Болезни Военный билет Призыв

Опыт майкельвона-морли. Опыт Майкельсона—Морли

УДК 53.01; 530.1; 530.11; 530.12:

ЭКСПЕРИМЕНТ МАЙКЕЛЬСОНА – МОРЛИ, ОШИБКИ И ПРИЧИНЫ НЕСОСТОЯТЕЛЬНОСТИ

Орлов Евгений Федорович
научно-производственная фирма Ltd "Sinuar"


Аннотация
Данная статья посвящена поискам причин неудачно выполненных физических экспериментов Майкельсона – Морли и их последователей. Проведенные исследования выявили конкретные причины не позволявшие получить положительные результаты указанных экспериментов. Устранение выявленных ошибок путем изменения конструкции интерферометров позволит установить фактические скорости и фактические направления движения небесных тел, что послужит основанием для открытия новой страницы в познании физической картины мира.

THE MICHELSON - MORLEY, ERRORS AND CAUSES OF FAILURE

Orlov Evgeny Fedorovich
Scientific and Production Company Ltd "Sinuar"


Abstract
This article is dedicated to finding the causes of failure of the physical experiments of Michelson - Morley and their followers. Our studies have revealed specific reasons do not provide positive results of these experiments. Eliminating the errors identified by changing the design of interferometers will set the actual speed and the actual direction of the heavenly bodies, which will serve as the basis for opening a new page in the knowledge of the physical picture of the world.

Уникальный физический эксперимент Майкельсона,

Являясь робкой попыткой науки заглянуть в глубины

Физической картины мира, показал истинный уровень

Интеллектуального развития человечества.

ВВЕДЕНИЕ.

В 1881году после продолжительных попыток измерить абсолютную скорость Земли в пространстве, А.Майкельсон опубликовал результаты, как ему казалось, «неудачного» физического эксперимента, в последствии поставившие всю современную науку в ступор, доведя ее к настоящему времени до бредового состояния.

В работе «Логический и физический аспекты в основе критики теории относительности» была указана конкретная причина принципиальной невозможности применения математических преобразований Х.Лоренца, а значит и теории относительности, при рассмотрении физических явлений. Одновременно, был приведен пример с двумя инерциальными системами отсчета, в котором автор настоящей работы уже высказал одну из главных идей о том, что в принципе, распространение электромагнитных сигналов в каждой из инерциальных систем отсчета, имеют место в реальной действительности .

ПОСТАНОВКА ВОПРОСА.

Распространение электромагнитных сигналов в каждой из инерциальных систем отсчета означает, что каждая инерциальная система отсчета (ИСО) является абсолютной для локального пространства в непосредственной близости от основного объема массы материальных частиц, являющихся основой инерциальной системы отсчета. А распространение действия по объемным координатам на огромные расстояния, ИСО осуществляет посредством эфирных частиц, «принадлежащих» конкретной инерциальной системе отсчета.

Таким образом, распространение действия компонентов каждой системы отсчета определяют параметры конкретной системы отсчета, которые напрямую зависят от концентрации объема массы материальных частиц в локальном пространстве. Из этого следует, что визуально определяются размеры любой инерциальной системы отсчета состоящие из основных агрегатных состояний материи – твердой, жидкой, газообразной и плазменной. При этом, широкий спектр электромагнитных излучений, исходящий от перечисленных агрегатных состояний материи, позволяющий осуществлять визуальное наблюдение с помощью телескопов и иных устройств на большом расстоянии от концентрации агрегатных состояний, свидетельствует о том, что конкретные инерциальные системы отсчета распространяют свое действие с помощью эфирного состояния материи, а эфирное состояние материи наблюдается в виде электромагнитных волн, распространяющихся с определенной скоростью в эфирной материи.

Следовательно, пространство нашей Вселенной является конечным, а его размеры находятся в прямой пропорциональной зависимости от суммы объемов масс материальных частиц, включая эфирные частицы.

Границы Вселенной определяются исключительно по отсутствию эфирной материи в пространстве, я называю его Общим Пространством (Пространство-О или, для простоты идентификации, Пространство-Орлова), которое определяется по отсутствию каких-либо электромагнитных колебаний. Таким образом, удаляясь от пространства нашей Вселенной и наблюдая её в мощный телескоп в виде единственной очень маленькой светящейся точки, можно говорить о том, что наблюдатель покидает пространство нашей Вселенной. Дальнейшее удаление наблюдателя от Вселенной и полное исчезновение свечения будет свидетельствовать о том, что наблюдатель покинул пространство нашей Вселенной и находится в Общем Пространстве. Общее Пространство бесконечно по любым направлениям и может включать в себя бесконечное число любых иных Вселенных. Отсутствие эфирной материи в Общем Пространстве означает, что распространение любых видов известных фундаментальных взаимодействий невозможно принципиально.

Таким образом, А.Майкельсон и его последователи, могли и должны были получать две составляющие скоростей перемещения интерферометра, а следовательно и Земли в пространстве. Первая из них, это нулевая скорость относительно поверхности Земли, при условии неподвижности интерферометра, доказывающая, что Земля является инерциальной системой отсчета, со своими компонентами параметров действия в пространстве. Вторая составляющая – это скорость перемещения Земли относительно любой иной выбранной инерциальной системы отсчета, при условии, если интерферометр будет направлен исключительно на выбранную систему отсчета. Но в таком случае оказывается, что во Вселенной находится огромное количество инерциальных систем отсчета, перемещающихся в пространстве в различных направлениях. Следовательно, значения скоростей взаимного перемещения Земли и указанных систем отсчета, будет представлять собой широкий спектр скоростей, начиная от нулевых значений и кончая скоростями сравнимыми со скоростями распространения гравитационного взаимодействия.

