Болезни Военный билет Призыв

Оперон включает в себя. Значение слова оперон. Смотреть что такое "оперон" в других словарях

ОПЕРОН ОПЕРОН

(от лат. орегог - работаю, действую), транскриптон, скриптон, участок генетич. материала, транскрипция к-рого осуществляется на одну молекулу информационной РНК (иРНК) под контролем белка-репрессора. Концепция О. разработана в 1961 Ф. Жакобом и Ж. Моно для объяснения механизма «включения» или «выключения» тех или иных генов в зависимости от потребности клетки в метаболитах, синтез к-рых контролируют эти гены. В дальнейшем эта концепция получила подтверждение в большом числе экспериментов, показавших, что оперонная регуляция (т. е. регуляция на уровне транскрипции) представляет собой осн. механизм регуляции активности генов у прокариот и бактериофагов. О. может состоять из одного, двух и более тесно сцепленных структурных генов, кодирующих белки (ферменты), осуществляющие последовательные этапы биосинтеза какого-либо метаболита. Кроме того, каждый О. содержит регуляторные элементы: промотор (участок начала транскриппии) и оператор (с к-рым происходит связывание репрессора), расположенные в начале О., и терминатор (сигнал к прекращению транскрипции) - в конце О. Промотор представляет собой короткую последовательность неск. десятков нуклеотидов ДНК, с к-рой специфически связывается фермент РНК-полимераза, осуществляющая транскрипцию ДНК. В случае т. н. позитивной (положительной) регуляции для эффективной инициации (начала) транскрипции необходимо присоединение к промотору белка позитивного контроля (активатора). При негативной (отрицательной) регуляции в результате связывания оператора с репрессором РНК-полимераза не может двигаться вдоль О. и транскрипция структурных генов не происходит. Если оператор не занят репрессором, то РНК-полимераза транскрибирует все структурные гены О. Репрессор, контролирующий транскрипцию О., кодируется геном-регулятором, к-рый не обязательно сцеплен с О. (один репрессор может контролировать транскрипцию неск. О.). Кроме участка узнавания оператора молекула репрессора имеет участок узнавания эффектора, к-рый либо активирует его (в тех случаях, когда репрессор синтезируется в неактивной форме), либо инактивирует (если репрессор синтезируется в активной форме).

.(Источник: «Биологический энциклопедический словарь.» Гл. ред. М. С. Гиляров; Редкол.: А. А. Бабаев, Г. Г. Винберг, Г. А. Заварзин и др. - 2-е изд., исправл. - М.: Сов. Энциклопедия, 1986.)


Смотреть что такое "ОПЕРОН" в других словарях:

    Участок генетического материала, состоящий из 1, 2 и более сцепленных структурных генов, которые кодируют белки (ферменты), осуществляющие последовательные этапы биосинтеза какого либо метаболита. В оперон эукариот входит, как правило, 1… … Большой Энциклопедический словарь

    Оперон функциональная единица генома у прокариот, в состав которой входят цистроны (гены, единицы транскрипции), кодирующие совместно или последовательно работающие белки и объединенные под одним (или несколькими) промоторами. Такая… … Википедия

    ОПЕРОН, группа ГЕНОВ в ХРОМОСОМЕ, включающая структурные гены и ген оператор. Структурные гены управляют синтезом ФЕРМЕНТОВ, задействованных в образовании клеточного составляющего или в потреблении питательных веществ. Ген оператор связан с… … Научно-технический энциклопедический словарь

    Группа генов, функционально связанных между собой. Белки, кодируемые генами одного О., – это, как правило, ферменты, катализирующие отдельные этапы одного метаболического пути. (


Оперон - способ организации генетического материала у прокариот, при котором цистроны (гены, единицы транскрипции), кодирующие совместно или последовательно работающие белки, объединяются под одним (или несколькими) промоторами. Такая функциональная организация позволяет эффективнее регулировать экспрессию (транскрипцию) этих генов.

