Болезни Военный билет Призыв

Органические и неорганические вещества: что это и в чем разница. Органические вещества

Известно, что свойства органических веществ определяются их составом и химическим строением. Поэтому неудивительно, что в основе классификации органических соединений лежит именно теория строения - теория Л. М. Бутлерова. Классифицируют органические вещества по наличию и порядку соединения атомов в их молекулах. Наиболее прочной и малоизменяемой частью молекулы органического вещества является ее скелет - цепь атомов углерода. В зависимости от порядка соединения атомов углерода в этой цепи вещества делятся на ациклические, не содержащие замкнутых цепей атомов углерода в молекулах, и карбоциклические, содержащие такие цени (циклы) в молекулах.
Помимо атомов углерода и водорода молекулы органических веществ могут содержать атомы и других химических элементов. Вещества, в молекулах которых эти так называемые гетероатомы включены в замкнутую цепь, относят к гетероциклическим соединениям.
Гетероатомы (кислород, азот и др.) могут входить в состав молекул и ациклических соединений, образуя в них функциональные группы, например, гидроксильную - ОН, карбонильную, карбоксильную, аминогруппу -NН2.
Функциональная группа - группа атомов, которая определяет наиболее характерные химические свойства вещества и его принадлежность к определенному классу соединений.

Углеводороды - это соединения, состоящие только из атомов водорода и углерода.

В зависимости от строения углеродной цепи органические соединения разделяют на соединения с открытой цепью - ациклические (алифатические) и циклические - с замкнутой цепью атомов.

Циклические делятся на две группы: карбоциклические соединения (циклы образованы только атомами углерода) и гетероциклические (в циклы входят и другие атомы, такие как кислород, азот, сера).

Карбоциклические соединения, в свою очередь, включают два ряда соединений: алицикличвские и ароматические.

Ароматические соединения в основе строения молекул имеют плоские углеродсодержащие циклы с особой замкнутой системой р-электронов, образующих общую π-систему (единое π-электронное облако). Ароматичность характерна и для многих гетероциклических соединений.

Все остальные карбоциклические соединения относятся к алициклическому ряду.

Как ациклические (алифатические), так и циклические углеводороды могут содержать кратные (двойные или тройные) связи. Такие углеводороды называют непредельными (ненасыщенными) в отличие от предельных (насыщенных), содержащих только одинарные связи.

Предельные алифатические углеводороды называют алканами , они имеют общую формулу С n Н 2 n +2 , где n - число атомов углерода. Старое их название часто употребляется и в настоящее время - парафины.

Содержащие одну двойную связь , получили название алкены . Они имеют общую формулу С n Н 2 n .

Непредельные алифатические углеводороды с двумя двойными связями называют алкадиенами

Непредельные алифатические углеводороды с одной тройной связью называют алкинами . Их общая формула С n Н 2 n — 2 .

Предельные алициклические углеводороды - циклоалканы , их общая формула С n Н 2 n .

Особая группа углеводородов, ароматических , или аренов (с замкнутой общей π-электронной системой), известна из примера углеводородов с общей формулой С n Н 2 n -6.

Таким образом, если в их молекулах один или большее число атомов водорода заменить на другие атомы или группы атомов (галогены, гидроксильные группы, аминогруппы и др.), образуются производные углеводородов : галогенопроизводные, кислородсодержащие, азотсодержащие и другие органические соединения.

Галогенопроизводные углеводородов можно рассматривать как продукты замещения в углеводородах одного или нескольких атомов водорода атомами галогенов. В соответствии с этим могут существовать предельные и непредельные моно-, ди-, три- (в общем случае поли-) галогенопроизводные.

Общая формула моногалогенопроизводных предельных углеводородов:

а состав выражается формулой

C n H 2 n +1 Г,

где R - остаток от предельного углеводорода (алкана), углеводородный радикал (это обозначение используется и далее при рассмотрении других классов органических веществ), Г - атом галогена (F, Сl, Вг, I).

Спирты - производные углеводородов, в которых один или несколько атомов водорода замещены на гидроксильные группы.

Спирты называют одноатомными , если они имеют одну гидроксильную группу, и предельными, если они являются производными алканов.

Общая формула предельных одноатомных спиртов:

а их состав выражается общей формулой:
С n Н 2 n +1 ОН или С n Н 2 n +2 О

Известны примеры многоатомных спиртов, т. е. имеющих несколько гндроксильных групп.

Фенолы - производные ароматических углеводородов (ряда бензола), в которых один или несколько атомов водорода в бензольном кольце замещены на гидроксильные группы.

Простейший представитель с формулой С 6 Н 5 ОН называется фенолом.

Альдегиды и кетоны - производные углеводородов, содержащие карбонильную группу атомов (карбонил).

В молекулах альдегидов одна связь карбонила идет на соединение с атомом водорода, другая - с углеводородным радикалом.

В случае кетонов карбонильная группа связана с двумя (в общем случае разными) радикалами.

Состав предельных альдегидов и кетонов выражается формулой С n Н 2л О.

Карбоновые кислоты - производные углеводородов, содержащие карбоксильные группы (-СООН).

Если в молекуле кислоты одна карбоксильная группа, то карбоновая кислота является одноосновной. Общая формула предельных одноосновных кислот (R-СООН). Их состав выражается формулой С n Н 2 n O 2 .

Простые эфиры представляют собой органические вещества, содержащие два углеводородных радикала, соединенных атомом кислорода: R-О-R или R 1 -O-R 2 .

Радикалы могут быть одинаковыми или разными. Состав простых эфиров выражается формулой С n Н 2 n +2 O

Сложные эфиры - соединения, образованные замещением атома водорода карбоксильной группы в карбоновых кислотах на углеводородный радикал.

Нитросоединения - производные углеводородов, в которых один или несколько атомов водорода замещены на нитрогруппу -NO 2 .

Общая формула предельных мононитросоединений:

а состав выражается общей формулой

С n Н 2 n +1 NO 2 .

Амины - соединения, которые рассматривают как производные аммиака (NН 3), в котором атомы водорода замещены на углеводородные радикалы.

В зависимости от природы радикала амины могут быть алифатическими и ароматическими .

В зависимости от числа замещенных на радикалы атомов водорода различают:

Первичные амины с общей формулой: R-NН 2

Вторичные - с общей формулой: R 1 -NН-R 2

Третичные - с общей формулой:

В частном случае у вторичных, а также третичных аминов радикалы могут быть и одинаковыми.

Первичные амины можно также рассматривать как производные углеводородов (алканов), в которых один атом водорода замещен на аминогруппу -NН 2 . Состав предельных первичных аминов выражается формулой С n Н 2 n +3 N.

Аминокислоты содержат две функциональные группы, соединенные с углеводородным радикалом: аминогруппу -NН 2 , и карбоксил -СООН.

Состав предельных аминокислот, содержащих одну аминогруппу и один карбоксил, выражается формулой С n Н 2 n +1 NO 2 .

Известны и другие важные органические соединения, которые имеют несколько разных или одинаковых функциональных групп, длинные линейные цепи, связанные с бензольными кольцами. В таких случаях строгое определение принадлежности вещества к какому-то определенному классу невозможно. Эти соединения часто выделяют в специфические группы веществ: углеводы, белки, нуклеиновые кислоты, антибиотики, алкалоиды и др.

Для названия органических соединений используют 2 номенклатуры — рациональную и систематическую (ИЮПАК) и тривиальные названия.

Составление названий по номенклатуре ИЮПАК

1) Основу названия соединения составляет корень слова, обозначающий предельный углеводород с тем же числом атомов, что и главная цепь.

2) К корню добавляют суффикс, характеризующий степень насыщенности:

Ан (предельный, нет кратных связей);
-ен (при наличии двойной связи);
-ин (при наличии тройной связи).

Если кратных связей несколько, то в суффиксе указывается число таких связей (-диен, -триен и т.д.), а после суффикса обязательно указывается цифрами положение кратной связи, например:
СН 3 –СН 2 –СН=СН 2 СН 3 –СН=СН–СН 3
бутен-1 бутен-2

СН 2 =СН–СН=СН 2
бутадиен-1,3

Такие группы как нитро-, галогены, углеводородные радикалы, не входящие в главную цепь выносятся в приставку. При этом они перечисляются по алфавиту. Положение заместителя указывается цифрой перед приставкой.

Порядок составления названия следующий:

1. Найти самую длинную цепь атомов С.

2. Последовательно пронумеровать атомы углерода главной цепи, начиная с ближайшего к разветвлению конца.

3. Название алкана складывается из названий боковых радикалов, перечисленных в алфавитном порядке с указанием положения в главной цепи, и названия главной цепи.

Номенклатура некоторых органических веществ (тривиальная и международная)


Самая простая классификация заключается в том. что все известные вещества делят на неорганические и органические . К органическим веществам относят углеводороды и их производные. Все остальные вещества - неорганические.

Неорганические вещества по составу делят на простые и сложные .

