Болезни Военный билет Призыв

Определение координаты точки касания шара с плоскостью. Касательная плоскость к сфере

Урок 10. Касательная плоскость к сфере.

Цель урока: рассмотреть теоремы о касательной плоскости к сфере, научить решать задачи по данной теме.

Ход урока

      Актуализация опорных знаний.

Повторение сведений из планиметрии.

    Определение касательной.

    Свойство радиуса, проведенного к точке касательной.

    Если из одной точки, лежащей вне окружности, провести к ней две касательные, то:

а) длины отрезков от данной точки до точек касания равны:

б) углы между каждой касательной и секущей, проходящей через центр круга, равны.

    Если из одной точки, лежащей вне окружности, провести к ней касательную и секущую, то квадрат касательной равен произведению секущей на ее внешнюю часть.

    Если две хорды пересекаются в одной точке, то произведение отрезков одной хорды равно произведению отрезков другой.

    Взаимное расположение сферы и плоскости.

      Объяснение новой темы. (Слайд 26 – 32)

Итак, сфера с плоскостью могут пересекаться по окружности, не пересекаться и иметь одну общую точку.

Рассмотрим последний случай подробнее.

Плоскость, имеющая со сферой только одну общую точку, называется касательной плоскостью к сфере, а их общая точка называется точкой касания.

К
асательная плоскость обладает свойством, аналогичным свойству касательной к окружности.

Дано: сфера с центром О и радиусом R , α - касательная к сфере в точке А плоскость.

Доказать: OA а .

Доказательство: Пусть OA не перпендикулярна плоскости а , тогда OA является наклонной к плоскости, значит, расстояние от центра до плоскости d R . Т.е. сфера должна пересекаться с плоскостью по окружности, но это не удовлетворяет условию теоремы. Значит, OA а .

Докажем обратную теорему.

Дано: сфера с центром О и радиусом OA , а, OA а .

Доказать: а – касательная плоскость.

Доказательство: Т.к. OA а , то расстояние от центра сферы до плоскости равно радиусу. Значит, сфера и плоскость имеют одну общую точку. По определению, плоскость является касательной к сфере.

      Формирование умений и навыков учащихся.

    Как далеко может обозревать землю человек, стоящий на равнине? (Не учитывая рефракции света).

Решение: CN 2 = h (h + 2 R ) (см. выше п. I урока)

Пусть рост человека (до глаз) 1,6 м , R земли 6400 км.

Позднее вернемся к этой задаче, чтобы узнать, какова площадь обозрения.

    Работа по таблице 33.


АК ОК (почему?). По теореме Пифагора АК = = 15 . AM - ближайшее расстояние от точки А до сферы (при наличии времени можно дать учащимся порассуждать над очевидным вопросом - почему?)

AM = АО-ОМ=9.

      Итог урока.

      Домашнее задание: п. 61, № 591, 592.

Сказка о возникновении шара

Однажды, оставшись один дома, красавец Полукруг долго принаряживался и жеманился перед небольшим в оловянных рамках зеркалом и не мог налюбоваться собою.

«Что людям вздумалось расславлять, будто я хорош?- говорил он. – Лгут люди, я совсем не хорош. Почему девушки провозгласили, что лучшего парня и не было еще никогда и не будет никогда на селе Хатанга?».

Полукруг знал и слышал все, что про него говорили, и был капризным, как красавец. Он мог целый день любоваться собой перед зеркалом, рассматривая себя со всех сторон. И вдруг случилось чудо, когда Полукруг повернулся перед зеркалом вокруг себя, он увидел в зеркале собственное отражение в форме Шара.

Из истории возникновения

Шаром принято называть тело, ограниченное сферой, то есть шар и сфера – это разные геометрические тела. Однако оба слова «шар» и «сфера» происходят от одного и того же греческого слова «сфайра» - мяч. При этом слово «шар» образовалось от перехода согласных сф в ш .

В XI книге «Начал» Евклид определяет шар как фигуру, описанную вращающимся около неподвижного диаметра полукругом. В древности сфера была в большом почёте. Астрономические наблюдения над небесным сводом неизменно вызывали образ сферы.

Сфера всегда широко применялось в различных областях науки и техники.

Определение

  • Сферой называется поверхность, состоящая из всех точек пространства, расположенных на данном расстоянии от данной точки.
  • Тело, ограниченное сферой, называется шаром.