Концепцию оперона для прокариот предложили в 1961 году французские ученые Жакоб и Моно, за что получили Нобелевскую премию в 1965 году.

Опероны по количеству цистронов классифицируют на моно-, олиго- и полицистронные, содержащие, соответственно, только один, несколько или много цистронов (генов).

В состав оперона прокариот входят структурные гены и регуляторные элементы (не путать с геном-регулятором). Структурные гены кодируют белки, осуществляющие последовательно этапы биосинтеза какого-либо вещества. Этих генов может быть один, два или несколько. Они тесно сцеплены друг с другом и, что самое главное, в ходе транскрипции работают как один единый ген: на них синтезируется одна общая молекула иРНК, которая лишь потом расщепляется на несколько иРНК, соответствующих отдельным генам. Регуляторными элементами являются следующие:

Промотор - участок связывания фермента, осуществляющего транскрипцию ДНК - РНК-полимеразы. Является местом начала транскрипции. Представляет собой короткую последовательность из нескольких десятков нуклеотидов ДНК, с которой специфически связывается РНК-полимераза. Кроме того, промотор определяет, какая из двух цепей ДНК будет служить матрицей для синтеза иРНК;

Оператор - участок связывания регуляторного белка;

Терминатор - участок в конце оперона, сигнализирующий о прекращении транскрипции.

На работу оператора данного оперона влияет самостоятельный ген-регулятор, синтезирующий соответствующий регуляторный белок. Этот ген не обязательно располагается рядом с опероном. Кроме того, один регулятор может регулировать транскрипцию нескольких оперонов. Ген-регулятор также имеет собственный промотор и терминатор. Регуляторные белки бывают двух типов: белок-репрессор или белок-активатор. Они присоединяются к специфическим нуклеотидным последовательностям ДНК оператора, что либо препятствует транскрипции генов (негативная, отрицательная регуляция), либо способствует ей (позитивная, положительная регуляция); механизмы их работы противоположны. Кроме того, на работу белков-репрессоров могут влиять вещества - эффекторы: соединяясь с репрессором, они влияют на его взаимодействие с оператором.

У эукариот транскрипция осуществляется с участков, подобных оперонам прокариот и также состоящих из регуляторных и структурных генов, однако у оперонов эукариот имеется ряд особенностей.

1. В состав оперона эукариот входит лишь один структурный ген (а не несколько - как у прокариот).

2. Оперон эукариот почти всегда содержит только структурный ген, а прочие гены разбросаны по хромосоме или даже по разным хромосомам.

3. Оперон эукариот состоит из чередующихся друг с другом значащих (экзонов) и незначащих (интронов) участков. При транскрипции вчитываются как экзоны, так и интроны, а затем в ходе процессинга происходит вырезание интронов (сплайсинг). У эукариот механизмы регуляции активности отдельных генов и генома в целом довольно сложны, и рассмотрение этих вопросов выходит далеко за рамки школьного курса биологии.

Характерным примером оперонной организации генома прокариот является лактозный оперон, или lac оперон. Начинается и заканчивается оперон регуляторными областями - промотором в начале и терминатором в конце, кроме этого, каждый отдельный цистрон может иметь в своей структуре собственный промотор и/или терминатор.



Исследование механизмов регуляции генов, кодирующих утилизацию молочного сахара лактозы у E.coli , позволило Ф. Жакобу и Ж. Моно (1961) предложить модель координированного контроля работы структурных генов, известную какмодель оперона. Согласно этой модели в ее нынешнем виде, транскрипция группы структурных генов, кодирующих полипептиды, тесно связанные между собой функционально, регулируется двумя контролирующими элементами – геном-регулятором и оператором. Последний представляет собой последовательность нуклеотидов, примыкающую к регулируемым структурным генам. Если продуктом гена-регулятора являетсябелок-компрессор, его присоединение к оператору блокирует транскрипцию структурных генов, создавая стерические препятствия для присоединения РНК-полимеразы к специфичному участку-промотору, необходимому для инициации транскрипции. Напротив, если белком-регулятором служитактивный апоиндуктор , его присоединение к оператору создает условия для инициации транскрипции. Оператор часто локализуется между промотором и структурными генами.Последовательность ДНК, состоящая из тесно сцепленных структурных генов, оператора и промотора, и образующая единицу генетической регуляции, называется опероном . Ген-регулятор может локализоваться рядом с опероном или на расстоянии от него. В регуляции работы оперонов участвуют также низкомолекулярные вещества– эффекторы , выступающие как индукторы либо корепрессоры структурных генов, входящих в состав оперонов.