Простые вещества состоят из атомов одного химического элемента и подразделяются на металлы, неметаллы, благородные газы. Сложные вещества состоят из атомов разных элементов, химически связанных друг с другом.

Сложные неорганические вещества по составу и свойствам распределяют по следующим важнейшим классам: оксиды, основания, кислоты, амфотерные гидроксиды, соли.

  • Оксиды - это сложные вещества, состоящие из двух химических элементов, один из которых - кислород со степенью окисления (-2). Общая формула оксидов: Э m О n , где m - число атомов элемента Э, а n - число атомов кислорода. Оксиды, в свою очередь, классифицируют на солеобразующие и несолеобрадующие. Солеобразующие делятся на основные, амфотерные, кислотные, которым соответствуют основания, амфотерные гидроксиды, кислоты соответственно.
  • Основные оксиды - это оксиды металлов в степенях окисления +1 и +2. К ним относятся:
    • оксиды металлов главной подгруппы первой группы (щелочные металлы ) Li - Fr
    • оксиды металлов главной подгруппы второй группы (Mg и щелочноземельные металлы ) Mg - Ra
    • оксиды переходных металлов в низших степенях окисления
  • Кислотные оксиды -образуют неметаллы со С.О. более +2 и металлы со С.О. от +5 до +7 (SO 2 , SeO 2 , Р 2 O 5 , As 2 O 3 , СO 2 , SiO 2 , CrO 3 и Mn 2 O 7). Исключение: у оксидов NO 2 и ClO 2 нет соответствующих кислотных гидроксидов, но их считают кислотными.
  • Амфотерные оксиды -образованы амфотерными металлами со С.О. +2, +3,+4 (BeO, Cr 2 O 3 , ZnO, Al 2 O 3 , GeO 2 , SnO 2 и РЬО).
  • Несолеобразующие оксиды - оксиды неметаллов со С.О.+1, +2 (СО, NO, N 2 O, SiO).
  • Основания - это сложные вещества, состоящие из атомов металла и одной или нескольких гидроксогрупп (-ОН). Общая формула оснований: М(ОН) у, где у - число гидроксогрупп, равное степени окислении металла М (как правило, +1 и +2). Основания делятся на растворимые (щелочи) и нерастворимые.
  • Кислоты -(кислотные гидроксиды)- это сложные вещества, состоящие из атомов водорода, способных замещаться на атомы металла, и кислотных остатков. Общая формула кислот: Н х Ас, где Ас - кислотный остаток (от английского «acid» - кислота), х - число атомов водорода, равное заряду иона кислотного остатка.
  • Амфотерные гидроксиды - это сложные вещества, которые проявляют и свойства кислот, и свойства оснований. Поэтому формулы амфотерных гидроксидов можно записывать и в форме кислот, и в форме оснований.
  • Соли - это сложные вещества, состоящие из катионов металла и анионов кислотных остатков. Такое определение относится к средним солям.
  • Средние соли - это продукты полного замещения атомов водорода в молекуле кислоты атомами металла или полного замещения гидроксогрупп в молекуле основания кислотными остатками.
  • Кислые соли - атомы водорода в кислоте замещены атомами металла частично. Они получаются при нейтрализации основания избытком кислоты. Чтобы правильно назвать кислую соль, необходимо к названию нормальной соли прибавить приставку гидро- или дигидро- в зависимости от числа атомов водорода, входящих в состав кислой соли.Например, KHCO 3 – гидрокарбонат калия, КH 2 PO 4 – дигидроортофосфат калия. Нужно помнить, что кислые соли могут образовывать только двух и более основные кислоты.
  • Осно́вные соли - гидроксогруппы основания (OH −) частично замещены кислотными остатками. Чтобы назвать основную соль, необходимо к названию нормальной соли прибавить приставку гидроксо- или дигидроксо- в зависимости от числа ОН – групп, входящих в состав соли.Например, (CuOH) 2 CO 3 – гидроксокарбонат меди (II).Нужно помнить, что основные соли способны образовывать лишь основания, содержащие в своём составе две и более гидроксогрупп.
  • Двойные соли - в их составе присутствует два различных катиона, получаются кристаллизацией из смешанного раствора солей с разными катионами, но одинаковыми анионами. Например, KAl(SO 4) 2 , KNaSO 4.
  • Смешанные соли - в их составе присутствует два различных аниона. Например, Ca(OCl)Cl.
  • Гидратные соли (кристаллогидраты ) - в их состав входят молекулы кристаллизационной воды. Пример: Na 2 SO 4 ·10H 2 O.

Классификация органических веществ

Соединения, состоящие только из атомов водорода и углерода, называют углеводородами . Прежде чем начать данный раздел, запомни, для упрощения записи, химики не расписывают в цепочках углероды и водороды, однако не забывай что углерод образует четыре связи, и если на рисунке углерод связан двумя связями, то еще двумя он связан с водородами, хоть последнее и не указано:

В зависимости от строения углеродной цепи органические соединения разделяют на соединения с открытой цепью - ациклические (алифатические) и циклические - с замкнутой цепью атомов.

Циклические делятся на две группы: карбоциклические соединения и гетероциклические .

Карбоциклическне соединения , в свою очередь, включают два ряда соединений: алициклические и ароматические .

Ароматические соединения в основе строения молекул имеют плоские углеродсодержащие циклы с особой замкнутой системой π-электронов. образующих общую π-систему (единое π-электронное облако).

Как ациклические (алифатические), так и циклические углеводороды могут содержать кратные (двойные или тройные) связи. Такие углеводороды называют непредельными (ненасыщенными), в отличие от предельных (насыщенных), содержащих только одинарные связи.

Пи-связь (π-связь) - ковалентная связь, образующаяся перекрыванием p-атомных орбиталей. В отличие от сигма-связи, осуществляемой перекрыванием s-атомных орбиталей вдоль линии соединения атомов, пи-связи возникают при перекрывании p-атомных орбиталей по обе стороны от линии соединения атомов.

В случае образования ароматической системы, например, бензола C6H6, каждый из шести атомов углерода находится в состоянии sp2 - гибридизации и образует три сигма-связи с валентными углами 120 °. Четвёртый p-электрон каждого атома углерода ориентируется перпендикулярно к плоскости бензольного кольца. В целом возникает единая связь, распространяющаяся на все атомы углерода бензольного кольца. Образуются две области пи-связей большой электронной плотности по обе стороны от плоскости сигма-связей. При такой связи все атомы углерода в молекуле бензола становятся равноценными и, следовательно, подобная система более устойчива, чем система с тремя локализованными двойными связями.

Предельные алифатические углеводороды называют алканами, они имеют общую формулу С n Н 2n + 2 , где n - число атомов углерода. Старое их название часто употребляется и в настоящее время - парафины:

Непредельные алифатические углеводороды с одной тройной связью называют алкинами. Их общая формула С n Н 2n — 2

Предельные алициклические углеводороды - циклоалканы, их общая формула С n Н 2n:

Мы рассмотрели классификацию углеводородов. Но если в этих молекулах один или большее число атомов водорода заменить на другие атомы или группы атомов (галогены, гидроксильные группы, аминогруппы и др.), образуются производные углеводородов: галогенопроизводные, кислородсодержащие, азотсодержащие и другие органические соединения.

Атомы или группы атомов, которые определяют самые характерные свойства данного класса веществ, называются функциональными группами.

Углеводороды в их производные с одной и той же функциональной группой образуют гомологические ряды.

Гомологическим рядом называют ряд соединений, принадлежащих к одному классу (гомологов), по отличающихся друг от друга по составу на целое число групп -СН 2 - (гомологическую разность), имеющих сходное строение и, следовательно, сходные химические свойства.

Сходство химических свойств гомологов значительно упрощает изучение органических соединений.

Замещенные углеводороды

  • Галогенопроизводные углеводородов можно рассматривать как продукты замещения в углеводородах одного или нескольких атомов водорода атомами галогенов. В соответствии с этим могут существовать предельные и непредельные моно-, ли-, три- (в общем случае поли-) галогенопроизводные.Общая формула галогенопроизводных предельных углеводородов R-Г.К кислородсодержащим органическим веществам относят спирты, фенолы, альдегиды, кетоны, карбоновые кислоты, простые и сложные эфиры.
  • Спирты - производные углеводородов, в которых один или несколько атомов водорода замещены на гидроксильные группы.Спирты называют одноатомными, если они имеют одну гидроксильную группу, и предельными, если они - производные алканов.Общая формула предельных одноатомных спиртов: R-ОН.
  • Фенолы - производные ароматических углеводородов (ряда бензола), в котором один или несколько атомов водорода в бензольном кольце замещены на гидроксильные группы.
  • Альдегиды и кетоны - производные углеводородов, содержащие карбонильную группу атомов (карбонил).В молекулах альдегидов одна связь карбонила идет на соединение с атомом водорода, другая - с углеводородным радикалом.В случае кетонов карбонильная группа связана с двумя (в общем случае разными) радикалами.
  • Простые эфиры представляют собой органические вещества, содержащие два углеводородных радикала, соединенные атомом кислорода: R=О-R или R-О-R 2 .Радикалы могут быть одинаковыми или разными. Состав простых эфиров выражается формулой С n Н 2n +2O.
  • Сложные эфиры - соединения, образованные замещением атома водорода карбоксильной группы в карбоновых кислотах на углеводородный радикал.
  • Нитросоединения - производные углеводородов, в которых один или несколько атомов водорода замещены на нитрогруппу -NO 2 .
  • Амины - соединения, которые рассматривают как производные аммиака, в котором атомы водорода замещены на углеводородные радикалы.В зависимости от природы радикала амины могут быть алифатическими. В зависимости от числа замещенных на радикалы атомов водорода различают первичные амины, вторичные, третичные. В частном случае у вторичных, а также третичных аминов радикалы могут быть и одинаковыми. Первичные амины можно также рассматривать как производные углеводородов (алканов), в которых один атом водорода замещен на аминогруппу. Аминокислоты содержат две функциональные группы, соединенные с углеводородным радикалом, - аминогруппу -NH 2 и карбоксил -СOОН.

