Болезни Военный билет Призыв

Орбитальный телескоп хаббл. Телескоп Хаббл: история, достижения и миллионы снимков космоса

Предыстория, концепции, ранние проекты

Первое упоминание концепции орбитального телескопа встречается в книге Германа Оберта «Ракета в межпланетном пространстве» (нем. «Die Rakete zu den Planetenraumen» ).

В 1946 году американский астрофизик Лайман Спитцер опубликовал статью «Астрономические преимущества внеземной обсерватории» (англ. Astronomical advantages of an extra-terrestrial observatory ). В статье отмечены два главных преимущества такого телескопа. Во-первых, его угловое разрешение будет ограничено лишь дифракцией , a не турбулентными потоками в атмосфере; в то время разрешение наземных телескопов было от 0,5 до 1,0 угловой секунды , тогда как теоретический предел разрешения по дифракции для телескопа с зеркалом 2,5 метра составляет около 0,1 секунды. Во-вторых, космический телескоп мог бы вести наблюдение в инфракрасном и ультрафиолетовом диапазонах, в которых поглощение излучений земной атмосферой весьма значительно.

Спитцер посвятил значительную часть своей научной карьеры продвижению проекта. В 1962 году доклад, опубликованный Национальной академией наук США , рекомендовал включить разработку орбитального телескопа в космическую программу, и в 1965 году Спитцер был назначен главой комитета, в задачу которого входило определение научных задач для крупного космического телескопа.

Космическая астрономия стала развиваться после окончания Второй мировой войны . В 1946 году впервые был получен ультрафиолетовый спектр Солнца . Орбитальный телескоп для исследований Солнца был запущен Великобританией в 1962 году в рамках программы «Ариэль», а в 1966 году НАСА запустила в космос первую орбитальную обсерваторию OAO -1 (англ. Orbiting Astronomical Observatory ). Миссия не увенчалась успехом из-за отказа аккумуляторов через три дня после старта. В 1968 году была запущена OAO-2, которая производила наблюдения ультрафиолетового излучения звёзд и галактик вплоть до 1972 года, значительно превысив расчётный срок эксплуатации в 1 год.

Миссии OAO послужили наглядной демонстрацией роли, которую могут играть орбитальные телескопы, и в 1968 году НАСА утвердило план строительства телескопа-рефлектора с зеркалом диаметром 3 м. Проект получил условное название LST (англ. Large Space Telescope ). Запуск планировался на 1972 год. Программа подчёркивала необходимость регулярных пилотируемых экспедиций для обслуживания телескопа с целью обеспечения продолжительной работы дорогостоящего прибора. Параллельно развивавшаяся программа Спейс шаттл давала надежды на получение соответствующих возможностей.

Борьба за финансирование проекта

Благодаря успеху программы ОАО в астрономическом сообществе сложился консенсус о том, что строительство крупного орбитального телескопа должно стать приоритетной задачей. В 1970 году NASA учредило два комитета, один для изучения и планирования технических аспектов, задачей второго была разработка программы научных исследований. Следующим серьёзным препятствием было финансирование проекта, затраты на который должны были превзойти стоимость любого наземного телескопа. Конгресс США поставил под сомнение многие статьи предложенной сметы и существенно урезал ассигнования, первоначально предполагавшие масштабные исследования инструментов и конструкции обсерватории. В 1974 году, в рамках программы сокращений расходов бюджета, инициированной президентом Фордом , Конгресс полностью отменил финансирование проекта.

В ответ на это астрономами была развёрнута широкая кампания по лоббированию. Многие учёные лично встретились с сенаторами и конгрессменами, было также проведено несколько крупных рассылок писем в поддержку проекта. Национальная Академия Наук опубликовала доклад, в котором подчёркивалась важность создания большого орбитального телескопа, и в результате сенат согласился выделить половину средств из бюджета, первоначально утверждённого Конгрессом.

Финансовые проблемы привели к сокращениям, главным из которых было решение уменьшить диаметр зеркала с 3 до 2,4 метра, для снижения затрат и получения более компактной конструкции. Также был отменён проект телескопа с полутораметровым зеркалом, который предполагалось запустить с целью тестирования и отработки систем, и принято решение о кооперации с Европейским космическим агентством . ЕКА согласилось участвовать в финансировании, а также предоставить ряд инструментов и солнечные батареи для обсерватории, взамен за европейскими астрономами резервировалось не менее 15 % времени наблюдений. В 1978 году Конгресс утвердил финансирование в размере 36 млн долл., и сразу после этого начались полномасштабные работы по проектированию. Дата запуска планировалась на 1983 год. В начале 1980-х телескоп получил имя Эдвина Хаббла .

Организация проектирования и строительства

Работа над созданием космического телескопа была поделена между многими компаниями и учреждениями. Космический центр Маршалла отвечал за разработку, проектирование и строительство телескопа, Центр космических полётов Годдарда занимался общим руководством разработкой научных приборов и был выбран в качестве наземного центра управления. Центр Маршалла заключил контракт с компанией Перкин-Элмер на проектирование и изготовление оптической системы телескопа (англ. Optical Telescope Assembly, OTA ) и датчиков точного наведения. Корпорация Локхид получила контракт на строительство космического аппарата для телескопа.

Изготовление оптической системы

Полировка главного зеркала телескопа, лаборатория компании Перкин-Элмер, май 1979 год.

Зеркало и оптическая система в целом были наиболее важными частями конструкции телескопа, и к ним предъявлялись особо жёсткие требования. Обычно зеркала телескопов изготавливаются с допуском примерно в одну десятую длины волны видимого света, но поскольку космический телескоп предназначался для наблюдений в диапазоне от ультрафиолетового до почти инфракрасного, а разрешающая способность должна была быть в десять раз выше, чем у наземных приборов, допуск для изготовления его главного зеркала был установлен в 1/20 длины волны видимого света, или примерно 30 нм.

Компания Перкин-Элмер намеревалась использовать новые станки с числовым программным управлением для изготовления зеркала заданной формы. Компания Кодак получила контракт на изготовление запасного зеркала с использованием традиционных методов полировки, на случай непредвиденных проблем с неапробированными технологиями (зеркало, изготовленное компанией Кодак, в настоящее время находится в экспозиции музея ). Работы над основным зеркалом начались в 1979 году, для изготовления использовалось стекло со сверхнизким коэффициентом расширения. Для уменьшения веса зеркало состояло из двух поверхностей - нижней и верхней, соединённых решётчатой конструкцией сотовой структуры.

Резервное зеркало телескопа, Смитсоновский музей авиации и космонавтики, Вашингтон.