Указанная постановка вопроса требует, чтобы интерферометр был ориентирован на выбранную звезду, а значит, был смонтирован либо на тубе телескопа, с помощью которого можно установить точное направление на выбранную звезду. Либо необходимо смонтировать телескоп на монтажном столе интерферометра, но в любом случае интерферометр должен иметь возможность вращаться в двух плоскостях – в горизонтальной и в вертикальной.

Как известно, интерферометры А.Майкельсона и его последователей, вращались лишь в горизонтальной плоскости, означая тем самым, что интерферометры хаотично направлялись на различные инерциальные системы отсчета, в результате чего регистрировались хаотичные показания.

Следующим важным моментом для успешного выполнения эксперимента по измерению скорости перемещения Земли относительно выбранной удаленной инерциальной системы отсчета (звезды) является учет ослабления действия компонентов параметров удаленной ИСО в пространстве. Предположительно, подобное ослабление происходит пропорционально квадрату расстояния, измеренного от Земли до удаленной выбранной звезды. Указанная постановка вопроса требует ослабления светового луча интерферометра до состояния, когда компоненты параметров удаленной ИСО будут способны взаимодействовать со световым лучом интерферометра.

Известно, что в современных интерферометрах используются лазерные источники света, обладающие большими мощностями светового потока. Мощность светового потока подобных источников когерентного излучения несоизмеримо больше светового потока удаленной звезды и соответственно взаимодействие двух разновеликих излучений просто не замечается человеческим глазом и тем более современной аппаратурой.

Сравнительно слабый источник света в интерферометре Майкельсона позволял ему получать хаотичные значения скоростей тех или иных удаленных систем отсчета, на которые интерферометр хаотично направлялся во время проведения эксперимента, при вращении интерферометра вокруг собственной оси.

Таким образом, для измерения абсолютной скорости перемещения Земли в локальной абсолютной системе отсчета удаленной звезды или галактики необходимо выполнить как минимум два важных дополнительных условия. Первое условие: – при выполнении измерений интерферометр должен быть строго ориентирован на выбранную удаленную звезду или галактику. Второе условие: – световой поток интерферометра должен быть соизмеримым со световым потоком удаленной звезды или галактики.

Следовательно, реконструкция интерферометра состоит в том, чтобы он был смонтирован на телескопе, с помощью которого должно отслеживаться направление на выбранную звезду или галактику, а соизмеримость световых потоков удаленной звезды и источника света интерферометра следует подбирать опытным путем, устанавливая поглощающие фильтры.

ЗАКЛЮЧЕНИЕ.

В заключении необходимо отметить, что выполнение эксперимента Майкельсона – Морли с учетом выявленных ошибок, позволит определить фактические скорости и фактические направления движения звезд и галактик в пространстве нашей Вселенной. Это крайне необходимо сделать, поскольку применяемая современная методика определения скоростей взаимного перемещения небесных тел основывается исключительно на «красном смещении» спектров, тем самым, внося большие искажения в понимание физической картины мира.


Библиографический список
  1. Орлов Е.Ф. Логический и физический аспекты в основании критики теории относительности. // Исследования в области естественных наук. – Март, 2013 [Электронный ресурс]. URL:

За двадцать лет до начала этого периода, однако, фундамент всего построения уже дал трещину, и, хотя наверху строительство продолжалось, основы уже нуждались в ремонте и укреплении.

Мы уже несколько раз подчеркивали, что всякий решающий эксперимент, ставящий целью подтверждение теории неподвижного эфира, должен быть достаточно точным, чтобы учесть величины второго порядка по Лишь в этом случае можно достичь уверенности в вопросе о том, действительно ли всякое быстро движущееся тело встречает некий эфирный ветер, сдувающий с него световые волны, как требует того теория.

Майкельсон и Морли (1881 г.) впервые успешно осуществили важнейший эксперимент такого рода. Они пользовались интерферометром Майкельсона (гл. IV, § 4, стр. 102), который им удалось усовершенствовать до состояния точного прибора колоссальных возможностей.

При исследовании влияния движения Земли на скорость света (гл. IV, § 9, стр. 129) было обнаружено, что время, необходимое световому лучу для прохождения расстояния параллельно движению Земли туда и обратно, отличается лишь на величину второго порядка от значения, которое это время имело бы, если бы Земля покоилась. Мы установили раньше, что это время составляет

его можно записать и иначе:

Если бы его можно было настолько точно измерить, что долю

удалось бы отличить от 1, несмотря на чрезвычайно малое значение величины то мы получили бы средство обнаружения эфирного ветра.

Однако, вне всякого сомнения, невозможно измерить короткий интервал времени, который затрачивает свет для того, чтобы пересечь определенное расстояние. Интерферометрические методы дают просто разности времен, затрачиваемых светом на прохождение различных, не равных друг другу расстояний между двумя заданными точками. Но зато эти разности они дают с поразительной точностью.

Фиг. 109. Путь луча света в опыте Майкельсона.