Известны и другие важные органические соединения, которые имеют несколько разных или одинаковых функциональных групп, длинные линейные цепи, связанные с бензольными кольцами. В таких случаях строгое определение принадлежности вещества к какому-то определенному классу невозможно. Эти соединения часто выделяют в специфические группы веществ: углеводы, белки, нуклеиновые кислоты, антибиотики, алкалоиды и др. В настоящее время известно также много соединений, которые можно отнести и к органическим, и к неорганическим. Их называют элементоорганическими соединениями. Некоторые из них можно рассматривать как производные углеводородов.

Номенклатура

Для названия органических соединений используют 2 номенклатуры – рациональную и систематическую (ИЮПАК) и тривиальные названия .


Составление названий по номенклатуре ИЮПАК:

1) Основу названия соединения составляет корень слова, обозначающий предельный углеводород с тем же числом атомов, что и главная цепь.

2) К корню добавляют суффикс, характеризующий степень насыщенности:

Ан (предельный, нет кратных связей);

Ен (при наличии двойной связи);

Ин (при наличии тройной связи).


Если кратных связей несколько, то в суффиксе указывается число таких связей (-диен, -триен и т.д.), а после суффикса обязательно указывается цифрами положение кратной связи, например:

СН 3 –СН 2 –СН=СН 2 СН 3 –СН=СН–СН 3

бутен-1 бутен-2

СН 2 =СН–СН=СН 2

Такие группы как нитро-, галогены, углеводородные радикалы, не входящие в главную цепь выносятся в приставку. При этом они перечисляются по алфавиту. Положение заместителя указывается цифрой перед приставкой.

Порядок составления названия следующий:

1. Найти самую длинную цепь атомов С.

2. Последовательно пронумеровать атомы углерода главной цепи, начиная с ближайшего к разветвлению конца.

3. Название алкана складывается из названий боковых радикалов, перечисленных в алфавитном порядке с указанием положения в главной цепи, и названия главной цепи.


Порядок составления названия

Химический язык, в состав которого в качестве одной из наиболее специфических частей входит химическая символика (включающая и химические формулы), является важным активным средством познания химии и требует поэтому четкого и осознанного применения.

Химические формулы — это условные изображения состава и строения химически индивидуальных веществ посредством химических символов, индексов и других знаков. При изучении состава, химического, электронного и пространственного строения веществ, их физических и химических свойств, изомерии и других явлений применяют химические формулы разных видов.

Особенно много видов формул (простейшие, молекулярные, структурные, проекционные, конформационные и др.) применяют при изучении веществ молекулярного строения — большинства органических веществ и сравнительно небольшой части неорганических веществ при обычных условиях. Значительно меньше видов формул (простейшие) применяют при изучении немолекулярных соединений, строение которых более наглядно отражают шаростержневые модели и схемы кристаллических структур или их элементарных ячеек.


Составление полных и кратких структурных формул углеводородов

Пример:

Составить полную и краткую структурные формулы пропана С 3 Н 8 .

Решение:

1. Записать в строчку 3 атома углерода, соединить их связями:

С–С–С

2. Добавить черточки (связи) так, чтобы от каждого атома углерода отходило 4 связи:

4. Записать краткую структурную формулу:

СН 3 –СН 2 –СН 3

Таблица растворимости

Основу названия соединения составляет корень слова, обозначающий предельный углеводород с тем же числом атомов, что и главная цепь (например, мет-, эт-. пpo п-, бут-, пент-, гекс- и т.д.). Затем следует суффикс, характеризующий степень насыщенности, -ан, если в молекуле нет кратных связей, -ен при наличии двойных связей и -ни для тройных связей, например, пентан, пентен. Если кратных связей в молекуле несколько, то в суффиксе указывается число таких связей, например: -диен, -триен, а после суффикса обязательно арабскими цифрами указывается положе­ние кратной связи (например, бутен-1, бутен-2, бутадиен-1,3):

СН 3 -СН 2 -СН=СН 2 СН 3 -СН=СН-СН 3 СН 2 =СН-СН=СН 2
бутен-1 бутен-2 бутадиен-1,3

Далее в суффикс выносится название самой старшей характе­ристической группы в молекуле с указанием ее положения циф­рой. Прочие заместители обозначаются с помощью приставок. При этом они перечисляются не в порядке старшинства, а по ал­фавиту. Положение заместителя указывается цифрой перед при­ставкой, например: 3-метил; 2-хлор и т.п. Если в молекуле имеет­ся несколько одинаковых заместителей, то перед названием соответствующей группы словом указывается их количество (например, диметил-, трихлор- и т.д.). Все цифры в названиях молекул отделяются от слов дефисом, а друг от друга запятыми. Уг­леводородные радикалы имеют свои названия.

Предельные углеводородные радикалы:

метил этил пропил изопропил

Бутил втор-бутил

изобутил трет-бутил

Непредельные углеводородные радикалы:

СН 2 =СН- НС — С- СН 2 =СН-СН 2 —

винил этинил аллил

Ароматические углеводородные радикалы:



фенил бензол

В качестве примера назовем следующее соединение:

Выбор цепи однозначен, следовательно, корень слова — пент, далее следует суффикс -ен, указывающий на наличие крат­ной связи; порядок нумерации обеспечивает старшей группе (-ОН) наименьший номер; полное название соединения заканчивается суффиксом, обозначающим старшую группу (в данном случае суффикс –o л указывает на наличие гидроксильной группы); положение двой­ной связи и гидроксильной группы указывается цифрами.

Следовательно, приведенное соединение называется пентен-4-ол-2.

Тривиальная номенклатура представляет собой совокупность несистематических исторически сложившихся Названий органи­ческих соединений (например: ацетон, уксусная кислота, фор­мальдегид и т.д.). Важнейшие тривиальные названия вводятся в тексте при рассмотрении соответствующих классов соединений.

Рациональная номенклатура позволяет строить название ве­щества на основании его структуры с более простым соединени­ем, выбранным в качестве прототипа. Способ такого построения иллюстрируют следующие примеры:

триметилметан ацетилацетон фенилуксусная кислота

Органические вещества товаров - это соединения, в состав которых входят атомы углерода и водорода. Они подразделяются на мономеры, олигомеры и полимеры.

Мономеры - органические вещества, состоящие из одного соединения и не подвергающиеся расщеплению с образованием новых органических веществ. Распад мономеров происходит в основном до углекислого газа и воды.

Моносахариды - мономеры, относящиеся к классу углеводов, в состав молекулы которых входят углерод, водород и кислород (СН2О)n. Наибольшее распространение из них имеют гексозы (С6Н12О6) - глюкоза и фруктоза. Они встречаются в основном в пищевых продуктах растительного происхождения (плодах и овощах, вкусовых напитках и кондитерских изделиях). Промышленностью выпускается также чистая глюкоза и фруктоза как продукт питания и сырье для производства кондитерских изделий и напитков для диабетиков. Из натуральных продуктов больше всего глюкозы и фруктозы (до 60 %) содержит мед.

Моносахариды придают продуктам сладкий вкус, обладают энергетической ценностью (1 г - 4 ккал) и влияют на гигроскопичность содержащих их продуктов. Растворы глюкозы и фруктозы хорошо сбраживаются дрожжами и используются другими микроорганизмами, поэтому при содержании до 20 % и повышенном содержании воды ухудшают сохраняемость.

Органические кислоты - соединения, в составе молекулы которых находится одна или несколько карбоксильных групп (-СООН).

В зависимости от числа карбоксильных групп органические кислоты подразделяются на моно-, ди- и трикарбоновые кислоты. Другими классификационными признаками этих кислот служит число атомов углерода (от С2 до С40), а также амино- и фенольных групп.

Природные органические кислоты содержатся в свежих плодах и овощах, продуктах их переработки, вкусовых товарах, а также в кисломолочных продуктах, сырах, кисломолочном сливочном масле.