Работы по полировке зеркала продолжались до мая 1981 года, при этом были сорваны первоначальные сроки и значительно превышен бюджет. В отчётах НАСА того периода выражаются сомнения в компетентности руководства компании Перкин-Элмер и её способности успешно завершить проект такой важности и сложности. В целях экономии средств НАСА отменило заказ на резервное зеркало и перенесло дату запуска на октябрь 1984 года. Окончательно работы завершились к концу 1981 года после нанесения отражающего покрытия из алюминия толщиной 75 нм и защитного покрытия из фторида магния толщиной в 25 нм.

Несмотря на это, сомнения в компетентности Перкин-Элмер оставались, поскольку сроки окончания работ над остальными компонентами оптической системы постоянно отодвигались, а бюджет проекта рос. Графики работ, предоставляемые компанией, НАСА охарактеризовало как «неопределённые и изменяющиеся ежедневно», и отложило запуск телескопа до апреля 1985 года. Тем не менее, сроки продолжали срываться, задержка росла в среднем на один месяц каждый квартал, а на завершающем этапе росла на один день ежедневно. НАСА было вынуждено ещё дважды перенести старт, сначала на март, а затем на сентябрь 1986 года . К тому времени общий бюджет проекта вырос до 1,175 млрд долл.

Космический аппарат

Начальные этапы работ над космическим аппаратом, 1980.

Другой сложной инженерной проблемой было создание космического корабля для телескопа и остальных приборов. Основными требованиями были защита оборудования от постоянных перепадов температур при нагреве от прямого солнечного освещения и охлаждения в тени Земли и особо точное ориентирование телескопа. Телескоп смонтирован внутри лёгкой алюминиевой капсулы, которая покрыта многослойной термоизоляцией обеспечивающей стабильную температуру. Жёсткость капсулы и крепление приборов обеспечивает внутренняя пространственная рама из углеродного волокна .

Хотя работы по созданию космического аппарата проходили более успешно, чем изготовление оптической системы, Локхид также допустила некоторое отставание от графика и превышение бюджета. К маю 1985 года перерасход средств составил около 30 % от первоначального объёма, а отставание от плана - 3 месяца. В докладе, подготовленном Космическим центром Маршалла, отмечалось, что при проведении работ компания не проявляет инициативу, предпочитая полагаться на указания НАСА .

Координация исследований и управление полётом

В 1983 году, после некоторого противоборства между НАСА и научным сообществом был учреждён . Институт управляется Ассоциацией университетов по астрономическим исследованиям (англ. Association of Universities for Research in Astronomy ) (англ. AURA ) и располагается в кампусе университета Джона Хопкинса в Балтиморе , штат Мэриленд . Университет Хопкинса - один из 32 американских университетов и иностранных организаций, входящих в ассоциацию. Научный институт космического телескопа отвечает за организацию научных работ и обеспечение доступа астрономов к полученным данным, функции которые НАСА хотело оставить под своим контролем, но учёные предпочли передать их академическим учреждениям.

Европейский координационный центр космического телескопа был основан в 1984 году в городе Гархинг , Германия для предоставления аналогичных возможностей европейским астрономам.

Управление полётом было возложено на Центр космических полётов Годдарда (англ. Goddard Space Flight Center ), который находится в городе Гринбелт, Мэриленд в 48 километрах от Научного института космического телескопа. За функционированием телескопа ведётся круглосуточное посменное наблюдение четырьмя группами специалистов.

Техническое сопровождение осуществляется НАСА и компаниями-контакторами через Центр Годдарда.

Запуск и начало работы

Старт шаттла «Дискавери» с телескопом «Хаббл» на борту.

Первоначально запуск телескопа на орбиту планировался на октябрь 1986 года , но катастрофа Челленджера 28 января приостановила программу Спейс шаттл на несколько лет, и запуск пришлось отложить.

Вынужденная задержка позволила произвести ряд усовершенствований: солнечные батареи были заменены на более эффективные, был модернизирован бортовой вычислительный комплекс и системы связи, а также изменена конструкция кормового защитного кожуха с целью облегчить обслуживание телескопа на орбите.

Всё это время части телескопа хранились в помещениях с искусственно очищенной атмосферой, что ещё больше увеличило расходы на проект.

После возобновления полётов шаттлов в 1988 году запуск был окончательно назначен на 1990 год . Перед запуском накопившаяся на зеркале пыль была удалена при помощи сжатого азота , а все системы прошли тщательное тестирование.

Приборы, установленные на момент запуска

На момент запуска на борту были установлены пять научных приборов:

  • Широкоугольная и планетарная камера (англ. Wide Field and Planetary Camera ) (англ. Wide Field and Planetary Camera, WFPC ). Камера была сконструирована в Лаборатории реактивного движения НАСА . Она была оснащена набором из 48 светофильтров для выделения участков спектра , представляющих особый интерес для астрофизических наблюдений. Прибор имел 8 ПЗС-матриц , разделённых между двумя камерами, каждая из которых использовала по 4 матрицы. Широкоугольная камера обладала большим углом обзора, в то время, как планетарная камера имела большее фокусное расстояние и, следовательно, давала большее увеличение.
  • Камера съёмки тусклых объектов (англ. Faint Object Camera ) (англ. Faint Object Camera, FOC ). Прибор разработан ЕКА . Камера предназначалась для съёмки объектов в ультрафиолетовом диапазоне с высоким разрешением до 0,05 сек.
  • Спектрограф тусклых объектов (англ. Faint Object Spectrograph ) (англ. Faint Object Spectrograph, FOS ). Предназначался для исследования особо тусклых объектов в ультрафиолетовом диапазоне.
  • Высокоскоростной фотометр (англ. High Speed Photometer ) (англ. High Speed Photometer, HSP ). Разработан в Университете Висконсина, предназначался для наблюдений за переменными звёздами и другими объектами с изменяющейся яркостью. Мог делать до 10 000 замеров в секунду с погрешностью около 2 %.

Дефект главного зеркала

Уже в первые недели после начала работы полученные изображения продемонстрировали серьёзную проблему в оптической системе телескопа. Хотя качество изображений было лучше, чем у наземных телескопов, «Хаббл» не мог достичь заданной резкости, и разрешение снимков было значительно хуже ожидаемого. Изображения имели радиус свыше одной телесной секунды вместо фокусировки в окружность 0,1 секунды в диаметре, согласно спецификации.

Анализ изображений показал, что источником проблемы является неверная форма главного зеркала. Несмотря на то, что это было, возможно, наиболее точно рассчитанное зеркало из когда-либо созданных, а допуск составлял не более 1/20 длины волны видимого света, оно было изготовлено слишком плоским по краям. Отклонение от заданной формы поверхности составило лишь 2 мкм, но результат оказался катастрофическим - сильная сферическая аберрация , оптический дефект, при котором свет, отражённый от краёв зеркала, фокусируется в точке, отличной от той, в которой фокусируется свет, отражённый от центра зеркала.