Поэтому Майкельсон и Морли заставляли второй луч проходить расстояние равное одной и той же величине I, вперед и назад, но в обоих случаях по перпендикуляру к направлению движения Земли по орбите (фиг. 109). Когда свет движется от А до В, Земля проходит короткое расстояние вперед, так что точка В перемещается в точку В в эфире. Таким образом, истинное расстояние, пройденное светом в эфире, равно если свету потребовалось время для того, чтобы покрыть это расстояние, то За то же время точка А перемещается в положение А со скоростью и; следовательно, Применяя теперь теорему Пифагора к прямоугольному треугольнику мы получаем

На обратный путь свету требуется то же время, поскольку Земля смещается на аналогичный отрезок так, что исходная точка светового луча А перемещается из положения

Таким образом, на путь туда и обратно свет затрачивает время

Разность времен, затрачиваемых светом на прохождение параллельного и перпендикулярного направлению движения Земли расстояний, составляет

Следовательно, с достаточной степенью точности можно записать

Итак, запаздывание одной световой волны по сравнению с другой представляет собой величину второго порядка.

Это запаздывание можно измерить с помощью интерферометра Майкельсона (фиг. 110). В этом приборе свет, идущий от

источника разделяется полупрозрачным зеркалом на два луча, которые движутся по перпендикулярным друг другу направлениям к зеркалам! и отражаясь от которых они направляются обратно к зеркалу От полупрозрачного зеркала лучи идут параллельно к окуляру где наблюдается их интерференция. Если расстояния равны и если одно плечо прибора расположить в направлении движения Земли, то мы как раз получаем модель рассмотренного выше случая. Таким образом, два луча в интерферометре Майкельсона достигают плоскости зрения с разностью времен

Фиг. 110. Интерферометр Майкельсона.

Поэтому интерференционные полосы расположены не точно так, как они были бы расположены, если бы Земля покоилась. Однако если теперь повернуть весь прибор на 90° и совместить с направлением движения Земли второе плечо прибора, то интерференционные полосы должны сместиться на равную величину в противоположном направлении. Следовательно, наблюдая положение интерференционных полос при двух разных положениях прибора, можно измерить смещение, соответствующее удвоенному времени запаздывания

Если период колебаний используемой световой волны, то отношение времени запаздывания к периоду колебаний равно

откуда, используя формулу (35), согласно которой длина волны наше искомое соотношение можно записать как

Итак, при поворачивании прибора два интерферирующих пакета волн испытывают относительное смещение, отношение которого к длине волны равно (фиг. 111). Интерференционные полосы сами по себе возникают вследствие того, что лучи, покидающие источник в различных направлениях, должны

Опыт Майкельсона

Схема опыта Майкельсона-Гэля

О́пыты Ма́йкельсона - класс физических экспериментов, исследующих зависимость скорости распространения света от направления. В настоящее время (2011 год) точность опытов позволяет найти относительные отклонения изотропности скорости света в единицы 10 −16 , однако на этом уровне отклонения не найдены. Опыты Майкельсона являются эмпирической основой принципа инвариантности скорости света , входящего в общую теорию относительности (ОТО) и специальную теорию относительности (СТО) .

История

Предыстория

Теория распространения света, включающая в себя эфир, появилась в XVII веке. В 1727 году английский астроном Джеймсом Брэдли объяснил через неё аберрацию света . Эдуард Кеттелер и Т. Юнг несколько развили теорию эфира. В 1868 году Хук поставил опыт по проверке теории эфира на эффекте аберрации света от земного источника света. В 1871-1872 годах Эйри провёл серию точных опытов с астрономическим источником света, сделав из них вывод о том, что орбитальное движение Земли полностью увлекает эфир.

Эпоха Майкельсона

Впервые подобный опыт был поставлен Альбертом Майкельсоном на своём интерферометре в 1881 году , с целью измерения зависимости скорости света от движения Земли относительно эфира . Под эфиром тогда понималась среда, аналогичная объёмнораспределённой материи, в которой свет распространяется подобно звуковым колебаниям. Результат эксперимента по мнению Майкельсона был отрицательным - смещения полос не совпадают по фазе с теоретическими, а колебания этих смещений только немного меньше теоретических.

Опыты Миллера

По мнению профессора Дэйтона К. Миллера (Кейсовская школа прикладных наук): - «Можно полагать, что эксперимент лишь показал, что эфир в конкретной подвальной комнате увлекается в продольном направлении вместе с ней. Мы собираемся поэтому переместить аппарат на холм, чтобы посмотреть, не обнаружится ли там эффект» .

В марте 1921 г. методика и аппарат были несколько изменены и получен результат в 10 км/с «эфирного ветра». Результаты были тщательно проверены на предмет возможного устранения погрешностей, связанных с магнитострикцией и тепловым излучением. Направление вращение аппарата не оказывало влияния на результат эксперимента .

Более поздние исследования результатов, полученных Д. Миллером, показали, что флюктуации, наблюдавшиеся им и интерпретированные как наличие «эфирного ветра» являются следствием статистических ошибок и неучёта температурных эффектов .