Органические кислоты - соединения, придающие продуктам кислый вкус. Поэтому они используются в виде пищевых добавок в качестве подкислителей (уксусная, лимонная, молочная и другие кислоты) для сахаристых кондитерских изделий, алкогольных и безалкогольных напитков, соусов.

Наибольшее распространение в пищевых продуктах имеют молочная, уксусная, лимонная, яблочная и винная кислоты. Отдельные виды кислот (лимонная, бензойная, сорбиновая) обладают бактерицидными свойствами, поэтому их используют в качестве консервантов. Органические кислоты пищевых продуктов относятся к дополнительным энергетическим веществам, так как при их биологическом окислении выделяется энергия.

Жирные кислоты - карбоновые кислоты алифатического ряда, имеющие не менее шести атомов углерода в молекуле (С6-С22 и выше). Они подразделяются на высшие (ВЖК) и низкомолекулярные (НЖК).

Важнейшие природные насыщенные ВЖК - стеариновая и пальмитиновая, а ненасыщенные - олеиновая, арахидоновая, линолевая и линоленовая. Из них последние две относятся к полиненасыщенным незаменимым жирным кислотам, обусловливающим биологическую эффективность пищевых продуктов. Природные ВЖК могут содержаться в виде жиров во всех жи-росодержащих продуктах, однако в свободном виде они встречаются в небольшом количестве, так же как и НЖК.

Аминокислоты - карбоновые кислоты, содержащие одну или несколько аминогрупп (NH2).

Аминокислоты в товарах могут находиться в свободном виде и в составе белков. Всего известно около 100 аминокислот, из них почти 80 встречаются только в свободном виде. Глютаминовая кислота и ее натриевая соль широко применяются в качестве пищевой добавки в составе приправ, соусов, пищевых концентратов на мясной и рыбной основах, так как усиливают вкус мяса и рыбы.

Витамины - низкомолекулярные органические соединения, являющиеся регуляторами или участниками процессов обмена веществ в организме человека.

Витамины могут самостоятельно участвовать в обмене веществ (например, витамины С, Р, А и т.п.) или входить в состав ферментов, катализирующих биохимические процессы (витамины В1, В2, В3, В6 и др.).

Кроме указанных общих свойств, каждый витамин имеет специфические функции и свойства. Эти свойства рассматриваются в рамках дисциплины «Физиология питания».

В зависимости от растворимости витамины подразделяются следующим образом:

  • на водорастворимые (В1, В2, В3, РР, В6, В9, В12, С и др.);
  • жирорастворимые (А, Д, Е, К).

К группе витаминов относят также витаминоподобные вещества, часть из которых называют витаминами (каротин, холин, витамин U и др.).

Спирты - органические соединения, содержащие в молекулах одну или несколько гидроксильных групп (ОН) у насыщенных атомов углерода. По количеству этих групп различают одно-, двух- (гликоли), трех- (глицерин) и многоатомные спирты. Этиловый спирт получают в качестве готовой продукции в спиртовой промышленности, а также в виноделии, ликеро-во-дочной, пивоваренной промышленности, при производстве вин, водок, коньяка, рома, виски, пива. Кроме того, этиловый спирт в небольших количествах образуется при производстве кефира, кумыса и кваса.

Олигомеры - органические вещества, состоящие из 2-10 остатков молекул однородных и разнородных веществ.

В зависимости от состава олигомеры подразделяются на однокомпонентные, двух-, трех- и многокомпонентные. К одно-компонентным олигомерам относятся некоторые олигосахариды (мальтоза, трегалоза), к двухкомпонентным - сахароза, лактоза, жиры-моноглицериды, в состав которых входят остатки молекул глицерина и только одной жирной кислоты, а также гликозиды, сложные эфиры; к трехкомпонентным - рафиноза, жиры-диглицериды; к многокомпонентным - жиры-триглице-риды, липоиды: фосфатиды, воски и стероиды.

Олигосахариды - углеводы, в состав которых входят 2-10 остатков молекул моносахаридов, связанных гликозидными связями. Различают ди-, три- и тетрасахариды. Наибольшее распространение в пищевых продуктах имеют дисахариды - сахароза и лактоза, в меньшей мере - мальтоза и трегалоза, а также трисахариды - рафиноза. Указанные олигосахариды содержатся только в пищевых продуктах.

Сахароза (свекловичный, или тростниковый сахар) - дисахарид, состоящий из остатков молекул глюкозы и фруктозы. При кислотном или ферментативном гидролизе сахароза распадается на глюкозу и фруктозу, смесь которых в соотношении 1:1 называют инвертным сахаром. В результате гидролиза усиливается сладкий вкус продуктов (например, при созревании плодов и овощей), поскольку фруктоза и инвертный сахар обладают повышенной степенью сладости, чем сахароза. Так, если степень сладости сахарозы принять за 100 условных единиц, степень сладости фруктозы будет равна 220, а инвертного сахара - 130.

Сахароза является преобладающим сахаром следующих пищевых продуктов: сахара-песка, сахара-рафинада (99,7-99,9 %), сахаристых кондитерских изделий (50-96 %), некоторых плодов и овощей (бананы - до 18 %, дыни - до 12 %, лук - до 10-12 %) и т.д. Кроме того, сахароза может содержаться в небольших количествах и в других пищевых продуктах растительного происхождения (зерномучных товарах, во многих алкогольных и безалкогольных напитках, слабоалкогольных коктейлях, мучных кондитерских изделиях), а также сладких молочных товарах - мороженом, йогуртах и т.п. Сахароза отсутствует в пищевых продуктах животного происхождения.

Лактоза (молочный сахар) - дисахарид, состоящий из остатков молекул глюкозы и галактозы. При кислотном или ферментативном гидролизе лактоза распадается до глюкозы и галактозы, которые и используются живыми организмами: человеком, дрожжами или молочнокислыми бактериями.

Лактоза по степени сладости значительно уступает сахарозе и глюкозе, которая входит в ее состав. Уступает она им и по распространенности, так как содержится в основном в молоке разных видов животных (3,1-7,0 %) и отдельных продуктах его переработки. Однако при использовании молочнокислого и/или спиртового брожений в процессе производства (например, кисломолочных продуктов) и/или сычужного фермента (при производстве сыров) лактоза полностью сбраживается.

Мальтоза (солодовый сахар) - дисахарид, состоящий из двух остатков молекул глюкозы. Это вещество встречается как продукт неполного гидролиза крахмала в солоде, пиве, хлебе и мучных кондитерских изделиях, приготовленных с использованием проросшего зерна. Она содержится только в небольших количествах.

Трегалоза (грибной сахар) - дисахарид, состоящий из двух остатков молекул глюкозы. Этот сахар мало распространен в природе и содержится в основном в пищевых продуктах одной группы - свежих и сушеных грибах, а также в натуральных консервах из них и дрожжах. В квашеных (соленых) грибах трегалоза отсутствует, поскольку расходуется при брожении.

Рафиноза - трисахарид, состоящий из остатков молекул глюкозы, фруктозы и галактозы. Как и трегалоза, рафиноза - мало распространенное вещество, встречающееся в небольших количествах в зерномучных товарах и свекле.

Свойства. Все олигосахариды являются запасными питательными веществами растительных организмов. Они хорошо растворимы в воде, легко подвергаются гидролизу до моносахаридов, обладают сладким вкусом, но степень их сладости различна. Исключение составляет лишь рафиноза - несладкая на вкус.

Олигосахариды гигроскопичны, при высоких температурах (160-200 °С) происходит их карамелизация с образованием темноокрашенных веществ (карамелинов и др.). В насыщенных растворах олигосахариды могут образовывать кристаллы, которые в ряде случаев ухудшают консистенцию и внешний вид продуктов, вызывая образование дефектов (например, засахаривание меда или варенья; образование кристаллов лактозы в сгущенном молоке с сахаром).

Липиды и липоиды - олигомеры, в состав которых входят остатки молекул трехатомного спирта глицерина или других высокомолекулярных спиртов, жирных кислот, а иногда и других веществ.

Липиды - это олигомеры, являющиеся сложными эфирами глицерина и жирных кислот - глицеридами. Смесь природных липидов, в основном триглицеридов, принято называть жирами. В товарах содержатся именно жиры.

В зависимости от количества остатков молекул жирных кислот в глицеридах различают моно-, ди- и триглицериды, а в зависимости от преобладания предельных или непредельных кислот жиры бывают жидкие и твердые. Жидкие жиры бывают чаще всего растительного происхождения (например, растительные масла: подсолнечное, оливковое, соевое и т.п.), хотя есть и твердые растительные жиры (какао-масло, кокосовое, пальмоядровое). Твердые жиры - это в основном жиры животного или искусственного происхождения (говяжий, бараний жир; коровье масло, маргарин, кулинарные жиры). Однако среди животных жиров есть и жидкие (рыбий, китовый и т.п.).