Влияние дефекта на астрономические исследования зависело от конкретного типа наблюдений - характеристики рассеяния были достаточны для получения уникальных наблюдений ярких объектов с высокой разрешающей способностью, и спектроскопия также практически не пострадала. Тем не менее, потеря значительной части светового потока из-за расфокусировки значительно уменьшили пригодность телескопа для наблюдений тусклых объектов и получения изображений с высокой контрастностью. Это означало, что практически все космологические программы стали просто невыполнимыми, поскольку требовали наблюдений особо тусклых объектов.

Причины дефекта

Анализируя изображения точечных источников света, астрономы установили, что коническая постоянная зеркала составляет −1,0139, вместо требуемой −1,00229. То же число было получено путём проверки нуль-корректоров (приборы, позволяющие измерять с высокой точностью кривизну полируемой поверхности), использованных компанией Перкин-Элмер, а также из анализа интерферограмм , полученных в процессе наземного тестирования зеркала.

Комиссия, возглавляемая Лю Алленом (англ. Lew Allen ), директором Лаборатории реактивного движения , установила, что дефект возник в результате ошибки при монтаже главного нуль-корректора, полевая линза которого была сдвинута на 1,3 мм относительно правильного положения. Сдвиг произошёл по вине техника, осуществлявшего сборку прибора. Он ошибся при работе с лазерным измерителем, применявшимся для точного размещения оптических элементов прибора, а, когда после окончания монтажа заметил непредвиденный зазор между линзой и поддерживающей её конструкцией, то просто вставил обычную металлическую шайбу .

В процессе полировки зеркала его поверхность проверялась при помощи двух других нуль-корректоров, каждый из которых правильно указывал на наличие сферической аберрации. Эти проверки были специально предусмотрены для исключения серьёзных оптических дефектов. Несмотря на чёткие инструкции по контролю качества, компания проигнорировала результаты измерений, предпочитая верить, что два нуль-корректора менее точны, чем главный, показания которого свидетельствовали об идеальной форме зеркала.

Комиссия возложила вину за произошедшее в первую очередь на исполнителя. Отношения между оптической компанией и НАСА серьёзно ухудшились в процессе работы над телескопом из-за постоянного срыва графика работ и перерасхода средств. НАСА установило, что компания не относилась к работам над зеркалом как к основной части своего бизнеса и пребывала в уверенности, что заказ не может быть передан другому подрядчику после начала работ. Хотя комиссия подвергла компанию суровой критике, часть ответственности лежала также на НАСА, в первую очередь - за неспособность обнаружить серьёзные проблемы с контролем качества и нарушение процедур со стороны исполнителя.

Поиски решения

Поскольку конструкция телескопа изначально предусматривала обслуживание на орбите, учёные немедленно начали поиск потенциального решения, которое можно было бы применить во время первой технической миссии, запланированной на 1993 год. Хотя Кодак закончил изготовление запасного зеркала для телескопа, замена его в космосе не представлялась возможной, а снимать с орбиты телескоп для замены зеркала на Земле было бы слишком долго и дорого. Тот факт, что зеркало с высокой точностью было отполировано до неправильной формы, привело к идее разработать новый оптический компонент, который бы выполнял преобразование, эквивалентное ошибке, но с обратным знаком. Новое устройство работало бы подобно очкам для телескопа, корректируя сферическую аберрацию.

Из-за разницы в конструкции приборов требовалось разработать два различных корректирующих устройства. Одно предназначалось для Широкоформатной и Планетарной камеры, которая имела специальные зеркала, перенаправлявшие свет на её сенсоры, и коррекция могла осуществляться за счёт использования зеркал специальной формы, которые бы полностью компенсировали аберрацию. Соответствующее изменение было предусмотрено в конструкции новой Планетарной камеры. Прочие приборы не имели промежуточных отражающих поверхностей, и таким образом нуждались во внешнем корректирующем устройстве.

Система оптической коррекции (COSTAR)

Система, предназначенная для корректировки сферической аберрации, получила название COSTAR (англ. COSTAR ) и состояла из двух зеркал, одно из которых компенсировало дефект. Для установки COSTAR на телескоп было необходимо демонтировать один из приборов, и учёные приняли решение пожертвовать высокоскоростным фотометром.

В течение первых трёх лет работы, до установки корректирующих устройств, телескоп выполнил большое количество наблюдений. В частности, дефект не оказывал большого влияния на спектроскопические замеры. Несмотря на отменённые из-за дефекта эксперименты, было достигнуто множество важных научных результатов, в том числе новые алгоритмы улучшения качества изображений с помощью деконволюции .

Техническое обслуживание телескопа

Обслуживание «Хаббла» производится во время выходов в открытый космос с космических кораблей многоразового использования типа Спейс шаттл .

Всего были осуществлены четыре экспедиции по обслуживанию телескопа «Хаббл»:

Первая экспедиция

Работы на телескопе во время первой экспедиции.

В связи с выявившимся дефектом зеркала значение первой экспедиции по обслуживанию было особенно велико, поскольку она должна была установить на телескопе корректирующую оптику. Полёт «Индевор» STS-61 состоялся 2-13 декабря 1993 года, работы на телескопе продолжались в течение десяти дней. Экспедиция была одной из сложнейших за всю историю, в её рамках были осуществлены пять длительных выходов в открытый космос.

Высокоскоростной фотометр был заменён на систему оптической коррекции, широкоугольная и планетарная камера была заменена на новую модель (WFPC2 (англ. Wide Field and Planetary Camera 2 )) с системой внутренней оптической коррекции. Камера имела три квадратные ПЗС-матрицы , соединённых углом, и меньшую «планетарную» матрицу более высокого разрешения в четвёртом углу. Поэтому снимки камеры имеют характерную форму выщербленного квадрата.

STIS имеет рабочий диапазон 115-1000 нм и позволяет вести двумерную спектрографию, то есть получать спектр одновременно нескольких объектов в поле зрения.

Был также заменён бортовой регистратор, произведён ремонт теплоизоляции и выполнена коррекция орбиты.

Третья экспедиция (A)

Экспедиция 3A («Дискавери» STS-103) состоялась 19-27 декабря 1999 года, после того, как было принято решение о досрочном проведении части работ по программе третьего сервисного обслуживания. Это было вызвано тем, что три из шести гироскопов системы наведения вышли из строя. Четвёртый гироскоп отказал за несколько недель до полёта, сделав телескоп непригодным для наблюдений. Экспедиция заменила все шесть гироскопов, датчик точного наведения и бортовой компьютер. Новый компьютер использовал процессор Intel 80486 в специальном исполнении - с повышенной устойчивостью к радиации. Это позволило производить часть вычислений, выполнявшихся ранее на земле, при помощи бортового комплекса.

Третья экспедиция (B)

«Хаббл» в грузовом отсеке шаттла перед возвращением на орбиту, на фоне восходящей Земли. Экспедиция STS-109.

