получим его верхнее и нижнее основания. Если плоскости обреза перпендикулярны оси вращения, цилиндр будет прямым, если нет - цилиндр будет наклонным.

Чтобы получить круговой конус (см. рис. 104, а), необходимо выполнить обрез по вершине и за пределами ее. Если плоскость обреза основания цилиндра будет перпендикулярна оси вращения - конус будет прямой, если нет - наклонный. Если обе плоскости обреза не проходят через вершину - конус получим усеченным.

С помощью плоскости обреза можно получить призму и пирамиду. Например, шестигранная пирамида будет прямой, если все ее ребра имеют одинаковый наклон к плоскости обреза. В других случаях она будет наклонной. Если она выполнена с помощью плоскостей обреза и ни одна из них не проходит через вершину - пирамида усеченная.

Призму (см. рис. 101) можно получить, ограничив участок призматической поверхности двумя плоскостями обреза. Если плоскость обреза перпендикулярна ребрам, например восьмигранной призмы, она прямая, если не перпендикулярна - наклонная.

Выбирая соответствующее положение плоскостей обреза, можно получать различные формы геометрических фигур в зависимости от условий решаемой задачи.

Теорема.

Расстояние от точки до прямой , заданной точкой и направляющим вектором может быть найдено по формуле

.

А расстояние между двумя скрещивающимися прямыми находится по формуле

.

Поверхностью вращения называется поверхность, которая вместе с каждой своей точкой содержит всю окружность, полученную вращением этой точки вокруг некоторой фиксированной прямой . Прямая , вокруг которой производится вращение, называется осью вращения . Вращение точки вокруг оси происходит в плоскости, перпендикулярной оси. В сечении поверхности вращения плоскостями, перпендикулярными оси вращения, получаются окружности, которые называются параллелями . Плоскости, проходящие через ось вращения, пересекают поверхность вращения по линиям, называемым меридианами .

Теорема. В прямоугольной системе координат уравнение

есть уравнение поверхности вращения, образованной вращением вокруг оси линии, заданной уравнениями

.

Цилиндрической поверхностью или цилиндром называется поверхность, которая вместе с каждой точкой содержит всю прямую, проходящую через точку , параллельно данному ненулевому вектору . Прямые, параллельные вектору и принадлежащие цилиндрической поверхности, называются образующими этой поверхности.

Цилиндрическая поверхность может быть образована следующим образом. Пусть - некоторая линия, а - ненулевой вектор. Поверхность, образованная всеми прямыми, каждая из которых проходит через некоторую точку линии параллельно вектору , будет цилиндрической. В этом случае линия называется направляющей это поверхности.

Если прямоугольная система координат выбрана так, что образующие цилиндрической поверхности второго порядка были параллельны оси , а направляющая в системе имела каноническое уравнение, то цилиндрические поверхности определяются следующим образом.

- эллиптический цилиндр;

- гиперболический цилиндр;

- параболический цилиндр;

-цилиндр, распавшийся на пару пересекающихся по оси плоскостей;

- цилиндр, распавшийся на пару параллельных плоскостей;

- цилиндр, представляющий собой пару слившихся плоскостей.

Эти уравнения называются каноническими уравнениями соответствующих цилиндрических поверхностей второго порядка.

Если в каноническом уравнении эллиптического цилиндра , то направляющей цилиндра служит окружность , лежащая в плоскости . В этом случае поверхность является цилиндром вращения .

Конической поверхностью или конусом с вершиной в точке называется поверхность, которая обладает тем свойством, что вместе с каждой своей точкой , отличной от точки , эта поверхность содержит прямую .



Прямые проходящие через вершину конуса и лежащие на нем, называются образующими этого конуса.

Рассмотрим в пространстве линию и точку , не лежащую на линии . Поверхность, образованная всеми прямыми, каждая из которых проходит через точку и через некоторую точку линии , является конической поверхностью с вершиной .

В этом случае линия называется направляющей .

Рассмотрим коническую поверхность с вершиной в начале прямоугольной системы координат , направляющая которой служит эллипс :

.

Найдем уравнение этой поверхности. Пусть точка , отличная от точки , принадлежит конусу . Тогда прямая пересечет направляющую в некоторой точке . Так как и векторы и коллинеарны, то найдется такое вещественное число , что , или в координатах:

Отсюда находим

.

Подставив полученные выражения в первое из равенств, после несложных преобразований найдем:

.

Итак, координаты любой точки конуса удовлетворяют этому уравнению. Нетрудно убедиться также, что если точка не принадлежит конусу, то ее координаты не удовлетворяют этому уравнению.