Общие понятия

  • Данная точка называется центром сферы, а данное расстояние – радиусом сферы.
  • Отрезок, соединяющий две точки сферы и проходящий через ее центр, называется диаметром сферы.
  • Центр, радиус, диаметр сферы называется также центром, радиусом и диаметром шара.

Касательная плоскость к сфере

Плоскость, имеющая со сферой только одну общую точку, называется касательной плоскостью к сфере, а их общая точка называется точкой касания плоскости и сферы.

Сечение шара плоскостью

  • Любое сечение шара плоскостью есть круг. Центр этого круга – основание перпендикуляра, опущенного из центра шара на секущую плоскость.
  • Сечение, проходящее через центр шара, - большой круг. (диаметральное сечение).

Задача на тему шар (д/з)

На поверхности шара даны три точки. Прямолинейные расстояния между ними 6 см, 8 см, 10 см. Радиус шара 13 см. Найдите расстояние от центра до плоскости, проходящей через эти точки. (1.7 см, 2.15 см, 3.12 см, 4.20 см)

П. 64 – 67, изучить п, 576, 578


Проверка домашнего задания I ученик: вывод уравнения сферы II ученик: 581 III ученик: 586(б) IV ученик: Что называется сферой? 2. Что называют диаметром сферы? 3. Расскажите о взаимном расположении сферы и плоскости. 581, 586(б), 587








О Свойство касательной плоскости Дано: сфера(О; R), R=ОА, - касательная плоскость, А – точка касания Доказать: ОА. А Доказательство. Предположим противное: пусть ОА, следовательно, ОА – наклонная к плоскости, значит, расстояние от центра сферы до плоскости меньше ОА, т. е. меньше радиуса R: d


О Признак касательной плоскости Дано: сфера(О; R), R=ОА, ОА, А. Доказать: - касательная плоскость. А Доказательство. ОА, значит, расстояние от центра сферы до плоскости равно радиусу сферы: d = R, следовательно, сфера и плоскость имеют только одну общую точку, т. е. данная плоскость является касательной. Если радиус сферы перпендикулярен к плоскости, проходящей через его конец, лежащий на сфере, то эта плоскость является касательной к сфере.











ОПРЕДЕЛЕНИЕ . Касательной плоскостью к поверхности в точке
называется плоскость, содержащая в себе все касательные к кривым, проведенным на поверхности через эту точку.Нормалью называется прямая, перпендикулярная к касательной плоскости и проходящая через точку касания.

Покажем, что
направлен по нормали к поверхности
в точке
­.

Рассмотрим кривую , лежащую на поверхности и проходящую через точку
(рис. 15). Пусть она задана параметрическими уравнениями

.

Если
– радиус-вектор точки
, движущейся при изменениивдоль, то, а
– радиус-вектор точки
.

Так как лежит на поверхности, то. Продифференцируем это тождество по:

. (6.6)

По определению
, а. Поэтому (6.6) означает, что скалярное произведение
во всех точках кривой.

Равенство нулю скалярного произведения векторов – необходимое и достаточное условие их перпендикулярности. Значит, в точке

. Но вектор
– вектор скорости – направлен по касательной к траектории точки

, то есть по касательной к кривой(рис. 15). Так каквыбрана произвольно, то
перпендикулярен всевозможным касательным, проведенным к линиям, лежащим на
и проходящим через точку
. А это по определению означает, что
перпендикулярен касательной плоскости, то есть является ее нормалью.

Отсюда уравнение касательной плоскости к данной поверхности имеет вид (см. гл. 3):

Уравнение нормали (см. гл. 3):

. (6.8)

В частности, если поверхность задана явным уравнением
, получим:– уравнение касательной

плоскости, и
– уравнение нормали.

ПРИМЕР . Написать уравнения касательной плоскости и нормали к сфере
в точке
.

Очевидно

Уравнение касательной плоскости (6.7):

Уравнения нормали (6.8):

.

Заметим, что эта прямая проходит через начало координат, то есть центр сферы.

ПРИМЕР . Написать уравнение касательной плоскости к эллиптическому параболоиду
в точке
.

Эта поверхность задана явным уравнением и
.

Поэтому уравнение касательной плоскости в данной точке имеет вид: или.