В зависимости от количественного содержания жиров все потребительские товары можно подразделить на следующие группы.

1. Товары с супервысоким содержанием жиров (90,0-99,9 %). К ним относятся растительные масла, животные и кулинарные жиры, коровье топленое масло.

2. Товары с преимущественным содержанием жиров (60-89,9 %) представлены сливочным маслом, маргарином, шпиком свинины, орехами: грецкими, кедровыми, фундуком, миндалем, кешью и т.п.

3. Товары с высоким содержанием жиров (10-59 %). В эту группу входят концентрированные молочные продукты: сыры, мороженое, молочные консервы, сметана, творог, сливки с повышенной жирностью, майонез; жирные и средней жирности мясо, рыба и продукты их переработки, икра рыб; яйцо; необезжиренная соя и продукты ее переработки; торты, пирожные, сдобное печенье, орехи, арахис, шоколадные изделия, халва, кремы на жировой основе и др.

4. Товары с низким содержанием жиров (1,5-9,9 %) - бобовые крупы, закусочные и обеденные консервы, молоко, сливки, кроме высокожирных, кисломолочные напитки, отдельные виды нежирной рыбы (например, семейства тресковых) или мяса II категории упитанности и субпродуктов (кости, головы, ножки и т.п.).

5. Товары с очень низким содержанием жиров (0,1-1,4 %) - большинство зерномучных и плодоовощных товаров.

6. Товары, не содержащие жиров (0 %), - слабоалкогольные и безалкогольные напитки, сахаристые кондитерские изделия, кроме карамели и конфет с молочными и ореховыми начинками, ириса; сахар; мед.

Общие свойства. Жиры являются запасными питательными веществами, обладают самой высокой энергетической ценностью среди других питательных веществ (1 г - 9 ккал), а также биологической эффективностью, если содержат полиненасыщенные незаменимые жирные кислоты. Жиры имеют относительную плотность меньше 1, поэтому легче воды. Они нерастворимы в воде, но растворимы в органических растворителях (бензине, хлороформе и др.). С водой жиры в присутствии эмульгаторов образуют пищевые эмульсии (маргарин, майонез).

Жиры подвергаются гидролизу при действии фермента липазы или омылению под действием щелочей. В первом случае образуется смесь жирных кислот и глицерина; во втором - мыла (солей жирных кислот) и глицерина. Ферментативный гидролиз жиров может происходить и при хранении товаров. Количество образующихся свободных жирных кислот характеризуется кислотным числом.

Усвояемость жиров во многом зависит от интенсивности липаз, а также температуры плавления. Жидкие жиры с низкой температурой плавления усваиваются лучше, чем твердые с высокой температурой плавления. Высокая интенсивность усвоения жиров при наличии большого количества этих или других энергетических веществ (например, углеводов) приводит к отложению их избытка в виде жира-депо и ожирению.

Жиры, содержащие непредельные (ненасыщенные) жирные кислоты, способны к окислению с последующим образованием перекисей и гидроперекисей, которые оказывают вредное воздействие на организм человека. Товары с прогоркшими жирами утрачивают безопасность и подлежат уничтожению или промпереработке. Прогоркание жиров служит одним из критериев окончания срока годности или хранения жиросодержащих товаров (овсяной крупы, пшеничной муки, печенья, сыров и др.). Способность жиров к прогорканию характеризуется йодным и перекисным числами.

Жидкие жиры с высоким содержанием непредельных жирных кислот могут вступать в реакцию гидрогенизации - насыщения таких кислот водородом, при этом жиры приобретают твердую консистенцию и выполняют функцию заменителей некоторых твердых животных жиров. Данная реакция положена в основу производства маргарина и маргариновой продукции.

Липоиды - жироподобные вещества, в состав молекул которых входят остатки глицерина или других высокомолекулярных спиртов, жирных и фосфорной кислот, азотистых и других веществ.

К липоидам относятся фосфатиды, стероиды и воски. От липидов они отличаются наличием фосфорной кислоты, азотистых оснований и других веществ, отсутствующих в липидах. Это более сложные вещества, чем жиры. Большинство их объединяет наличие в составе жирных кислот. Второй компонент - спирт - может иметь разную химическую природу: в жирах и фосфатидах - глицерин, в стероидах - высокомолекулярные циклические спирты-стерины, в восках - высшие жирные спирты.

Наиболее близки по химической природе к жирам фосфатиды (фосфолипиды) - сложные эфиры глицерина жирных и фосфорной кислот и азотистых оснований. В зависимости от химической природы азотистого основания выделяют следующие разновидности фосфатидов: лецитин (новое название - фосфатидилхолин), в составе которого содержится холин; а также кефалин, содержащий этаноламин. Наибольшее распространение в природных продуктах и применение в пищевой промышленности имеет лецитин. Лецитином богаты желтки яиц, субпродукты (мозги, печень, сердце), молочный жир, бобовые крупы, особенно соя.

Свойства. Фосфолипиды обладают эмульгирующими свойствами, благодаря чему лецитин используется в качестве эмульгатора при производстве маргарина, майонеза, шоколада, мороженого.

Стероиды и воски являются сложными эфирами высокомолекулярных спиртов и высокомолекулярных жирных кислот (С16-С36). Они отличаются от других липоидов и липидов отсутствием в их молекулах глицерина, а друг от друга - спиртами: стероиды содержат остатки молекул стеринов - циклических спиртов, а воски - одноатомные спирты с 12-46 атомами С в молекуле. Основной стерин растений - β-ситостерин, животных - холестерин, микроорганизмов - эргостерин. Ситостерином богаты растительные масла, холестерином - коровье масло, яйцо, субпродукты.

Свойства. Стероиды нерастворимы в воде, не омыляются щелочами, имеют высокую температуру плавления, обладают эмульгирующими свойствами. Холестерин и эргостерин под воздействием ультрафиолетовых лучей могут превращаться в витамин D.

Гликозиды - олигомеры, в которых остаток молекул моносахаридов или олигосахаридов связан с остатком неуглеводного вещества - аглюкона через гликозидную связь.

Гликозиды содержатся только в пищевых продуктах, в основном растительного происхождения. Особенно их много в плодах, овощах и продуктах их переработки. Гликозиды этих продуктов представлены амигдалином (в ядрах косточковых плодов, миндаля, особенно горького), соланином и чаконином (в картофеле, томатах, баклажанах); гесперидином и нарингином (в цитрусовых), синигрином (в хрене, редьке), рутином (во многих плодах, а также гречневой крупе). В небольших количествах гликозиды содержатся и в продуктах животного происхождения.

Свойства. гликозиды растворимы в воде и спирте, многие из них обладают горьким и/или жгучим вкусом, специфичным ароматом (например, амигдалин имеет горькоминдальный аромат), бактерицидными и лечебными свойствами (например, синигрин, сердечные гликозиды и др.).

Эфиры - олигомеры, в молекуле которых остатки молекул входящих в них веществ объединены простыми или сложными эфирными связями.

В зависимости от этих связей различают простые и сложные эфиры.

  • Простые эфиры входят в состав товаров бытовой химии (растворители) и парфюмерно-косметических изделий. В продовольственных товарах отсутствуют, но могут применяться как вспомогательное сырье в пищевой промышленности.
  • Сложные эфиры - соединения, состоящие из остатков молекул карбоновых кислот и спиртов.

Сложные эфиры низших карбоновых кислот и простейших спиртов обладают приятным фруктовым запахом, поэтому их иногда называют фруктовыми эфирами.

Сложные (фруктовые) эфиры совместно с терпенами и их производными, ароматическими спиртами (эвгенолом, линало-олом, анетолом и др.) и альдегидами (коричным, ванильным и т.п.) входят в состав эфирных масел, которые обусловливают аромат многих пищевых продуктов (фруктов, ягод, вин, ликероналивочных, кондитерских изделий). Сложные эфиры, их композиции и эфирные масла являются самостоятельным товаром - пищевыми добавками, например ароматизаторами.

Свойства. Сложные эфиры легко летучи, нерастворимы в воде, но растворимы в этиловом спирте и растительных маслах. Эти свойства используются для извлечения их из пряно-ароматического сырья. Сложные эфиры гидролизуются под действием кислот и щелочей с образованием входящих в их состав карбоновых кислот или их солей и спиртов, а также вступают в реакции конденсации с образованием полимеров и переэтирификации с получением новых эфиров за счет замены одного спиртового или кислотного остатка.

Полимеры - высокомолекулярные вещества, состоящие из десятков и более остатков молекул однородных или разнородных мономеров, соединенных химическими связями.

Они характеризуются молекулярной массой от нескольких тысяч до нескольких миллионов кислородных единиц и состоят из мономерных звеньев. Мономерное звено (ранее называемое элементарное) - составное звено, которое образуется из одной молекулы мономера при полимеризации. Например, в крахмале - С6Н10О5. С увеличением молекулярной массы и количества звеньев возрастает прочность полимеров.