Экспедиция 3B (четвёртая миссия) выполнена 1-12 марта 2002 года , полёт «Колумбия» STS-109. В ходе экспедиции Камера съёмки тусклых объектов была заменена на Усовершенствованную обзорную камеру (англ. Advanced Camera for Surveys ) (англ. Advanced Camera for Surveys, ACS ) и восстановлено функционирование Камеры и спектрометра около-инфракрасного диапазона, в системе охлаждения которого в 1999 году закончился жидкий азот .

ACS состоит из трёх камер, одна из которых работает в далёком ультрафиолете , а другие дублируют и улучшают возможности WFPC2. Частично неработоспособна с 29 января 2007 года .

Были во второй раз заменены солнечные батареи . Новые панели были на треть меньше по площади, что значительно уменьшило потери на трение в атмосфере, но при этом вырабатывали на 30 % больше энергии, благодаря чему стала возможна одновременная работа со всеми приборами, установленными на борту обсерватории. Также был заменён узел распределения энергии, что потребовало полного выключения электропитания на борту - впервые с момента запуска.

Произведённые работы существенно расширили возможности телескопа. Два прибора, введённые в строй в ходе работ - ACS и NICMOS, позволили получить изображения глубокого космоса.

Четвёртая экспедиция

Очередная экспедиция по обслуживанию с целью замены аккумуляторов и гироскопов , а также установки новых усовершенствованных инструментов, была назначена на февраль 2005 года , но после катастрофы космического корабля «Колумбия » 1 марта 2003 года была отложена на неопределённый срок, что поставило под угрозу дальнейшую работу «Хаббла». Даже после возобновления полётов шаттлов, миссия была отменена, поскольку было принято решение, что каждый отправляющийся в космос челнок должен иметь возможность достичь МКС в случае обнаружения неисправностей, а из-за большой разницы в наклонении и высоте орбит , шаттл не может причалить к станции после посещения телескопа.

После этой миссии телескоп «Хаббл» должен будет продолжать свою работу на орбите, по крайней мере, до 2014 года.

Достижения

За 15 лет работы на околоземной орбите, «Хаббл» получил 700 тыс. изображений 22 тыс. небесных объектов - звёзд, туманностей, галактик, планет. Поток данных, которые он ежедневно генерирует в процессе наблюдений, составляет около 15 Гб . Общий их объём, накопленный за всё время работы телескопа, превышает 20 терабайт . Более 3900 астрономов получили возможность использовать его для наблюдений, опубликовано около 4000 статей в научных журналах. Установлено, что, в среднем, индекс цитирования астрономических статей, основанных на данных телескопа, в два раза выше, чем статей, основанных на других данных. Ежегодно в списке 200 наиболее цитируемых статей не менее 10 % занимают работы, выполненные на основе материалов Хаббла. Нулевой индекс цитирования имеют около 30 % работ по астрономии в целом, и только 2 % работ, выполненных с помощью космического телескопа.

Тем не менее, цена, которую приходится платить за достижения «Хаббла», весьма высока: специальное исследование, посвящённое изучению влияния на развитие астрономии телескопов различных типов, установило, что, хотя работы, выполненные при помощи орбитального телескопа, имеют суммарный индекс цитирования в 15 раз больше, чем у наземного рефлектора с 4-метровым зеркалом, стоимость содержания космического телескопа выше в 100 и более раз.

Наиболее значимые наблюдения

Доступ к телескопу

Любой человек или организация может подать заявку на работу с телескопом - не существует ограничений по национальной или академической принадлежности. Конкуренция за время наблюдений очень высока, обычно суммарно запрошенное время в 6-9 раз превышает реально доступное.

Конкурс заявок на наблюдение объявляется примерно раз в год. Заявки делятся на несколько категорий:

  • Общие наблюдения (англ. General observer ). В эту категорию попадает большинство заявок, требующих обычной процедуры и длительности наблюдений.
  • Блиц-наблюдения (англ. Snapshot observations ), наблюдения, требующие не более 45 минут, включая время наведения телескопа, позволяют заполнить паузы между общими наблюдениями.
  • Срочные наблюдения (англ. Target of Opportunity ), для изучения явлений, которые можно наблюдать в течение ограниченного, заранее известного промежутка времени.

Кроме того, 10 % времени наблюдений остаётся в так называемом «резерве директора ». Астрономы могут подавать заявки на использование резерва в любое время, обычно он используется для наблюдений незапланированных краткосрочных явлений, таких как взрывы сверхновых . Съёмки глубокого космоса по программам Hubble Deep Field и Hubble Ultra Deep Field также были осуществлены за счёт директорского резерва.

В течение первых нескольких лет часть времени из резерва выделялась астрономам-любителям. Их заявки рассматривались комитетом, состоящим также из наиболее видных астрономов-непрофессионалов. Основными требованиями к заявке были оригинальность исследования и несовпадение темы с поданными запросами профессиональных астрономов. В общей сложности, в период между и 1997 годом было произведено 13 наблюдений по программам, предложенным астрономами-любителями. В дальнейшем, из-за сокращения бюджета института, предоставление времени непрофессионалам было прекращено.

Планирование наблюдений

Планирование наблюдений является чрезвычайно сложной задачей, так как необходимо учитывать влияние множества факторов:

  • Поскольку телескоп находится на низкой орбите , что необходимо для обеспечения обслуживания, значительная часть астрономических объектов затенены Землёй чуть меньше половины времени обращения. Существует так называемая «зона длительной видимости», примерно в направлении 90° к плоскости орбиты, однако из-за прецессии орбиты точное направление изменяется с восьминедельным периодом.
  • Из-за повышенного уровня радиации наблюдения невозможны, когда телескоп пролетает над Южно-Атлантической аномалией .
  • Минимальное отклонение от Солнца составляет 45° для предотвращения попадания прямого солнечного света в оптическую систему, что, в частности, делает невозможными наблюдения Меркурия , а прямые наблюдения Луны и Земли допустимы при отключённых датчиках точного наведения.
  • Так как орбита телескопа проходит в верхних слоях атмосферы, плотность которых меняется в течение времени, невозможно точно предсказать местоположение телескопа. Ошибка шестинедельного предсказания может составлять до 4 тыс. км. В связи с этим, точные расписания наблюдений составляются всего на несколько дней вперёд, чтобы избежать ситуации, когда выбранный для наблюдения объект будет не виден в назначенное время.

Передача, хранение и обработка данных телескопа

Передача на Землю

Данные «Хаббла» сначала запасаются в бортовых накопителях, на момент запуска в этом качестве использовались катушечные магнитофоны , в ходе экспедиций 2 и 3A они были заменены на твердотельные накопители . Затем, через систему коммуникационных спутников (TDRSS (англ. TDRSS )), расположенных на низкой орбите, данные передаются в Центр Годдарда.

Архивирование и доступ к данным

В течение первого года с момента получения данные предоставляются только основному исследователю (подателю заявки на наблюдение), а затем помещаются в архив со свободным доступом. Исследователь может подать просьбу на имя директора института о сокращении или увеличении этого срока.