Опыты Кеннеди

Доктор Рой Кеннеди (Калифорнийский технологический институт) после публикаций результатов опыта Морли-Миллера видоизменяет опыт с целью проверки. Интерферометр помещается в металлический герметичный корпус, заполненный гелием под давлением 1 атм. Используя приспособление, способное различить очень малые смещения интерференционной картины, стало возможным сократить размер плеч до 4 м. Использовался поляризованный свет с целью исключить насколько возможно рассеяние света на зеркалах. Точность опыта соответствовала смещению полос на 2·10 −3 их ширины. На этом аппарате скорость 10 км/с, полученная Миллером, давала бы сдвиг, соответствующий 8·10 −3 длины волны зелёного цвета, что в четыре раза больше наименьшего определяемого значения. Эксперимент проводился в лаборатории Норман Бридж, в помещении с постоянной температурой, в различное время дня. Для проверки зависимости скорости эфирного ветра от высоты местности опыты проводились также на Маунт Вилсон в здании обсерватории. Эффект оказался не превышающим 1 км/с для эфирного ветра .

Теперь я хотел бы сделать несколько замечаний по поводу эксперимента Миллера. Я считаю, что существует серьёзная проблема, связанная с эффектом, периодическим для полного оборота аппарата, и сброшенная со счетов Миллером, подчеркивающим значение эффекта полупериода, т. е. повторяющегося при полуобороте аппарата, и касающаяся вопроса об эфирном ветре. Во многих случаях эффект полного периода значительно больше эффекта полупериода. По Миллеру эффект полного периода зависит от ширины полос и будет нулевым для неопределенно широких полос.

Хотя Миллер утверждает, что он смог исключить этот эффект в значительной степени в своих замерах в Кливленде, и это можно легко объяснить в эксперименте, я хотел бы более четко понять причины этого. Говоря в данный момент как приверженец теории относительности, я должен утверждать, что такого эффекта вовсе не существует. Действительно, поворот аппарата в целом, включая источник света, не дает какого-либо сдвига с точки зрения теории относительности. Никакого эффекта не должно быть, когда Земля и аппарат находятся в покое. По Эйнштейну такое же отсутствие эффекта должно наблюдаться для движущейся Земли. Эффект полного периода, таким образом, находится в противоречии с теорией относительности и имеет большое значение. Если затем Миллер обнаружил систематические эффекты, существование которых нельзя отрицать, важно также узнать причину эффекта полного периода - Проф. Лоренц

Опыты Майкельсона и Гэля

В 1925 г. Майкельсоном и Гэлем у Клиринга в Иллинойсе на земле были уложены водопроводные трубы в виде прямоугольника. Диаметр труб 30 см. Трубы AF и DE направлены точно с запада на восток, EF, DA и CB - с севера на юг. DE=AF=613 м. EF=DA=CB=339.5 м. Одним общим насосом работающим в течение трех часов можно откачать воздух до давления 1 см ртутного столба. Чтобы обнаружить смещение Майкельсон сравнивает в поле зрительной трубы интерференционные полосы, получаемые при обегании большого и малого контура. Один пучок света шёл по часовой стрелке, другой против. Смещение полос, вызываемое вращением Земли, регистрировали в различные дни при полной перестановке зеркал и различными людьми. Всего было сделано 269 измерений. Теоретически предполагая эфир неподвижным, следует ожидать смещения полосы на 0,236±0,002. Обработка данных наблюдений дала смещение 0,230±0,005, таким образом подтвердив существование и величину эффекта Саньяка .

Таким образом, перед нами снова положительный эффект, сам по себе с поразительной точностью подтверждающий предположение о неувлекаемом эфире, отстающим при суточном вращении Земли. - С.И. Вавилов т. IV

Современные варианты


Wikimedia Foundation . 2010 .

Смотреть что такое "Опыт Майкельсона" в других словарях:

    Общий вид интерферометра в перспективе. Изображение из доклада А.Майкельсона по результатам его экспериментов, выполненных в 1881 г. Движение Земли вокруг Солнца и через эфир … Википедия

    опыт Майкельсона-Морлея - Maikelsono ir Morlio eksperimentas statusas T sritis fizika atitikmenys: angl. Michelson Morley experiment vok. Michelson Morley Versuch, m rus. опыт Майкельсона Морлея, m pranc. expérience de Michelson et Morley, f; expérience de Michelson… … Fizikos terminų žodynas

    Доказал независимость скорости света от движения Земли (А. А. Майкельсон 1881). В классической физике опыт Майкельсона не нашел объяснения; в относительности теории постоянство скорости света во всех инерциальных системах отсчета принимается как… … Большой Энциклопедический словарь

    Доказал независимость скорости света от движения Земли (А. А. Майкельсон, 1881). В классической физике Майкельсона опыт не нашёл объяснения; в относительности теории постоянство скорости света во всех инерциальных системах отсчёта принимается как … Энциклопедический словарь

    Поставлен амер. физиком А. А. Майкельсоном (A. A. Michelson) в 1881 с целью измерения влияния движения Земли на скорость света. В физике кон. 19 в. предполагалось, что свет распространяется в нек рой универсальной мировой среде эфире. При этом… … Физическая энциклопедия

    Опыт, поставленный впервые А. Майкельсоном в 1881 с целью измерения влияния движения Земли на скорость света. Отрицательный результат М. о. был одним из основных экспериментальных фактов, легших в основу относительности теории (См.… … Большая советская энциклопедия

    Майкельсона-Морли опыт - опыт, поставленный впервые в 1881 году американскими физиками Майкельсоном и Морли с целью обнаружения влияния орбитального движения Земли на скорость света, но не выявивший этого влияния (известен в науке как «отрицательный результат» опыта).… … Начала современного естествознания

Бернард Джефф

5. Эксперимент Майкельсона – Морли

Школа прикладной науки Кейса, открывшая двери студентам в 1881 году и впоследствии преобразованная в Технологический институт Кейса, помещалась в принадлежавшем ранее Кейсу доме на Роквилл-стрит, неподалеку от центральной площади Кливленда. Первое, что предстояло сделать Майкельсону по вступлении в свои обязанности, – это оборудовать лабораторию в подсобном строении на территории школы.