По происхождению полимеры делят на природные, или биополимеры (например, белки, полисахариды, полифенолы и т.п.), и синтетические (например, полиэтилен, полистирол, фенолоальдегидные смолы). В зависимости от расположения в макромолекуле атомов и атомных групп различают линейные полимеры с открытой линейной цепью (например, натуральный каучук, целлюлоза, амилоза), разветвленные полимеры, имеющие линейную цепь с ответвлениями (например, амилопектин), глобулярные полимеры, отличающиеся преобладанием сил внутримолекулярного взаимодействия между группами атомов, входящих в молекулу, над силами межмолекулярного взаимодействия (например, белки мышечной ткани мяса, рыбы и т.п.), и сетчатые полимеры с трехмерными сетками, образованными отрезками высокомолекулярных соединений цепного строения (например, отверженные фенолоальдегидные смолы). Существуют и другие структуры макромолекул полимеров (лестничные и т.п.), но они встречаются редко.

По химическому составу макромолекулы различают гомополимеры и сополимеры. Гомополимеры - высокомолекулярные соединения, состоящие из одноименного мономера (например, крахмал, целлюлоза, инулин и др.). Сополимеры - соединения, образованные из нескольких различных мономеров (двух и более). Примером могут служить белки, ферменты, полифенолы.

Биополимеры - природные высокомолекулярные соединения, образующиеся в процессе жизнедеятельности растительных или животных клеток.

В биологических организмах биополимеры выполняют четыре важнейшие функции:

1) рациональное запасание питательных веществ, которые организм расходует при нехватке или отсутствии поступления их извне;

2) формирование и поддержание в жизнеспособном состоянии тканей и систем организмов;

3) обеспечение необходимого обмена веществ;

4) защита от внешних неблагоприятных условий.

Перечисленные функции биополимеры продолжают выполнять частично или полностью и в товарах, сырьем для которых служат определенные биоорганизмы. При этом преобладание тех или иных функций биополимеров зависит от того, какие потребности удовлетворяют конкретные товары. Например, пищевые продукты выполняют в первую очередь энергетические и пластические потребности, а также потребность во внутренней безопасности, поэтому в их составе преобладают запасные усвояемые (крахмал, гликоген, белки и т.п.) и неусвояемые (целлюлоза, пектиновые вещества) или трудноусвояемые биополимеры (некоторые белки), характеризующиеся высокой механической прочностью и защитными свойствами. В плодоовощных товарах присутствуют биополимеры, обладающие бактерицидным действием, что обеспечивает дополнительную защиту от неблагоприятных внешних воздействий, в первую очередь микробиологического характера.

Биополимеры продовольственных товаров представлены усвояемыми и неусвояемыми полисахаридами, пектиновыми веществами, усвояемыми и трудно- или неусвояемыми белками, а также полифенолами.

В продовольственных товарах растительного происхождения преобладающими биополимерами являются полисахариды и пектиновые вещества, а в товарах животного происхождения - белки. Известны товары растительного происхождения, состоящие почти целиком из полисахаридов с небольшим количеством примесей (крахмал и крахмалопродукты). В товарах животного происхождения полисахариды практически отсутствуют (исключение - мясо и печень животных, которые содержат гликоген), однако товары, которые состоят только из белка, также отсутствуют.

Полисахариды - это биополимеры, содержащие кислород и состоящие из большого числа мономерных звеньев типа С5Н8О4 или С6Н10О5.

По усвояемости организмом человека полисахариды подразделяются на усвояемые (крахмал, гликоген, инулин) и неусвояемые (целлюлоза и др.).

Полисахариды образуются преимущественно растительными организмами, поэтому являются количественно преобладающими веществами продовольственных товаров растительного происхождения (70-100 % сухого вещества). Исключение составляет лишь гликоген, так называемый животный крахмал, образующийся в печени животных. Разные классы и группы товаров отличаются подгруппами преобладающих полисахаридов. Так, в зерномучных товарах (кроме сои), мучных кондитерских изделиях, картофеле и орехах преобладает крахмал. В плодоовощных товарах (кроме картофеля и орехов), сахаристых кондитерских изделиях крахмал либо отсутствует, либо содержится в небольших количествах. В этих товарах основными углеводами являются моно- и олигосахариды.

Крахмал - биополимер, состоящий из мономерных звеньев - глюкозидных остатков.

Природный крахмал представлен двумя полимерами: амилозой с линейной цепью и амилопектином - с разветвленной, причем последний преобладает (76-84 %). В растительных клетках крахмал формируется в виде крахмальных зерен. Их размер, форма, а также соотношение амилозы и амилопектина являются идентифицирующими признаками природного крахмала определенных видов (картофельного, кукурузного и др.). Крахмал - запасное вещество растительных организмов.

Свойства. Амилоза и амилопектин различаются не только строением, но и свойствами. Амилопектин с большой молекулярной массой (100 000 и более) нерастворим в воде, а амилоза растворима в горячей воде и образует слабовязкие растворы. Образование и вязкость крахмального клейстера обусловлены в значительной мере за счет амилопектина. Амилоза легче, чем амилопектин, подвергается гидролизу до глюкозы. В процессе хранения происходит старение крахмала, вследствие чего снижается его водоудерживающая способность.

  • Продукты с высоким содержанием крахмала (50-80 %), представленные зерномучными товарами - зерном, крупами, кроме бобовых; макаронными и сухарными изделиями, а также пищевой добавкой - крахмалом и модифицированным крахмалом.
  • Продукты со средним содержанием крахмала (10-49 %). К ним относятся картофель, бобовые крупы, кроме сои, в которой отсутствует крахмал, хлеб, мучные кондитерские изделия, орехи, незрелые бананы.
  • Продукты с низким содержанием крахмала (0,1-9 %): большинство свежих плодов и овощей, кроме перечисленных, и продукты их переработки, йогурты, мороженое, вареные колбасы и другие комбинированные продукты, при производстве которых используется крахмал как стабилизатор консистенции или загуститель.

В остальных продовольственных товарах крахмал отсутствует.

Гликоген - резервный полисахарид животных организмов. Он имеет разветвленную структуру и по строению близок к амилопектину. Наибольшее количество его содержится в печени животных (до 10 %). Кроме того, он находится в мышечной ткани, сердце, мозге, а также в дрожжах и грибах.

Свойства. Гликоген образует с водой коллоидные растворы, гидролизуется с образованием глюкозы, дает с йодом красно-бурое окрашивание.

Целлюлоза (клетчатка) - линейный природный полисахарид, состоящий из остатков молекул глюкозы.

Свойства. Целлюлоза является полициклическим полимером с большим числом полярных гидроксильных групп, что придает жесткость и прочность ее молекулярным цепям (а также повышает влагоемкость, гигроскопичность). Целлюлоза нерастворима в воде, не поддается действию слабых кислот и щелочей, а растворяется только в очень немногих растворителях (в медно-аммиачном растворителе и в концентрированных растворах четвертичных аммониевых оснований).

Пектиновые вещества - комплекс биополимеров, основная цепь которых состоит из остатков молекул галактуроновой кислоты.

Пектиновые вещества представлены протопектином, пектином и пектиновой кислотой, которые отличаются молекулярной массой, степенью полимеризации и наличием метальных групп. Общим их свойством является нерастворимость в воде.

Протопектин - полимер, основная цепь которого состоит из большого числа мономерных звеньев - остатков молекул пектина. Протопектин включает молекулы арабана и ксилана. Он входит в состав срединных пластинок, связывающих отдельные клетки в ткани, а также совместно с целлюлозой и гемицеллюлозами - в оболочки растительных тканей, обеспечивая их твердость и прочность.

Свойства. Протопектин подвергается кислотному и ферментативному гидролизу (например, при созревании плодов и овощей), а также деструкции при длительной варке в воде. В результате этого ткани размягчаются, что облегчает усвоение пищевых продуктов организмом человека.

Пектин - полимер, состоящий из остатков молекул метилового эфира и неметилированной галактуроновой кислоты. Пектины разных растений отличаются различной степенью полимеризации и метилирования. Это влияет на их свойства, в частности желирующую способность, благодаря которой пектин и содержащие его в достаточном количестве плоды используются в кондитерской промышленности при производстве мармелада, пастилы, джема и т.п. Желирующие свойства пектина возрастают с увеличением его молекулярной массы и степени метилирования.

Свойства . Пектин подвергается омылению под действием щелочей, а также ферментативному гидролизу с образованием пектиновых кислот и метилового спирта. Пектин нерастворим в воде, не усваивается организмом, но обладает высокой водоудерживающей и сорбционной способностью. Благодаря последнему свойству он выводит из организма человека многие вредные вещества: холестерин, соли тяжелых металлов, радионуклиды, бактериальные и грибные яды.

Пектиновые вещества содержатся только в нерафинированных пищевых продуктах растительного происхождения (зерномучных и плодоовощных товарах), а также в продуктах с добавкой пектина или растительного сырья, богатого им (фруктово-ягодные кондитерские изделия, сбивные конфеты, торты и т.п.).