Наблюдения, выполненные за счёт времени из резерва директора, немедленно становятся общественным достоянием, так же, как вспомогательные и технические данные.

Данные в архиве хранятся в формате приборов, должны пройти ряд преобразований, прежде чем станут пригодными для анализа. Институт космического телескопа разработал пакет программ для автоматического преобразования и калибрации данных. Преобразования производятся автоматически при запросе данных. Из-за большого объёма информации и сложности алгоритмов обработка может занять сутки и более.

Астрономы могут также получить необработанные данные и выполнить эту процедуру самостоятельно, что удобно, когда процесс преобразования отличается от стандартного.

Данные могут быть обработаны при помощи различных программ, но Институт телескопа предоставляет пакет STSDAS (Система анализа научных данных космического телескопа, англ. Space Telescope Science Data Analysis System ). Пакет содержит все необходимые для обработки данных программы, оптимизированные для работы с информацией «Хаббла». Пакет работает как модуль популярной астрономической программы IRAF.

Связи с общественностью

Для проекта космического телескопа всегда было важно привлечь внимание и воображение широкой публики, и в особенности американских налогоплательщиков, внёсших наиболее значительный вклад в финансирование «Хаббла».

Одним из наиболее важных для связей с общественностью является проект «Наследие Хаббла» (англ. The Hubble Heritage ). Его задачей является публикация наиболее эффектных визуально и эстетически изображений, полученных телескопом. Галереи проекта содержат не только оригинальные снимки, но и созданные на их основе коллажи и рисунки. Проекту выделено небольшое количество времени наблюдений для получения полноценных цветных изображений объектов, фотографирование которых в видимой части спектра не было необходимым для исследований.

Кроме того, Институт космического телескопа поддерживает несколько веб-сайтов с изображениями и исчерпывающей информацией о телескопе.

В 2000 году для координации усилий различных ведомств было создано Бюро по связям с общественностью (англ. Office for Public Outreach ).

В Европе с 1999 года связями с общественностью занимается Европейский информационный центр (англ. Hubble European Space Agency Information Centre ) (англ. Hubble European Space Agency Information Centre, HEIC ), учреждённый при Европейском координационном центре космического телескопа. Центр также отвечает за образовательные программы ЕКА , связанные с телескопом.

Будущее «Хаббла»

Предполагается, что после ремонтных работ, выполненных четвёртой экспедицией, «Хаббл» проработает на орбите до 2014 года, когда его сменит космический телескоп «Джеймс Вебб ».

Технические данные

Общий вид телескопа.

Параметры орбиты

  • Наклонение : 28,469°.
  • Апогей : 571 км.
  • Перигей : 565 км.
  • Период обращения : 96,2 мин.

Космический аппарат

  • Длина космического аппарата - 13,3 м, диаметр - 4,3 м, размах солнечных батарей - 12,0 м, масса 11 000 кг (с установленными приборами около 12 500 кг).
  • Телескоп представляет собой рефлектор системы Ричи-Кретьена с диаметром зеркала 2,4 м, позволяющий получить оптическое разрешение порядка 0,1 угловой секунды .

Приборы

Телескоп имеет модульную структуру и содержит пять отсеков для оптических приборов. Один из отсеков в течение долгого времени (1993-2009 годы) занимала корректирующая оптическая система (англ. Corrective Optics Space Telescope Axial Replacement ) (COSTAR), установленная во время первой экспедиции обслуживания в 1993 году для компенсации неточности изготовления главного зеркала. Поскольку все приборы, установленные после запуска телескопа, имеют встроенные системы коррекции дефекта, во время последней экспедиции стало возможно демонтировать систему COSTAR и использовать отсек для установки ультрафиолетового спектрографа.

Хронология установки приборов на борту космического телескопа (вновь установленные приборы выделены курсивом):

Отсек 1 Отсек 2 Отсек 3 Отсек 4 Отсек 5
Запуск телескопа (1990) Широкоугольная и планетарная камера Спектрограф тусклых объектов Высокоскоростной фотометр
Первая экспедиция (1993) Спектрограф высокого разрешения Годдарда Камера съёмки тусклых объектов Спектрограф тусклых объектов Система COSTAR
Вторая экспедиция (1993) Широкоугольная и планетарная камера - 2 Камера съёмки тусклых объектов Система COSTAR
Третья экспедиция (B) (2002) Широкоугольная и планетарная камера - 2 Регистрирующий спектрограф космического телескопа Камерa и мульти-объектный спектрометр ближнего инфракрасного диапазона Система COSTAR
Четвертая экспедиция (2009) Широкоугольная и планетарная камера - 3 Регистрирующий спектрограф космического телескопа Усовершенствованная обзорная камера Камерa и мульти-объектный спектрометр ближнего инфракрасного диапазона Ультрафиолетовый спектрограф

Как отмечалось выше, система наведения также используется в научных целях.

Примечания

  1. Исторический обзор на официальном сайте, ч. 2 (англ.)
  2. Lyman S. Spitzer. (1979) History of the Space Telescope // Quarterly Journal of the Royal Astronomical Society. V. 20. P. 29
  3. Chapter 12. Hubble Space telescope // Dunar A. J., Waring S. P. (1999) Power To Explore-History of Marshall Space Flight Center 1960-1990. U.S. Government Printing Office, ISBN 0-16-058992-4
  4. Информация на сайте НАСА (англ.)
  5. Исторический обзор на официальном сайте, ч. 3 (англ.)
  6. The European Homepage for the NASA/ESA Hubble Space Telescope - Frequently Asked Questions (англ.) . Проверено 10 января 2007.
  7. Brandt J. C. и др. (1994). The Goddard High Resolution Spectrograph: Instrument, goals, and science results // Publications of the Astronomical Society of the Pacific. V. 106., P. 890-908
  8. G. Fritz Benedict, Barbara E. McArthur. (2005) High-precision stellar parallaxes from Hubble Space Telescope fine guidance sensors. Transits of Venus: New Views of the Solar System and Galaxy. Proceedings of IAU Colloquium #196, Ed. D. W. Kurtz. Cambridge University Press. P. 333-346
  9. Burrows C. J. и др. (1991) The imaging performance of the Hubble Space Telescope // Astrophysical Journal. V. 369. P. 21
  10. Сравнение реальных и расчётных графиков отображения точечных объектов (англ.)
  11. Отчёт комиссии Аллена (англ.) The Hubble Space Telescope Optical Systems Failure Report, 1990, Lew Allen, Chairman, NASA Technical Report NASA-TM-103443
  12. Selected Documents in the History of the U.S. Civil Space Program Volume V: Exploring the Cosmos / John M. Logsdon, editor. 2001
  13. Jedrzejewski R. I., Hartig G., Jakobsen P., Crocker J. H., Ford H. C. (1994) In-orbit performance of the COSTAR-corrected Faint Object Camera // Astrophysical Journal Letters. V. 435. P. L7-L10
  14. Thackeray’s Globules in IC 2944 . Hubble Heritage . Проверено 25 января 2009.
  15. Trauger J. T., Ballester G. E., Burrows C. J., Casertano S., Clarke J. T., Crisp D. (1994) The on-orbit performance of WFPC2 // Astrophysical Journal Letters. V. 435. P. L3-L6
  16. STSci NICMOS pages (англ.)
  17. Guy Gugliotta. Nominee Backs a Review Of NASA’s Hubble Decision , Washington Post (12 апреля 2005). Проверено 10 января 2007 . (en язык)
  18. NASA Approves Mission and Names Crew for Return to Hubble (англ.) NASA, 31 октября 2006

Телескоп Хаббл носит название в честь Эдвина Хаббла и является работающей в абсолютно автоматическом режиме обсерваторией, местом нахождения которой является орбита планеты Земля.