По соседству с владением Кейса располагался университет «Уестерн Резерв», переведенный в Кливленд летом 1882 года из Гудзона (штат Огайо). Через дорогу, в сотне метров от лаборатории Майкельсона, находился Адельберт-холл – одно из зданий университета, где работал профессор химии Эдвард У. Морли.

Майкельсон и Морли вскоре познакомились и сблизились на почве общих научных интересов. Они вместе ездили на научные конференции в Балтимору, Монреаль и другие города, и чем лучше узнавали друг друга, тем больше крепла их взаимная симпатия и уважение.

Внешне эти двое ученых казались весьма разными. Морли был на пятнадцать с лишним лет старше Майкельсона и вел свой род от англичан-переселенцев, покинувших Британские острова еще в начале XVII века. Отец его был священник-конгрегационалист, а сам он в 1864 году закончил духовную семинарию в Эндовере (штат Массачусетс) и готовился принять духовный сан Его карьера являет пример того, как увлечение превращается в дело всей жизни. Не получив подходящей духовной кафедры, он занялся химией, которой до этого только занимался любительски. В 1868 году университет «Уестерн Резерв» предложил ему пост профессор, химии и естественной философии. Морли был очень религиозен и время от времени произносил проповеди в окрестных церквах. Более того, он согласился принять пост профессора в «Уестерн Резерв» только при условии, что ему будет разрешено регулярно читать проповеди в часовне университета.

Что касается Майкельсона, то он был очень далек от религии. Отец его был атеистом, и в жизни их семьи религия не занимала никакого места. Таким образом, он не приобщился к древней вере своих праотцев и всю жизнь был неверующим. Воспитание детей в духе религии он доверил жене. Восхищаясь чудесами природы, он тем не менее отказывался приписывать их некоему творцу. Однажды звездной ночью, показывая и называя своим детям созвездия на небе, он сказал: «Названия созвездий вы можете и забыть, но людей, которые не преклоняются перед чудесами природы, я считаю недостойными уважения». Как-то раз он писал: «Что может сравниться по красоте с великолепным соответствием средств природы и ее целей и с тем неизменным правилом закономерности, которое управляет самыми, казалось бы, беспорядочными и сложными из ее проявлений?» Однако идеи бога он не признавал.

Майкельсон был хорош собой, строен и всегда безукоризненно одет. Морли одевался, мягко выражаясь, небрежно и полностью отвечал бы стереотипному представлению о рассеянном профессоре, если бы не живость движений, энергия и разговорчивость. Он носил длинную до плеч шевелюру и огромные рыжие усы, торчавшие чуть ли не до ушей. Он был женат, но бездетен.

Однако у Майкельсона и Морли было много общего. Оба любили музыку. Майкельсон хорошо играл на скрипке, а Морли был превосходный органист. Оба отличались изобретательностью по части точных измерительных приборов и необыкновенной тщательностью в работе. Морли, как и Майкельсон, не упускал ни одной мелочи и, так же как и он, взявшись за исследование какой-либо научной проблемы, не отступал, пока не доводил дело до конца.

До встречи с Майкельсоном Морли, проверяя сообщения о разном процентном содержании кислорода в разных образцах воздуха, предпринял исследование относительного веса кислорода и водорода в составе чистой воды. Это исследование заняло почти двадцать лет. Он провел тысячи опытов, многие за собственный счет. Он проанализировал методом электролиза бесчисленное количество образцов дистиллированной воды и синтезировал воду методом электрической искры, соединяя заданные количества двух элементов. В результате многолетних исследований он определил вес этих элементов до пятого десятичного знака. Литр кислорода весит 1,42900 г, а водорода 0,89873 г, с возможной ошибкой в одну трехсоттысячную. Эти величины были повсеместно приняты за стандартные, как и полученное Морли отношение водорода к кислороду 1,0076 к 16. Эксперименты Морли были классическими и завоевали ему мировое признание.