Различают индуцируемые и репрессируемые опероны в зависимости от типа влияния на их работу молекул– эффекторов. У индуцируемых оперонов эффектор присоединяется к белку-репрессору и блокирует его связывание с оператором, препятствуя транскрипции структурных генов. Такой тип регуляции работы оперона называютнегативным . Наряду с этим, индуцируемые опероны могут находиться под позитивным контролем регуляции, при котором эффектор связывается с регуляторным белком и активизирует его активный апоиндуктор присоединяется к оператору, что обеспечивает возможность транскрипции оперона. Оба типа контроля регуляции действуют и в отношении репрессируемых оперонов. При негативном контроле эффектор, являющийся корепрессором, присоединяется к неактивному репрессору и активирует его. В результате репрессор приобретает способность присоединяться к оператору и тем самым блокировать транскрипцию оперона. При позитивном контроле функционирования репрессируемого оперона корепрессор связывается с активным апоиндуктором. Такой комплекс не может присоединяться к оператору, и структурные гены не транскрибируются.

Таким образом, при негативном контроле эффектор связывается с репрессором, что приводит к его инактивации либо активации и соответственно индуцирует либо репрессирует транскрипцию оперона. При позитивном контроле эффектор присоединяются не к репрессору, а к апоиндуктору, что разрешает, или наоборот, блокирует транскрипцию в зависимости от того, какую форму (активную или неактивную) приобретает апоиндуктор в результате связывания с эффектором. Поскольку при транскрипции оперона, состоящего из нескольких структурных генов, образуется один общий транскрипт в виде молекулы полицистронной иРНК, все эти гены экспрессируются координированно.

Оперон - функциональная единица генома у прокариот, в состав которой входят цистроны (гены, единицы транскрипции), кодирующие совместно или последовательно работающие белки и объединенные под одним (или несколькими) промоторами. Опероны по количеству цистронов делят на моно -, олиго - и полицистронные, содержащие, соответственно, только один, несколько или много цистронов (генов).

Ген регулятор –/ Промотор – Оператор – Аттеньюитор (может прекратить считывание до начала транскрипции) – Терминатор. \

Начинается и заканчивается оперон регуляторными областями - промотором в начале и терминатором в конце, кроме этого, каждый отдельный цистрон может иметь в своей структуре собственный промотор и/или терминатор.

14. Молекулярные механизмы транскрипции у прокариот. Фазы транскрипции .

Транскрипцией называется перенос информации с двух-цепочечной молекулы ДНК на одноцепочечные молекулы РНК. Матрицей для синтеза РНК служит только одна цепь ДНК, называемая смысловой цепью. Транскрипция проходит 4 стадии:1 - связывания ДНК-матрицы; 2 – инициации;3 – элонгации;4 - терминации;

В рамках каждой из этих стадий осуществляются определенные функции мультимолекулярного ферментного комплекса - РНК-полимеразы.

Собственно РНК-полимеразная активность, т. е. образование фосфодиэфирных связей с нуклеотидами, комплементарными матрице, свойственна так называемому минимальному ферменту; таким образом, холофермент РНК-полимеразы может быть разделен на минимальный фермент α2ββ’ иσ - фактор. Инициацию синтеза РНК осуществляет только холофермент, затем σ- фактор диссоциирует и минимальный фермент ведет элонгацию.Основная функция σ - фактора - узнавание промоторов и обеспечение прочного связывания РНК-полимеразы с промоторами. Существуют минорные разновидности σ -фактора, узнающие определенные группы промоторов.