Шаттл Дискавери 24 апреля 1990 года вывел космический телескоп Хаббл на заданную орбиту. Нахождение на орбите дает отличную возможность фиксировать электромагнитное излучение в инфракрасном диапазоне Земли. Вследствие отсутствия атмосферы, способности Хаббла увеличиваются в разы по сравнению с такими же аппаратами, находящимися на Земле.

Трехмерная модель телескопа

Технические данные

Космический телескоп Хаббл, представляет собой сооружение цилиндрической формы протяжённостью 13,3 м, окружность которого составляет 4,3 м. Масса телескопа до оснащения спец. оборудованием составляла 11 000 кг, но после установки всех необходимых для исследования приборов общая его масса достигла 12 500 кг. Питание всего установленного в обсерватории оборудования осуществляется за счет двух солнечных батарей, установленных прямо в корпус данного агрегата. Принцип работы представляет собой рефлектор системы Ричи-Кретьена с диаметром главного зеркала 2,4 м, это дает возможность получать изображения с оптическим разрешением порядка 0,1 угловой секунды.

Установленные приборы

В данном устройстве имеется 5 отсеков предназначенных для приборов. В одном из пяти отсеков долгое время находилась с 1993 по 2009 годы корректирующая оптическая система (COSTAR), она предназначалось для того, чтобы компенсировать неточность главного зеркала. Благодаря тому, что все приборы, которые были установленные, имеют встроенные системы коррекции дефекта, COSTAR демонтировали, а отсек стали использовать для установки ультрафиолетового спектрографа.

На момент отправки аппарата в космос, на нем были установлены следующие приборы:

  1. Планетарная и широкоугольная камеры;
  2. Спектрограф высокого разрешения;
  3. Камера съемки и спектрограф тусклых объектов;
  4. Датчик точного наведения;
  5. Высокоскоростной фотометр.

Достижения телескопа

На фотографии телескопа — звезда RS Кормы

За все время своей работы Хаббл передал на Землю около двадцати терабайтов информации. В результате чего, были опубликованы около четырех тысяч статей, возможность наблюдать небесные тела получили более трехсот девяноста тысяч астрономов. Только за пятнадцать лет работы телескопу удалось получить семьсот тысяч изображений планет, всевозможных галактик, туманностей и звезд. Данные, которые ежедневно проходят через телескоп в процессе работы составляют примерно 15 Гб.

Правообладатель иллюстрации BBC World Service Image caption "Хаббл" был выведен на орбиту челночным кораблем "Дискавери" 24 апреля 1990 года

На этой неделе исполняется 25 лет со дня вывода на орбиту космического телескопа "Хаббл". Серебряный юбилей был отмечен очередным снимком, на котором изображены молодые звезды, сияющие на фоне густого облака из газа и пыли.

Это звездное скопление - Westerlund 2 - расположено в 20 тысячах световых лет от Земли в созвездии Карина.

Правообладатель иллюстрации BBC World Service Image caption Вскоре после запуска телескопа выявился дефект в его главном зеркале, что делало все снимки нечеткими

Инженеры НАСА считают, что орбитальный телескоп прослужит еще не менее пяти лет.

"Самый большой оптимист не мог предсказать в 1990 году, до какой степени "Хаббл" перепишет все наши учебники по астрофизике и планетологии", - говорит администратор НАСА Чарли Болден.

Вскоре после запуска телескопа выявился дефект в его главном зеркале, что делало все снимки нечеткими.

В 1993 году астронавтам удалось исправить этот дефект путем установки специально созданного корректирующего устройства.

Правообладатель иллюстрации BBC World Service Image caption Многие снимки "Хаббла" - например, туманности Орел, - стали научной сенсацией

Спустя еще четыре визита по обслуживанию телескопа он находится в прекрасном состоянии и с технической точки зрения способен на гораздо большее, чем сразу после запуска.

В прошлом "Хаббл" страдал от постепенного износа всех его шести гироскопов, которые используются в системе ориентации.

Однако после их замены лишь один вышел из строя в марте 2014 года. За минувшие годы благодаря замене устаревших электронных блоков и установке новых камер телескоп стал работать заметно лучше.

Правообладатель иллюстрации BBC World Service Image caption Этот снимок Юпитера и его спутника Ганимед привлекает своей драматичностью

Трудно переоценить вклад этого орбитального телескопа в науку.

В момент его запуска астрономы ничего не знали о возрасте Вселенной - оценки колебались от 10 до 20 млрд лет.

Исследование пульсаров, проведенное с помощью телескопа, сузило этот разброс, и, согласно нынешним представлениям, с момента Большого взрыва прошло 13,8 млрд лет.

Правообладатель иллюстрации BBC World Service Image caption "Хаббл" помог в определении возраста Вселенной, который, по нынешним представлениям, составляет 13,8 млрд лет

"Хаббл" сыграл важнейшую роль в обнаружении ускорения, с которым расширяется Вселенная, а также принес решающие доказательства существования сверхмассивных черных дыр в центрах галактик.

Сильнейшей стороной космического телескопа по сравнению с новым поколением земных телескопов остается его уникальная способность проникать в глубокое прошлое Вселенной, наблюдая объекты, которые сформировались на очень ранних этапах ее истории.

Правообладатель иллюстрации BBC World Service Image caption Крабовая туманность находится на расстоянии 6,5 тысяч световых лет и представляет собой остатки взрыва сверхновой

Среди самых крупных достижений телескопа несомненно следует назвать наблюдения "глубокого поля", когда он в течение многих дней фиксировал световое излучение, приходящее к нам из темного участка неба и выявил присутствие тысяч крайне отдаленных и очень слабо светящих галактик.

В настоящее время телескоп большую часть времени занимается подобными наблюдениям в рамках программы "Поля фронтира". "Хаббл" рассматривает шесть огромных кластеров древних галактик.