Влияние движения среды на скорость света

Лорд Кельвин и лорд Рэлей просили Майкельсона проверить влияние движения среды на скорость света. Майкельсон решил в качестве движущейся среды взять воду и своим замыслом поделился с Морли. Тот предложил ему для работы свою лабораторию. Она помещалась в большой подвальной комнате, и условия в ней были идеальными для задуманного Майкельсоном опыта. Морли не был специалистом-физиком, но он был сообразителен, находчив и увлечен проблемой. В 1860 году, еще студентом он одно время работал в области астрономии. Майкельсон рассказал ему о стоящей перед ними задаче и о приборе, который он думает применить. Морли готов был немедленно приступить к работе. Однако в сентябре 1885 года, когда работа над опытом находилась еще в начальной стадии, Майкельсон явился утром в лабораторию в совершенно жалком виде. Он заявил Морли, что страдает от нервного истощения и нуждается в длительном отдыхе. Он сказал, что ему нужно уехать из Кливленда по крайней мере на год. Не согласится ли Морли самостоятельно закончить прибор, провести опыты и опубликовать результаты? Он передал Морли некую сумму, полученную им на проведение опытов, и добавил еще 100 долларов своих. Затем Морли получил от Майкельсона письмо из Нью-Йорка. Они регулярно переписывались по поводу эксперимента. Четыре месяца спустя Майкельсон неожиданно приехал в Кливленд и предложил продолжать работу совместно. Здоровье его значительно улучшилось и он смог довести опыт до конца. В 1886 году в «Америкэн джорнал оф сайанс» за подписями обоих появилась работа «Влияние движения среды на скорость света» . Майкельсон и Морли обнаружили, что движение воды оказывает влияние на скорость света, но не такое, какое можно ожидать из теории эфира. Их опыт подтвердил результаты исследований, проделанных Физо в 1851 году. Сразу два учебных заведения – Университет «Уестерн Резерв» и Институт технологии Стивенса присудили Майкельсону степень доктора философии. Эта была первая ученая степень Майкельсона, поскольку в его время Морская академия еще не имела права присуждать звание бакалавра наук.

Теперь, обладая усовершенствованным прибором и обогатив свой опыт, Майкельсон смог вернуться к эксперименту с эфиром, который он так долго откладывал. В этой работе Морли тоже должен был принимать участие. Они были полны самых радужных надежд, и Морли писал отцу 17 апреля 1887 года: «Мы с Майкельсоном приступили к новому эксперименту, который должен показать, одинакова ли скорость распространения света в любых направлениях. Я не сомневаюсь, что мы получим окончательный ответ». Разумеется, Морли несколько упрощенно определял цель опыта. Майкельсон и Морли собирались предпринять решительную попытку «изловить» неуловимый эфир. В случае положительного результата наука получит не только скорость движения Земли по орбите относительно эфира, но и скорость ее вращения вокруг своей оси, а, может быть, даже метод определения скорости движения в пространстве всей солнечной системы. Это была бы первая попытка при помощи локального оптического явления определить абсолютное движение Земли в пространстве, которое отождествлялось с эфиром.

Прибор Майкельсона – Морли

Сконструированный ими прибор оказался весьма массивным сооружением. Он состоял из каменной плиты площадью примерно 150 кв.см и толщиной около 30 см. На плите было установлено четыре зеркала, сделанные из сплава меди, олова и мышьяка, а также все прочее оборудование, включая горелку Аргана. Чтобы обеспечить строго горизонтальное положение каменной плиты и избежать погрешностей за счет вибрации, трения и натяжений, плита плавала в ртути, очищенной Морли. Ртуть наливалась в кольцеобразный чугунный сосуд с толщиной стенок около 1,5 см; поверх ртути плавала деревянная подставка в форме бублика, а на ней уже устанавливалась каменная плита. Осевой стержень обеспечивал концентричность деревянного поплавка и чугунного сосуда. Промежуток между стенкой сосуда и наружным ободком поплавка составлял меньше 1,5 см (рис. 9).

Рис. 9. Установка Майкельсона – Морли.
Большая и очень тяжелая каменная плита покоилась на деревянном поплавке, помещенном в жидкую ртуть. Сосуд с ртутью имел форму бублика. Плавая в жидкости, каменная плита и деревянная подставка сохраняли строго горизонтальное положение.

Чугунный сосуд покоился на опоре, представлявшей собой низкий пологий кирпичный восьмиугольник, внутрь которого был залит цемент. Фундамент интерферометра уходил глубоко в землю, до коренной породы, так как верхний слой почвы не был достаточно устойчивым. По окружности сосуда, на одинаковом расстоянии одна от другой, было сделано шестнадцать отметок. Деревянный чехол защищал оптическую часть прибора (зеркало на каждом углу плиты) от воздушных потоков и внезапных изменений температуры.

Сопротивление движению тяжелого аппарата было сведено до минимума, и, приложив незначительную силу по его окружности, можно было придать ему медленное, плавное и непрерывное вращение. Один полный оборот совершался примерно за 6 минут. Наблюдатель ходил вокруг аппарата, передвигаясь одновременно с вращающейся каменной плитой, и периодически останавливался, заглядывая в маленькую зрительную трубу, чтобы проверить, не произошло ли смещения интерференционных полос. Такое смещение означало бы изменение скорости света в этом направлении (рис. 10).

Рис. 10. Интерферометр в установке Майкельсона – Морли.
Принцип его действия тот же, что и прибора, показанного на рис. 8.

На регулировку этого уникального прибора ушло несколько месяцев. В конце концов Майкельсон добился, что он регистрировал малейшее смещение интерференционных полос. Морли и Майкельсон поочередно ходили вокруг прибора и глядели в зрительную трубу.

Они предполагали, что в течение года должно быть два дня, когда будет наблюдаться максимальный эффект смещения (если только такой эффект вообще существует). В какой-то один день Земля будет двигаться в направлении, прямо противоположном тому, в котором она двигалась в тот, другой день.

Они проводили наблюдения ежедневно в двенадцать часов дня и в шесть часов вечера в шестнадцати различных направлениях. Напрягая зрение, они вглядывались в интерференционные полосы, пытаясь определить их смещение.