Белки - природные биополимеры, состоящие из остатков молекул аминокислот, связанных амидными (пептидными) связями, а отдельные подгруппы содержат дополнительно неорганические и органические безазотистые соединения.

Следовательно, по химической природе белки могут быть органическими, или простыми, полимерами и элементоорганическими, или сложными, сополимерами.

Простые белки состоят только из остатков молекул аминокислот, а сложные белки кроме аминокислот могут содержать неорганические элементы (железо, фосфор, серу и др.), а также безазотистые соединения (липиды, углеводы, красящие вещества, нуклеиновые кислоты).

В зависимости от способности растворяться в различных растворителях простые белки подразделяют на следующие виды: альбумины, глобулины, проламины, глютелины, протамины, гистоны, протеноиды.

Сложные белки подразделяются в зависимости от безазотистых соединений, входящих в состав их макромолекул, на следующие подгруппы:

  • фосфоропротеиды - белки, содержащие остатки молекул фосфорной кислоты (казеин молока, вителлин яиц, ихтулин икры рыб). Эти белки нерастворимы, но набухают в воде;
  • гликопротеиды - белки, содержащие остатки молекул углеводов (муцины и мукоиды костей, хрящей, слюны, а также роговицы глаз, слизистой оболочки желудка, кишечника);
  • липопротеиды - белки с остатками молекул липидов (содержатся в мембранах, протоплазме растительной и животных клеток, плазме крови и т.п.);
  • хромопротеиды - белки с остатками молекул красящих соединений (миоглобин мышечной ткани и гемоглобин крови и др.);
  • нуклеопротеиды - белки с остатками нуклеиновых кислот (белки ядер клетки, зародышей семян злаковых, гречишных, бобовых и др.).

В состав белков может входить 20-22 аминокислоты в разном соотношении и последовательности. Эти аминокислоты делятся на незаменимые и заменимые.

Незаменимые аминокислоты - аминокислоты, не синтезируемые в организме человека, поэтому они должны поступать извне с пищей. К ним относятся изолейцин, лейцин, лизин, метионин, фенилаланин, треонин, триптофан, валин, аргинин и гистидин.

Заменимые аминокислоты - синтезируемые в организме человека аминокислоты.

В зависимости от содержания и оптимального соотношения незаменимых аминокислот белки подразделяют на полноценные и неполноценные.

Полноценные белки - белки, в состав которых входят все незаменимые аминокислоты в оптимальном для организма человека соотношении. К ним относятся белки молока, яиц, мышечной ткани мяса и рыбы, гречневой круп и др.

Неполноценные белки - белки, в составе которых отсутствует или содержится в недостаточном количестве одна или несколько незаменимых аминокислот. К ним относятся белки костей, хрящей, кожи, соединительных тканей и т.п.

По усвояемости белки подразделяют на усвояемые (белки мышечных тканей, молока, яиц, круп, овощей и т.п.) и трудноусвояемые (эластин, коллаген, кератин и т.д.).

Макромолекулы белков имеют сложное строение. Различают четыре уровня организации белковых молекул: первичную, вторичную, третичную и четвертичную структуры. Первичной структурой называется последовательность аминокислотных остатков в полипептидной цепи, соединенных амидной связью. Вторичная структура относится к типу укладки полипептидных цепей, чаще всего в виде спирали, витки которой удерживаются водородными связями. Под третичной структурой понимают расположение полипептидной цепи в пространстве. У многих белков эта структура образуется из нескольких компактных глобул, называемых доменами и связанных тонкими перемычками - вытянутыми полипептидными цепями. Четвертичная структура отражает способ объединения и расположения в пространстве макромолекул, состоящих из нескольких не связанных ковалентными связями полипептидных цепей.

Между этими субъединицами возникают водородные, ионные и другие связи. Изменение рН, температуры, обработка солями, кислотами и тому подобное приводит к диссоциации макромолекулы на исходные субъединицы, но при устранении указанных факторов происходит самопроизвольная реконструкция четвертичной структуры. Более глубокие изменения структуры белков, включая и третичную, называются денатурацией.

Белки содержатся во многих пищевых продуктах: растительного происхождения - зерномучных, плодоовощных, мучных кондитерских товарах и животного происхождения - мясных, рыбных и молочных товарах. В ряде пищевых продуктов белки либо совсем отсутствуют, либо их содержание ничтожно мало и не имеет существенного значения в питании, хотя может влиять на выпадение осадка или помутнение (например, в соках).

Свойства. Физико-химические свойства белков определяются их высокомолекулярной природой, компактностью укладки полипептидных цепей и взаимным расположением аминокислот. Молекулярная масса белков варьирует от 5 тыс. до 1 млн.

В продовольственных товарах наибольшее значение имеют следующие свойства: энергетическая ценность, ферментативный и кислотный гидролиз, денатурация, набухание, меланоидинообразование.

Энергетическая ценность белков равна 4,0 ккал на 1 г. Однако для организма человека более важна биологическая ценность белков, определяемая содержанием незаменимых аминокислот.

Ферментативный и кислотный гидролиз белков происходит под воздействием протеолитических ферментов и соляной кислоты желудочного сока. Благодаря этому свойству усвояемые белки используются организмом человека, а образующиеся при гидролизе аминокислоты участвуют в синтезе белков организма человека. Гидролиз белков происходит при брожении теста, производстве спирта, вин и пива, квашеных овощей.

Денатурация белков происходит путем обратимых и глубоких необратимых изменений в структуре белка. Обратимая денатурация связана с изменениями в четвертичной структуре, а необратимая - во вторичной и третичной структурах. Денатурация происходит при действии высоких и низких температур, обезвоживании, изменении рН среды, повышенной концентрации сахаров, солей и других веществ, при этом улучшается усвояемость белков, но утрачивается способность к растворению в воде и других растворителях, а также к набуханию. Процесс денатурации белков является одним из наиболее значимых при производстве многих пищевых продуктов и кулинарных изделий (выпечке хлебобулочных и мучных кондитерских изделий, квашении овощей, молока, засолке рыбы и овощей, сушке, консервировании сахаром и кислотами).

Набухание, или гидратация, белков - их способность поглощать и удерживать связанную воду, увеличивая при этом объем. Это свойство положено в основу приготовления теста для хлебобулочных и мучных кондитерских изделий, при производстве колбасных изделий и др. Сохранение белков в набухшем состоянии является важной задачей многих содержащих их пищевых продуктов. Утрата белками водоудерживающей способности, называемой синерезисом, вызывает старение белков муки и круп, особенно бобовых, черствение хлебобулочных и мучных кондитерских изделий.

Меланоидинообразование - способность аминокислотных остатков белков взаимодействовать с редуцирующими сахарами с образованием темноокрашенных соединений - меланоидинов. Это свойство наиболее активно проявляется при повышенных температурах и рН от 3 до 7 при производстве хлебобулочных и мучных кондитерских изделий, пива, консервов, сушеных плодов и овощей. В результате изменяется цвет продуктов от желто-золотистого до коричневого разных оттенков и черного, при этом снижается и биологическая ценность продуктов.

Ферменты - биополимеры белковой природы, являющиеся катализаторами многих биохимических процессов.

Основная функция ферментов - ускорение превращений веществ, поступающих, или имеющихся, или образующихся при обмене веществ в любом биологическом организме (человек, животные, растения, микроорганизмы), а также регулирование биохимических процессов в зависимости от изменяющихся внешних условий.

В зависимости от химической природы макромолекул ферменты подразделяют на одно- и двухкомпонентные. Однокомпонентные состоят только из белка (например, амилаза, пепсин и др.), двухкомпонентные - из белка и небелковых соединений. На поверхности молекулы белка или в специальной щели находятся активные центры, представленные совокупностью функциональных групп аминокислот, непосредственно взаимодействующих с субстратом, и/или небелковые составляющие - коферменты. К последним относятся витамины (В1, В2, РР и др.), а также минеральные вещества (Сu, Zn, Fe и т.п.). Так, к железосодержащим ферментам относятся пероксидаза и каталаза, а к медьсодержащим - аскорбатоксидаза.

  • оксиредуктазы - ферменты, катализирующие окислительно-восстановительные реакции путем перенесения ионов водорода или электронов, например, дыхательные ферменты пероксидаза, каталаза;
  • трансферазы - ферменты, катализирующие перенос функциональных групп (СН3, СООН, NH2 и т.п.) от одной молекулы к другой, например, ферменты, катализирующие дезаминирование и декарбоксилирование аминокислот, образующихся при гидролизе белков сырья (зерна, плодов, картофеля), что приводит к накоплению высших спиртов при производстве этилового спирта, вин и пива;
  • гидролазы - ферменты, катализирующие гидролитическое расщепление связей (пептидной, гликозидной, эфирной и др.). К ним относятся липазы, гидролизирующие жиры, пептидазы - белки, амилазы и фосфорилазы - крахмал и др.;
  • лиазы - ферменты, катализирующие негидролитическое отщепление групп от субстрата с образованием двойной связи и обратные реакции. Например, пируватдекарбоксилаза отщепляет от пировиноградной кислоты СО2, что приводит к образованию ацетоальдегида как промежуточного продукта спиртового и молочнокислого брожений;
  • изомеразы - ферменты, катализирующие образование изомеров субстрата путем перемещения кратных связей или групп атомов внутри молекулы;
  • лигазы - ферменты, катализирующие присоединение двух молекул с образованием новых связей.