Правообладатель иллюстрации NASA Image caption Каждый из светящихся объектов на этом снимке представляет собой отдаленную галактику

Используя эффект гравитационного линзирования, "Хаббл" способен заглянуть в еще более далекое прошлое Вселенной.

"Гравитация, искажая свет, поступающий от дальних галактик, позволяет нам заглянуть за эти скопления", - говорит Дженнифер Лотц, участница программы.

"Хаббл" в настоящее время способен "видеть" объекты, свет от которых в 10-50 раз слабее, чем от наблюдавшихся ранее.

Целью этих исследований является наблюдение самых ранних этапов формирования первого поколения звезд и галактик, отдаленных от Большого Взрыва всего на несколько сот миллионов лет.

Правообладатель иллюстрации BBC World Service Image caption "Расширяющаяся Вселенная": фотографии телескопа "Хаббл", изд-во Taschen

Именно этим на другом уровне займется и наследник телескопа "Хаббл" - гораздо более крупный и совершенный космический телескоп "Джеймс Уэбб".

Его запуск запланирован на 2018 год. Он был спроектирован и построен специально для выполнения такой задачи. Получение снимков, на которые у телескопа "Хаббл" уходят дни и недели, займет лишь часы.

Аналогами три преимущества: на качество изображения не влияет , благодаря меньшему рассеиванию света расположенные объекты и диапазон электромагнитных волн от инфракрасных до ультрафиолетовых. Все эти преимущества используются в полной мере благодаря сложной конструкции телескопа Хаббл.

Главное зеркало телескопа имеет диаметр 2,4 м, а вторичное – 0,34 м. Расстояние между ними строго выверено и составляет 4,9 м. Оптическая система позволяет собирать свет в пучок диаметром 0,05 дюймов (даже у самых лучших телескопов на Земле кружок рассеяния больше 0,5 дюймов). Разрешающая способность телескопа Хаббл в 7-10 раз больше, чем у аналогов на Земле.

При такой экспозиции необходима очень высокая степень стабилизации и точности наведения . Именно это составило главную сложность при проектировании – в результате сложная комбинация датчиков, гироскопов и звездных гидов позволяет удерживать фокус в пределах 0,007 дюймов длительное время (точность наведения при этом не менее 0,01 дюйма).

На борту установлено шесть основных научных приборов, являющихся достижениями научной мысли на момент запуска шаттла. Это высокого Годдарда для работы в ультрафиолетовом диапазоне, камера и спектрограф для съемки тусклых объектов, планетарная и широкоугольная камеры, высокоскоростной фотометр для наблюдений за объектами с изменяющейся яркостью и датчики точного наведения.

Чтобы система была самодостаточной и не нуждалась в источниках питания, снабжен мощными солнечными батареями, которые, в свою очередь, заряжают шесть водородно-никелевых аккумулятора. Все компьютеры, аккумуляторные батареи, телеметрические и другие системы располагаются так, чтобы их можно было без проблем заменить в случае необходимости.

Видео по теме

Оптические инструменты известны еще с древних времен. Архимед использовал линзы для фокусировки света и уничтожения деревянных кораблей противника. Но вот телескопы появились куда позже, и причина этого неизвестна.

Истоки

Система учений об оптике была создана греческими учеными Евклидом и Аристотелем. По сути, оптика – это результат изучения строения человеческого глаза, а неразвитость анатомии в античности не позволяла развить оптику в серьезную науку.

В XIII веке появились первые очки на основе знаний о прямолинейных лучах. Они служили утилитарным целям – помогали мастерам разглядывать мелкие детали. Вряд ли это изобретение стало результатом долгих изысканий – это могла быть чистая удача, находка того, что шлифованное стекло может давать эффект увеличения предмета при приближении к глазу.

Английский естествознатель Бэкон писал об арабских инструментах, которые могли в теории давать увеличение, что можно было увидеть звезды на близком расстоянии. Гений да Винчи дошел до таких высот, что он проектировал свои станки стекла и писал трактаты о фотометрии. Однолинзовый телескоп, точнее, его чертежи и техническая документация, был продуман до мелочей Леонардо, а сам гений утверждал, что можно таким образом достичь увеличения в 50 раз. Вряд ли такая конструкция имела право на жизнь, но факт есть факт – первый камень в основание нового направления в науке был заложен.

Первая зрительная труба была сделана в Голландии в конце XVI - начале XVII века (мнения о точной дате сегодня расходятся) З.Янсеном в Миддельбурге по подобию некого итальянского телескопа. Это событие было официально задокументировано. Голландцы проявили немалую сноровку в производстве зрительных труб. Метциус, Липперсгей – их имена сохранились в хрониках, а их изделия были представлены на суд герцогов и королей, за что мастера награждались большими суммами денег. Кто же был первым – по сей день неизвестно. Инструменты делались из дешевых материалов, но на практической, а не теоретической основе, как это было ранее.

Галилео Галилей получил место профессора в университете Падуи за представление дожу Венеции своего образца телескопа. Его авторство не оставляет сомнений, поскольку изделия хранятся и сейчас во флорентийских музеях. Его телескопы позволяли добиться увеличения в 30 раз, в то время как другие мастера изготавливали телескопы с увеличением в 3 раза. Он же и внес практическую базу в учение о гелиоцентрической сущности Солнечной системы, наблюдая лично за планетами, звездами.

Великий астроном Иоганн Кеплер, ознакомившись с изобретением Галилея, составил подробное

Космический телескоп «Хаббл»


Обычно астрономы строили свои обсерватории на вершинах гор, выше облаков и загрязненной атмосферы. Но даже тогда изображение искажалось воздушными потоками. Самое четкое изображение доступно только из внеатмосферной обсерватории - космоса.


С помощью телескопа можно увидеть то, что недоступно человеческому глазу, поскольку телескоп собирает больше электромагнитного излучения. В отличие от подзорной трубы, в которой для сбора и фокусирования света используются линзы, в больших астрономических телескопах эту функцию выполняют зеркала.


Телескопы с самыми большими зеркалами должны иметь наилучшее изображение, поскольку собирают наибольшее количество излучения.


Космический телескоп «Хаббл» — автоматическая обсерватория на орбите вокруг Земли, названная в честь Эдвина Хаббла, американского астронома.



И хотя диаметр зеркала "Хаббла" только 2,4 м - меньше самых больших телескопов на Земле, - он может видеть объекты в 100 раз менее четкие, и детали в десять раз мельче, чем лучшие наземные телескопы. И это потому, что он находится выше искажающей атмосферы.


Телескоп «Хаббл» — совместный проект NASA и Европейского космического агентства.


Размещение телескопа в космосе даёт возможность регистрировать электромагнитное излучение в диапазонах, в которых земная атмосфера непрозрачна, в первую очередь — в инфракрасном диапазоне.


Из-за отсутствия влияния атмосферы, разрешающая способность телескопа в 7—10 раз больше аналогичного телескопа, расположенного на Земле.