Опыты были закончены в июле 1887 года. Когда все результаты были сведены воедино и проанализированы, все подсчеты сделаны и неоднократно проверены, исследователи оказались перед лицом упрямого факта, разрушавшего всю стройную теорию. Против всякого ожидания, смещения того порядка, которого требовала гипотеза неподвижного эфира, обнаружено не было. Это было похоже на смертный приговор представлению о неподвижном эфирном океане. Майкельсон довольно благосклонно относился к теории неподвижного эфира и надеялся, что опыт позволит его обнаружить. Как же иначе могли распространяться электромагнитные колебания, в том числе световые волны? Опять результат тонко задуманного и блестяще выполненного эксперимента привел Майкельсона в полное недоумение.

«Величайший из всех отрицательных результатов»

Майкельсон и Морли послали свое сообщение в «Америкэн джорнал оф сайанс» . Оно было озаглавлено: «Об относительном движении Земли и светоносного эфира». В том же году оно было также напечатано в английском журнале «Филозофикал мэгэзин». Вывод Майкельсона стал известен ученым всего мира. В каком бы направлении ни двигался наблюдатель, уловимой разницы в скорости света не обнаруживалось. Иными словами, приходилось признать невероятное: как бы быстро вы ни бежали за светом, догнать его невозможно. Он по-прежнему будет убегать от вас со скоростью 300 000 км в секунду. Такое заключение противоречило всему человеческому опыту. Самолет, который летит со скоростью 600 км в час при попутном ветре, дующем со скоростью 50 км в час, делает относительно какой-нибудь неподвижной точки 650 км в час. Если же он летит против ветра, его скорость уменьшится до 550 км в час. Поскольку Земля движется вокруг Солнца со скоростью примерно 30 км в секунду, скорость светового луча, идущего в одном с Землей направлении, должна быть больше скорости луча, идущего в обратном направлении. Однако опыт Майкельсона опровергал это предположение.

Английский физик и философ Джон Д. Бернал назвал открытие Майкельсона и Морли «величайшим из всех отрицательных результатов в истории науки». Однако Майкельсон не был окончательно обескуражен результатами своего опыта. Хотя существование неподвижного эфира ими исключалось, оставалась еще одна возможность, что «Земля увлекает за собой эфир, придавая ему почти ту же скорость, с какой движется сама, так что скорость движения эфира по отношению к поверхности Земли равна нулю или очень мала».

Через десять лет после опубликования этого исторического сообщения Майкельсон экспериментально проверил «вторую гипотезу, послав два световых луча по периметру вертикально поставленного прямоугольника, стороны которого были равны 15 и 60 м. Результаты не подтвердили этой гипотезы.

Майкельсон не был убежден, что «провал» его опыта окончательно решает вопрос. «Поскольку результат опыта был отрицательным, проблема по-прежнему ждет своего решения», – публично заявил он. А в утешение себе он привел довольно неожиданный довод: «На мой взгляд, эксперимент не прошел впустую, поскольку поиски разрешения этой проблемы привели к изобретению интерферометра. Я думаю, что все признают, что изобретение интерферометра вполне компенсирует отрицательный результат данного опыта».

Много лет спустя, выступая в обсерватории Маунт-Вильсон перед ученой аудиторией, Майкельсон дал совсем другую оценку относительной важности эксперимента с эфиром и изобретения интерферометра. Он признал, что его утверждение о большей ценности инструмента противоречило «некоторым важным теоретическим соображениям», потрясшим научный мир. Как выяснилось за истекшие годы, Майкельсон, сам того не подозревая, заготовил материал, из которого в Европе была построена одна из величайших научных теорий всех времен. Это один из редких случаев, когда первоначальное открытие было сделано в Америке и уже позднее использовано в Европе. Почти всегда получалось наоборот.

Описывая опыты по определению скорости света, мы как бы забыли о том, что все эти опыты производятся на Земле, несущейся в мировом пространстве с огромной скоростью, превышающей в десятки раз скорость артиллерийского снаряда. Правда, в этих опытах наблюдатель и источник света неподвижны относительно друг друга, но если считать, что Земля движется по отношению к неподвижному эфиру, в котором распространяются световые волны, то следует ожидать влияния этого движения на результаты наблюдений.

Разберем описанные выше методы определения скорости света, считая мировой эфир неподвижным, а Землю движущейся. В обоих методах - и Физо и Фуко - определялось время, необходимое световому лучу для того, чтобы пройти от какой-то точки А до точки В и вернуться обратно в точку А. Мы считали, что это время равно просто где а - длина отрезка с - скорость света.

Теперь мы должны уточнить наше рассуждение. Прежде всего мы определим с как скорость света по отношению к неподвижному эфиру. Затем надо учесть, что в результате движения Земли, согласно законам механики Ньютона, скорость света по отношению к Земле уже не будет равна с. Если направление распространения светового луча совпадает с направлением движения Земли, то эта скорость должна быть равна если свет и Земля движутся в противоположных направлениях, то где скорость Земли по отношению к эфиру. В первом случае свет должен «догонять» Землю, во втором, наоборот, свет и Земля движутся навстречу друг другу.

Рис. 6 изображает случай, когда отрезок параллелен направлению движения Земли; тогда от А к В луч идет с относительной скоростью а в обратном - со скоростью

Значит, от до В он дойдет за время а от В до А - за время полное же время определится следующим образом:

или с точностью до величин четвертого порядка (относительно

Рис. 6. Распространение света в движущейся системе.