Значение ферментов. В неочищенном виде ферменты с древнейших времен используются при производстве многих продовольственных товаров (в хлебопечении, спиртовой промышленности, виноделии, сыроделии и т.д.). Потребительские свойства ряда товаров в значительной мере формируются в процессе особой операции - ферментации (черный, красный, желтый чай, какао-бобы и др.). Очищенные ферментативные препараты начали применять в XX в. при производстве соков, чистых аминокислот для лечения и искусственного питания, удаления лактозы из молока для продуктов детского питания и т.д. При хранении пищевых продуктов ферменты способствуют созреванию мяса, плодов и овощей, но могут вызвать и их порчу (гниение, плесневение, ослизнение, брожение).

Свойства. Ферменты обладают высокой каталитической активностью, благодаря чему небольшое количество их может активизировать биохимические процессы огромных количеств субстрата; специфичностью действия, т.е. определенные ферменты действуют на конкретные вещества; обратимостью действия (одни и те же ферменты могут осуществлять распад и синтез определенных веществ); мобильностью, проявляющейся в изменении активности под воздействием различных факторов (температуры, влажности, рН среды, активаторов и инактиваторов).

Для каждого из указанных свойств характерны определенные оптимальные диапазоны (например, в диапазоне температур 40-50 °С отмечается наибольшая активность ферментов). Любые отклонения от оптимального диапазона вызывают снижение активности ферментов, а иногда и их полную инактивацию (например, высокие температуры стерилизации). На этом основаны многие методы консервирования продовольственного сырья. При этом происходит частичная или полная инактивация собственных ферментов сырья и продукции, а также микроорганизмов, вызывающих их порчу.

Для инактивации ферментов продовольственного сырья и товаров при хранении применяют разнообразные физические, физико-химические, химические, биохимические и комбинированные методы.

Полифенолы - биополимеры, в состав макромолекул которых могут входить фенольные кислоты, спирты и их эфиры, а также сахара и другие соединения.

Эти вещества встречаются в живой природе только в клетках растений. Кроме того, они могут содержаться в древесине и изделиях из нее, торфе, буром и каменном угле, нефтяных остатках.

Наибольшее значение полифенолы имеют в свежих плодах, овощах и продуктах их переработки, включая вина, ликероналивочные изделия, а также в чае, кофе, коньяке, роме и пиве. В указанных продуктах полифенолы влияют на органолептические свойства (вкус, цвет), физиологическую ценность (многие из этих веществ обладают Р-витаминной активностью, бактерицидными свойствами) и сохраняемость.

К полифенолам, содержащимся в товарах растительного происхождения, относятся дубильные (например, катехины), а также красящие вещества (флавоноиды, антоцианы, меланины и др.).

Как известно, все вещества могут быть поделены на две большие категории - минеральные и органические. Можно привести большое количество примеров неорганических, или минеральных, веществ: соль, сода, калий. Но какие типы соединений попадают во вторую категорию? Органические вещества представлены в любом живом организме.

Белки

Важнейшим примером органических веществ являются белки. В их состав входит азот, водород и кислород. Помимо них, иногда в некоторых белках также можно обнаружить атомы серы.

Белки являются одними из важнейших органических соединений, и они наиболее часто встречаются в природе. В отличие от других соединений, белкам свойственны некоторые характерные черты. Главное их свойство - это огромная молекулярная масса. Например, молекулярный вес атома спирта составляет 46, бензола - 78, а гемоглобина - 152 000. По сравнению с молекулами других веществ, белки являются настоящими великанами, содержащими в себе тысячи атомов. Иногда биологи называют их макромолекулами.

Белки являются самыми сложными из всех органических строений. Они относятся к классу полимеров. Если рассмотреть молекулу полимера под микроскопом, то можно увидеть, что она представляет собой цепь, состоящую из более простых структур. Они носят название мономеров и повторяются в полимерах множество раз.

Помимо белков существует большое количество полимеров - каучук, целлюлоза, а также обычный крахмал. Также немало полимеров создано и руками человека - капрон, лавсан, полиэтилен.

Образование белка

Как же образуются белки? Они представляют собой пример органических веществ, состав которых в живых организмах определяется генетическим кодом. При их синтезе в подавляющем большинстве случаев используются различные комбинации

Также новые аминокислоты могут образовываться уже когда белок начинает функционировать в клетке. При этом в нем встречаются только альфа-аминокислоты. Первичная структура описываемого вещества определяется последовательностью остатков аминокислотных соединений. И в большинстве случаев полипептидная цепь при образовании белка закручивается в спираль, витки которой располагаются тесно друг к другу. В результате образования водородных соединений она имеет достаточно прочную структуру.

Жиры

Другим примером органических веществ могут послужить жиры. Человеку известно немало видов жиров: сливочное масло, говяжий и рыбий жир, растительные масла. В больших количествах жиры образуются в семенах растений. Если очищенную семечку подсолнечника положить на лист бумаги и придавить, то на листе останется маслянистое пятно.

Углеводы

Не менее важными в живой природе являются углеводы. Они содержатся во всех органах растений. К классу углеводов относится сахар, крахмал, а также клетчатка. Богаты ими клубни картофеля, плоды банана. Очень легко обнаружить крахмал в картофеле. При реакции с йодом этот углевод окрашивается в синий цвет. В этом можно убедиться, если капнуть на срез картофелины немного йода.

Также несложно обнаружить и сахара - они все имеют сладкий вкус. Много углеводов этого класса содержится в плодах винограда, арбузов, дыни, яблони. Они представляют собой примеры органических веществ, которые также производятся в искусственных условиях. Например, из сахарного тростника добывается сахар.

А как образуются углеводы в природе? Самым простым примером является процесс фотосинтеза. Углеводы представляют собой органические вещества, в которых содержится цепь из нескольких углеродных атомов. Также в их состав входит несколько гидроксильных групп. В процессе фотосинтеза сахар неорганических веществ образуется из оксида углерода и серы.

Клетчатка

Еще одним примером органических веществ является клетчатка. Больше всего ее содержится в семенах хлопка, а также стеблях растений и их листьях. Клетчатка состоит их линейных полимеров, ее молекулярная масса составляет от 500 тысяч до 2 млн.

В чистом виде она представляет собой вещество, у которого отсутствует запах, вкус и цвет. Применяется оно при изготовлении фотопленки, целлофана, взрывчатки. В организме человека клетчатка не усваивается, однако является необходимой частью рациона, поскольку стимулирует работу желудка и кишечника.

Вещества органические и неорганические

Можно привести немало примеров образования органических и Вторые всегда происходят из минералов - неживых которые образуются в глубинах земли. Они входят и в состав различных горных пород.

В естественных условиях неорганические вещества образуются в процессе разрушения минералов либо органических веществ. С другой стороны, из минералов постоянно образуются вещества органические. Например, растения поглощают воду с растворенными в ней соединениями, которые в дальнейшем переходят из одной категории в другую. Живые организмы используют для питания главным образом органические вещества.

Причины разнообразия

Нередко школьникам или студентам нужно ответить на вопрос о том, в чем заключаются причины многообразия органических веществ. Главный фактор состоит в том, что атомы углерода соединяются между собой при помощи двух типов связей - простых и кратных. Также они могут образовывать цепи. Еще одной причиной является разнообразие различных химических элементов, которые входят в органические вещества. Кроме того, многообразие обусловлено и аллотропией - явлением существования одного и того же элемента в различных соединениях.

А как образуются неорганические вещества? Природные и синтетические органические вещества и их примеры изучаются как в старших классах школы, так и в профилированных высших учебных заведениях. Образование неорганических веществ - это не такой сложный процесс, как образование белков или углеводов. Например, соду с незапамятных времен люди добывали из содовых озер. В 1791 году ученый-химик Николя Леблан предложил синтезировать ее в лабораторных условиях с использованием мела, соли, а также серной кислоты. Когда-то всем привычная сегодня сода была достаточно недешевым продуктом. Для проведения опыта было необходимо прокалить поваренную соль вместе с кислотой, а затем образовавшийся сульфат прокалить вместе с известняком и древесным углем.

Другим является марганцовка, или перманганат калия. Это вещество получают в промышленных условиях. Процесс образования заключается в электролизе раствора гидроксида калия и марганцевого анода. При этом анод постепенно растворяется с образованием раствора фиолетового цвета - это и есть всем известная марганцовка.