Марс

Космический телескоп "Хаббл" помог ученым узнать много нового об устройстве нашей галактики, потому оценить его важность для человечества очень трудно.


Достаточно взглянуть на список самых важных открытий этого оптического устройства, чтобы понять, насколько полезен он был, и каким важным инструментом в изучении космоса он еще может быть.


С помощью телескопа "Хаббл" было изучено столкновение Юпитера с кометой, было получено изображение рельефа Плутона, данные с телескопа стали основой гипотезы о массе черных дыр, находящихся в центре абсолютно каждой галактики.


Ученые получили возможность увидеть полярные сияния на некоторых планетах Солнечной системы, например, Юпитере и Сатурне, а также были сделаны многие наблюдения и открытия.


Юпитер

Космический телескоп "Хаббл" "заглянул" в другую солнечную систему, отдаленную от нашей на 25 световых лет, и впервые получил изображение нескольких ее планет.


Телескоп "Хаббл" получил изображение новых планет

На одной из фотографий, полученных в оптическом, то есть в видимом свете, "Хаббл" запечатлел планету Фомалхот, вращающуюся по орбите вокруг яркой звезды Фомалхот, расположенной от нас на расстоянии 25 световых лет (около 250 триллионов километров) в созвездии Южная Рыба.


"Данные с "Хаббла" невероятно важны. Излучение света с планеты Фомалхот в миллиард раз слабее света, исходящего от звезды", - прокомментировал изображение новой планеты астроном из Калифорнийского университета Пол Калас. Он и другие ученые начали исследование звезды Фомалхот еще в 2001 году, когда о существовании планеты рядом со звездой еще не было известно.


В 2004 году "Хаббл" направил на Землю первые снимки районов вокруг звезды.


На новых снимках с космического телескопа "Хаббл", астроном получил "документальное" подтверждение своим предположениям о существовании планеты Фомалхот.


С помощью фотографий орбитального телескопа ученые "увидели" также еще три планеты в созвездии Пегаса.
Всего астрономами за пределами нашей Солнечной системы обнаружено около 300 планет.


Но все эти открытия делались на основе косвенных признаков, главным образом, через наблюдение за воздействием их гравитациоционных полей на звезды, вокруг которых они обращаются.


"Каждая планета вне нашей солнечной системы была только на схеме, - отметил Брюс Макинтош, астрофизик из Национальной лаборатории в Калифорнии. - Мы безуспешно пытались получить изображения планет в течение восьми лет, а теперь у нас уже есть фотографии нескольких планет сразу".


За 15 лет работы на околоземной орбите «Хаббл» получил 700 тысяч изображений 22 тысяч небесных объектов — звёзд, туманностей, галактик, планет.


Тем не менее, цена, которую приходится платить за достижения «Хаббла» весьма высока: стоимость содержания космического телескопа выше в 100 и более раз, чем наземного рефлектора, с 4-метровым зеркалом.

Уже в первые недели после начала работы телескопа в 1990 году, полученные изображения продемонстрировали серьёзную проблему в оптической системе телескопа. Хотя качество изображений было лучше, чем у наземных телескопов, «Хаббл» не мог достичь заданной резкости, и разрешение снимков было значительно хуже ожидаемого.
Анализ изображений показал, что источником проблемы является неверная форма главного зеркала. Оно было изготовлено слишком плоским по краям. Отклонение от заданной формы поверхности составило лишь 2 микрометрa, но результат оказался катастрофическим — оптический дефект, при котором свет, отражённый от краёв зеркала, фокусируется в точке, отличной от той, в которой фокусируется свет, отражённый от центра зеркала.
Потеря значительной части светового потока значительно уменьшили пригодность телескопа для наблюдений тусклых объектов и получения изображений с высокой контрастностью. Это означало, что практически все космологические программы стали просто невыполнимыми, поскольку требовали наблюдений особо тусклых объектов.


В течение первых трёх лет работы, до установки корректирующих устройств телескоп выполнил большое количество наблюдений. Дефект не оказывал большого влияния на спектроскопические замеры. Несмотря на отменённые из-за дефекта эксперименты, было достигнуто множество важных научных результатов.


Техническое обслуживание телескопа.


Техническое обслуживание телескопа «Хаббла» производится космонавтами во время выходов в открытый космос с космических кораблей многоразового использования типа «Спейс Шаттл».


Всего были осуществлены четыре экспедиции по обслуживанию телескопа «Хаббл».

В связи с выявившимся дефектом зеркала, первая экспедиция по обслуживанию телескопа должна была установить на телескопе корректирующую оптику. Экспедиция (2-13 декабря 1993 г.) была одной из сложнейших, были осуществлены пять длительных выходов в открытый космос. Кроме этого были заменены солнечные батареи, обновлен бортовой вычислительный комплекс, была произведена коррекция орбиты.

Второе техобслуживание было произведено 11-21 февраля 1997 года. Было заменено исследовательское оборудование, заменён бортовой регистратор, произведён ремонт теплоизоляции и выполнена коррекция орбиты.


Экспедиция 3А состоялась 19-27 декабря 1999 года. Было принято решение о досрочном проведении части работ. Это было вызвано тем, что три из шести гироскопов системы наведения вышли из строя. Экспедиция заменила все шесть гироскопов, датчик точного наведения и бортовой компьютер.


Экспедиция 3В (четвёртая миссия) выполнена 1-12 марта 2002 года. В ходе экспедиции камера съёмки тусклых объектов была заменена усовершенствованной обзорной камерой. Были во второй раз заменены солнечные батареи. Новые панели были на треть меньше по площади, что значительно уменьшило потери на трение в атмосфере, но при этом вырабатывали на 30% больше энергии, благодаря этому стала возможна одновременная работа со всеми приборами, установленными на борту обсерватории.


Произведённые работы существенно расширили возможности телескопа, позволили получить изображения глубокого космоса.


Предполагается, что телескоп Хаббл продолжит свою работу на орбите, по крайней мере, до 2013 года.

Наиболее значимые наблюдения

* «Хаббл» предоставил высококачественные изображения столкновения кометы Шумейкеров-Леви 9 с Юпитером в 1994 году.


* Впервые получены карты поверхности Плутона и Эриды.


* Впервые наблюдались ультрафиолетовые полярные сияния на Сатурне, Юпитере и Ганимеде.


* Получены дополнительные данные о планетах вне солнечной системы, в том числе, спектрометрические.


* Найдено большое количество протопланетных дисков вокруг звёзд в Туманности Ориона. Доказано, что процесс формирования планет происходит у большинства звёзд нашей Галактики.


* Частично подтверждена теория о сверхмассивных чёрных дырах в центрах галактик, на основе наблюдений выдвинута гипотеза, связывающая массу чёрных дыр и свойства галактики.


* уточнён возраст Вселенной — 13,7 млрд. лет.