Мы видим, что учет движения Земли привел к некоторой поправке, правда небольшой по величине: следовательно,

Рассмотрим теперь другой случай расположения отрезка А В (рис. 6, справа). Пусть отрезок перпендикулярен к направлению движения Земли и в В помещено плоское зеркало. Скорость света по отношению к Земле в этом случае будет равна и в прямом (от А к В) и в обратном направлениях (от В к А).

В этом случае косое направление скорости с по отношению к определяется тем, что за время прохождения светового сигнала из сама точка В смещается вправо (аналогично будет при обратном пути от В к А).

Полное время распространения света определится как

Извлекая приближенно корень квадратный, получаем;

откуда с точностью до величин четвертого порядка

Сопоставляя и мы видим, что

Таким образом, следует ожидать, что измерение разности времен при двух взаимно-перпендикулярных расположениях А В позволит определить скорость движения Земли по отношению к эфиру.

Неприятным в формуле (10) является то, что в нее входит квадрат отношения искомой скорости к скорости света. Тем самым речь идет об установлении «эффектов второго порядка малости».

Делалось много попыток обнаружить эффекты первого порядка, однако все они были неудачны. Часть из них, основанная на исследовании явлений преломления, интерференции, дифракции и др., покоилась на неверных принципиальных основаниях. Лоренц показал, что во всех этих случаях отсутствие эффектов первого порядка вытекает из теории неподвижного эфира с таким же успехом, как и из теории полностью увлекаемого эфира.

Другие попытки, носившие, правда, характер неосуществленных проектов, были основаны на схемах с часами, расположенными на расстоянии друг от друга. В таких схемах определяется время прохождения светом пути от одних часов до других. Зная расстояние между часами, мы можем вычислить скорость света. Так как в этом случае путь светового луча по отношению к Земле не замкнут (луч идет от к В, но не возвращается опять в Л), можно было надеяться на обнаружение эффектов первого порядка, связанных с движением Земли.

Однако очевидно, что для таких опытов нужно иметь совершенно одинаково (синхронно) идущие часы в точках Майкельсон показал, что самые точные методы синхронизации часов, находящихся в разных точках, практически сводятся к посылке электромагнитных сигналов из одной точки в другую, т. е. ко всем теперь хорошо известной «поверке времени» по радио.

Но эти сигналы распространяются опять-таки со скоростью света. Таким образом, путь световой (электромагнитной) волны оказывается замкнутым, и мы опять приходим к эффектам второго порядка, соответствующим формулам (7), (9) и (10). Поэтому Майкельсон взялся за осуществление опыта, позволяющего непосредственно обнаружить эффекты второго порядка. Здесь сразу возникает законный вопрос: нельзя ли было воспользоваться для этих целей схемами опытов по определению скорости света, уже описанными выше? Ведь мы как раз показали, что во всех этих опытах должны были наблюдаться эффекты второго порядка. В принципе действительно это так: если бы Майкельсон при определении скорости света по методу Физо - Фуко проделал измерения для двух положений трубы (в которой распространялся свет), соответствующих рис. 6, он должен

был бы получить разность времен запаздывания, определяемую формулой (10).

Однако обнаружить существование этой разности он практически не смог бы, несмотря на использование больших расстояний. Ведь мы указывали, что Майкельсон определил скорость света с точностью до т. е. примерное точностью до 0,000003 измеряемой величины. Как ни велика эта точность, она недостаточна для обнаружения эффектов второго порядка, соответствующих одной стомиллионной доле измеряемой величины (см. выше).

Майкельсон блестяще обошел это затруднение, использовав волновые свойства света. На рис. 7 изображена схема знаменитого опыта Майкельсона.

Луч света, выходящий из падает на полупрозрачную пластинку расположенную под углом половина света отражается по направлению к , половина проходит сквозь пластинку к помещены зеркала, отражающие световые лучи обратно; лучи, идущие обратно, опять попадают на пластинку причем половина света, отраженного от пройдет сквозь пластинку и попадет в трубу точно так же половина света, отраженного от отразится от пластинки и попадет в трубу (для наглядности мы несколько сместили на рисунке прямые и обратные лучи).

Рис. 7. Схема опыта Майкельсона.

В результате в трубе сойдутся два световых луча, которые от до шли в равных условиях, а затем один из них прошел путь а другой путь от до опять будет общим.

должно было быть примерно равным сек. Чтобы обнаружить такую ничтожную величину, Майкельсону пришлось восполь зоваться волновыми свойствами света. Так как период светового колебания равен для видимых лучей то указанное выше изменение запаздывания соответствует 0,4 периода, т. е. составляет заметную долю периода. Майкельсон, наблюдая интерференцию колебаний первого и второго лучей, мог определить разность фаз этих колебаний с точностью до 0,01 периода (§ 20).

Таким образом, наблюдения интерференции позволяли ему определять долю искомого эффекта, несмотря на сравнительно малое расстояние вместо Однако результат опыта оказался отрицательным. Никакого изменения запаздывания одного луча по отношению к другому при вращении прибора не было обнаружено. Так как ожидаемые эффекты пропорциональны квадрату скорости Земли, отсюда следовало, что скорость Земли по отношению к эфиру во всяком случае меньше т. е. от орбитальной скорости Земли.

Последующие опыты только уточнили этот результат, понизив верхний предел для скорости Земли по отношению к эфиру или, что то же, скорости «эфирного ветра» по отношению к Земле до величины, меньшей орбитальной скорости Земли (Иллингворт, 1927).