Экстремумы функции двух переменных

Пусть функция
определена во всех точках некоторой области
.

ОПРЕДЕЛЕНИЕ . Точка
называется точкой максимума (минимума) функции
, если существует её окрестность
, всюду в пределах которой.

Из определения следует, что если
– точка максимума, то

; если
– точка минимума, то

ТЕОРЕМА (необходимое условие экстремума дифференцируемой функции двух переменных). Пусть функция
имеет в точке
экстремум. Если в этой точке существуют производные первого порядка, то

ДОКАЗАТЕЛЬСТВО . Зафиксируем значение
. Тогда
– функция одной переменной. Она имеет экстремум при
и по необходимому условию экстремума дифференцируемой функции одной переменной (см. гл. 5)
.

Аналогично, зафиксировав значение
, получим, что
.

Что и требовалось доказать.

ОПРЕДЕЛЕНИЕ . Стационарной точкой функции
называется точка
, в которой обе частные производные первого порядка равны нулю:

.

ЗАМЕЧАНИЕ 1 . Сформулированное необходимое условие не является достаточным условием экстремума.

Пусть
. Значит,
– стационарная точка этой функции. Рассмотрим произвольную- окрестность начала координат.

В пределах этой окрестности имеет, очевидно, разные знаки (рис. 16). А это означает, что точка
точкой экстремума по определению не является.

Таким образом, не всякая стационарная точка – точка экстремума .

ЗАМЕЧАНИЕ 2 . Непрерывная функция может иметь экстремум, но не иметь стационарной точки.

Рассмотрим функцию
. Её графиком является верхняя
половина конуса, и, очевидно,
– точка минимума (рис. 17).

ОПРЕДЕЛЕНИЕ . Точки, в которых частные производные первого порядка функции
равны нулю или не существуют, называются еекритическими точками.

ТЕОРЕМА (достаточное условие экстремума функции
). Пусть функция
имеет частные производные второго порядка в некоторой окрестностистационарной точки
. Пусть, кроме того,

.

Тогда, если

1)
, то
– точка экстремума, именно: точка максимума, если
, или точка минимума, если
;

2)
, то экстремума в точке
нет;

3)
, то требуются дополнительные исследования для выяснения характера точки
.

(Без доказательства).

ПРИМЕР . Исследовать на экстремум функцию
.

Найдем стационарные точки:
. Стационарных точек нет, значит, функция не имеет экстремума.

ПРИМЕР . Исследовать на экстремум функцию .

Чтобы найти стационарные точки, надо решить систему уравнений:

То есть данная функция имеет четыре стационарные точки.

Проверим достаточное условие экстремума для каждой из них:

.

Так как
, то в точках
экстремума нет.

и
, значит,
– точка минимума и
;
и
, значит,
– точка максимума и
.

Симметрия шара

Любая диаметральная плоскость шара является его плоскостью симметрии. Центр шара является его центром симметрии.

Доказательство: Пусть - диаметральная плоскость и Х - произвольная точка шара. Построим точку Х", симметричную точке Х относительно плоскости. Плоскость перпендикулярна отрезку ХХ" и пересекается ним в его середине (в точке А). Из равенства прямоугольных треугольников ОАХ и ОАХ" следует, что ОХ" =ОХ.

Так как ОХ?R, то и ОХ"?R, т.е. точка, симметричная точке Х, принадлежит шару. Первое утверждение теоремы доказано.

Пусть теперь Х"" - точка, симметричная точке Х относительно центра шара. Тогда ОХ"" = ОХ?R, т.е. точка Х"" принадлежит шару. Теорема доказана полностью.

Касательная плоскость к шару

Плоскость, проходящая через точку А шаровой поверхности перпендикулярная радиусу, проведенному в точку А, называется касательной плоскостью. Точка А называется точкой касания.

Касательная плоскость имеет с шаром только одну общую точку - точку касания.

Доказательство: Пусть б - плоскость касательная к шару, и А - точка касания. Возьмем произвольную точку Х плоскости б, отличную от А. Так как ОА - перпендикуляр, а ОХ - наклонная, то ОХ > ОА = R. Следовательно, точка Х не принадлежит шару. Теорема доказана.

Прямая в касательной плоскости шара, проходящая через точку касания, называется касательной к шару в этой точке. Так как касательная плоскость имеет с шаром только одну общую точку - точку касания.