Таким образом, мы получили уравнение второй степени, поэтому конус называется конусом второго порядка. А само уравнение называется каноническим уравнением конической поверхности второго порядка .

В случае, когда направляющая конической поверхности второго порядка является окружностью, то есть когда , уравнение принимает вид

.

Поверхность, определяемая этим уравнением в прямоугольной системе координат, называется круговой конической поверхностью или круговым конусом.


Практические занятия:

Тема 1:

Тема 2:

Тема 3:

Тема 4:

Тема 5:

Тема 6:

Тема 7:

Тема 8:

Тема 9:

Тема 10:

Тема 11.

Тема 12.

Тема 13.

Тема 14.

Тема 15.

Самостоятельная работа студентов:

Тема 1: Бинарные операции на множестве. Понятие группы, кольца и поля. Примеры. Поле комплексных чисел. № 101 – 113, 17 – 18 б. ; № 2.8, 2.10, 2.13, 2.15-2.21, 18-20 б.

Тема 2: Операции над комплексными числами. Алгебраическая и тригонометрическая форма комплексного числа. № 118 – 119, 136 – 140, 19 -20 б., № 2.22 – 2.23, 2.26 – 2.28, 2.46-2.50 , 20 – 23 б.

Тема 3: Перестановки и подстановки. Группа подстановок. Циклические подстановки. № 219 -221, 223, № 410 / 28 – 29, 55 -56 б. № 3.2 – 3.6, 3.38 / 26 – 27, 33 б

Тема 4: Матрицы и действия над ними. Определители второго и третьего порядка. № 235 – 240, 243 – 245, 231-232 /31-32 б., № 3.24-3.27, 3.30(1,2)/29-30б.

Тема 5: Определители и их свойства. Миноры и алгебраические дополнения. Определители n-го порядка № 231–232, 266–267, 273–280, № 374, 31, 35–37, 48 б., № 442 / 61 б. , № 3.30–3.31 / 30–31 б., № 4.24–4.28 / 44-45 б.

Тема 6: Обратная матрица и методы ее вычисления. Матричные уравнения. № 400, 410–411 / 55–56 б. , № 3.38–3.40 / 33–34 б.

Тема 7: Системы линейных уравнений. Арифметическое n-мерное векторное пространство. Метод Гаусса. Правило Крамера. № 443– 447 / 62 – 64 б. , № 4.18–4.19, 4.64 / 41 – 43, 51 б.

Тема 8: Многочлены от одной переменной НОД многочленов. Корни многочленов. Формулы Виета. Основная теорема алгебры и ее следствие. № 400– 402 / 53 – 54 б. , № 443–447, 449 / 62 – 64 б. № 3.55-3.59, 4.18 - 4.19, 4.64 /36-37, 41-43, 51 б.

Тема 9: Векторы. Базис векторного пространства. № 650, 167, 173 /89, 22 – 23 б. , № 11.59, 11.60, 11.65, 11.74 – 11.77, 11.81 – 11.86 / 123 – 125 б.

Тема 10: Скалярное, векторное и смешанное произведение векторов. 104, 114, 117, 118, 124, 424, 428, 445(1,3,6), 446(1,3), 454, 462, 468(1,3), 473, 487(1), 489(1,3) .

Тема 11. Прямая линия на плоскости. Различные виды уравнений на плоскости. Расстояние от точки до плоскости. Взаимное расположение двух прямых. 279(а, в), 282(а, в), 289(а, в), 294(а), 552, 553.

Тема 12. Кривые второго порядка. Эллипс, гипербола, парабола. Вывод канонических уравнений. 376, 379, 392, 403, 477(а, в), 479, 486, 507(а), 515, 558(1,3), 559(1,3), 564(1, 3), 567, 584(1), 585(1), 598, 600(1).

Тема 13. Плоскость в пространстве. Различные виды уравнения плоскости. Расстояние от точки до плоскости. Взаимное расположение двух плоскостей. 756, 758(а, в), 764(а, в), 765(а, в), 767(а, в), 794(а, в), 796(а, в), 798, 713, 715, 718(1), 719(1), 728(1, 3), 730(1), 733(1, 3).

Тема 14. Прямая линия в пространстве. Различные виды уравнения. Взаимное расположение двух прямых. 1058(а), 1059(а, в), 1060(а), 1066(а), 1068(а), 1113(а), 1116(а), 1122(а) , 624(1, 3), 625(1,3), 630(1), 632, 645(1).

Тема 15. Поверхности 2-го порядка. Поверхности вращения. Цилиндрические поверхности. Конические поверхности. 1252, 1254(а, в), 1256 , 769, 770(1), 771, 775(1).