Активным центром РНК-полимеразы является полуфермент РНК-полимеразы состоящий из:1 – сигма фактора (отсоединяется);2 – минимального фермента.

15. Регуляция работы оперона по типу репрессии и индукции .

Механизмы репрессии и активации транскрипции.Белки, подавляющие транскрипцию, называются – репрессорами.Если белок усиливает транскрипцию путем уменьшения активности репрессора, он называется – индуктором.Если транскрипция активируется непосредственно, без участия репрессора, белок называется - активатором.Участки связывания репрессора или активатора на ДНК называются – операторами.Единица транскрипции, находящаяся под контролем данного оператора, - опероном(у прокариот это, как правило, несколько генов, регулируемых параллельно транскрипции.Механизмы репрессии и активации транскрипции: Простейший механизм репрессии - связывание репрессора с промоторной областью, т. е. перекрывание промотора и оператора. В этом случае инициации транскрипции не происходит, поскольку участок связывания РНК-полимеразы уже занят репрессором. Простейший механизм активации - образование комплекса активатора и РНК-полимеразы, что облегчает формирование открытого комплекса на матрице ДНК.



16. Структурная организация транскриптона .+

17. Функционирование транскриптона =

Синтез молекул РНК начинается в определенных местах ДНК, называемых промоторами, и завершается в терминаторах. Участок ДНК, ограниченный промотором и терминатором, представляет собой единицу транскрипции (Lewin B., 1980) - транскриптон. В пределах каждого транскриптона копируется только одна из двух нитей ДНК, которая называется значащей или матричной. Во всех транскриптонах, считываемых в одном направлении, значащей является одна нить ДНК; в транскриптонах, считываемых в противоположном направлении, значащей является другая нить ДНК. Соседние транскриптоны могут быть отделены друг от друга нетранскрибируемыми участками ДНК, а могут и перекрываться, в частности так, что в пределах участка перекрывания матричными оказываются обе нити. Разбиение ДНК на множество транскриптонов обеспечивает возможность независимого считывания разных генов, их индивидуального включения и выключения. У эукариот в состав транскриптона, как правило, входит только один ген.Термины "транскрипционная единица" или "транскриптон" по смыслу близки термину "ген", но они не всегда совпадают. Так, транскрипционные единицы прокариот, как правило, заключают в себе генетическую информацию нескольких генов и называются оперонами. Продуктами транскрипции оперонов являются полицистронные мРНК, в результате трансляции которых рибосомами образуется несколько белков. Белки, кодируемые полицистронными мРНК, обычно функционально связаны друг с другом и обеспечивают протекание какого-либо метаболического процесса, например, биосинтеза определенной аминокислоты или утилизацию углеводов в качестве источника углерода. Организация генов в виде оперонов облегчает координированную регуляцию их экспрессии на уровне транскрипции. Согласованная регуляция транскрипции (и других этапов экспрессии) многих генов, не образующих одного оперона, чаще всего осуществляется специфическими белками-регуляторами, которые взаимодействуют с гомологичными регуляторными нуклеотидными последовательностями, маркирующими гены данной группы.



18. Процессинг .- Процессинг – процесс созревания молекулы иРНК, сопровождающийся удалением интронов (участки не несущие информацию о последовательности аминокислот в синтезируемом белке) и сращиванием (сплайсингом) экзонов.

Длина созревшей и направляющейся к рибосомам молекулы иРНК оказывается короче первоначальной и эту РНК называют мРНК (матричной).

У прокариот процессинг отсутствует.

  1. Понятие экспрессии генов, ее основные этапы.
  2. Регуляция экспрессии генов, понятие оперона и его основные механизмы функционирования.
  3. Лактозный оперон E.coli.
  4. Особенности экспрессии генов у эукариот.
  5. Современное состояние теории гена.
  6. Взаимосвязь между генами, ферментами и признаками

Экспрессия генов

Генная экспрессия - это совокупность молекулярных механизмов реализации наследственной информации, благодаря которому, ген проявляет свой потенциал в конкретном фенотипическом признаке организма. Все этапы экспрессии генов протекают с использованием энергии и обслуживаются десятками разнообразных ферментов. Про­цесс экспрессии гена состоит из нескольких этапов (слайд 1):

Ген Про-мРНК мРНК Полипептид Белок Признак

транскрипция процессинг трансляциия модификация экспрессия

а) на основе гена ДНК синтезируется про-мРНК. Первый этап экспрессии называется «транскрипцией»;

б) крупная молекула про-мРНК подвергается «процессингу», в результате этого значительно уменьша­ется в размерах. Образуется «зрелая» мРНК, считывание информации с которой упрощается. Биологический смысл процессинга - облегчение доступа к генетической информации;

в) мРНК при участии тРНК «вы­бирает» необходимые аминокислоты, которые связываются на рибосоме в строго определенную последовательность полипептида. Процесс пере­носа информации с мРНК на полипептид называется «трансляцией»; г) синтезированный полипептид подвергается «модификации» и пре­вращается в активный белок;

д) функционируя, белок делает свой вклад в морфологический или функциональный признак (фенотип) клетки или организма. Это процесс называется «экспрессией».

Схема механизма экспрессии представлена на слайде 1Б. В процессе транскрипции участвует не только смысловая часть гена, но и другие регуляторные и структурные части. Образуемая про-мРНК содержит все элементы, характерные для гена ДНК. Процессинг существенно модифицирует про-мРНК, которая превращается в мРНК и содержит намного меньше структурно-функциональных элементов. На основе мРНК трансляция создает молекулы совершенно другой природы - полипептиды, ничего не имеющие общего с нуклеиновыми кислотами и обладающими совершенно другими свойствами и организацией. Модификация поли­пептидов приводит к еще одному природному явлению - появлению сложной пространственной организации молекулы белка. Происходит переход линейной информации ДНК и РНК в пространственную организацию протеина, которая, в свою очередь, является основой специфического пространственного взаимодействия молекул в живом организме, что и лежит в основе жизни и всех жизненных явлений. В данном случае процесс модификации обеспечивает пространствен­ную организацию - объединение четырех субъединиц гемоглобина в единый комплекс. В результате всех этапов экспрессии проявляется признак - способность к транспорту газов (О 2 и СО 2).


Регуляция экспрессии генов

Концепция оперона в регуляции экспрессии генов у прокариот. Ген обычно неактивен, но когда необходим определенный белок, конкретный ген «активируется», что обусловливает производство этого белка. Таким образом, клетки имеют механизм, контролирующий количество любого белка в определенное время. Синтез белков регулируется генетическим аппаратом, а также факторами внутренней и внешней среды.

Структура оперона прокариот. В 1961 г. два французских биолога Ф.Джакоб и Ж.Моно предложили механизм регуляции генов, назван­ный гипотезой оперона.

Оперон - это последовательность специальных, функциональных сегментов ДНК, а также структурных генов, которые кодируют и ре­гулируют синтез определенной группы белков одной метаболической цепи, например, ферментов гликолиза. Оперон (регулируемая единица транскрипции) состоит из следующих структурных частей (специаль­ных последовательностей нуклеотидов) (слайд 2):

1. Ген-регулятор, контролирующий образование белка-регулятора.

2. Промотор - участок ДНК, к которому присоединяется РНК-
полимераза и начинается транскрипция.

3. Оператор - участок промотора, связывающий белок-регулятор.

4. Структурные гены (цистроны) - участки ДНК, кодирующие мРНК конкретных белков.

5. Терминаторный участок ДНК несет сигнал об остановке транс­крипции.