Болезни Военный билет Призыв

Одночлен многочлен формулы сокращенного умножения. Многочлен, его стандартный вид, степень и коэффициенты членов

Которые требуют разложения многочлена на множители, определите общий множитель данного выражения. Для этого сначала вынесите за скобки те переменные, которые входят в всех членов выражения. Причем эти переменные должны иметь наименьший показатель. Затем вычислите наибольший общий делитель каждого из коэффициентов многочлена. Модуль полученного числа будет коэффициентом общего множителя.

Пример. Разложите на 5m³–10m²n²+5m². Вынесите за скобки m², т.к. переменная m в каждый член данного выражения и ее наименьший показатель равен двум. Вычислите коэффициент общего множителя. Он равен пяти. Таким образом, общий множитель данного выражения равен 5m². Отсюда: 5m³–10m²n²+5m²=5m²(m–2n²+1).

Если выражение не имеет общего множителя, попробуйте разложить его способом группировки. Для этого объедините в группы те члены, у которых имеются общие множители. Вынесите общий множитель каждой группы за скобки. Вынесите за скобки общий множитель у всех образовавшихся групп.

Пример. Разложите на множители многочлен a³–3a²+4a–12. Произведите группировку следующим образом: (a³–3a²)+(4a–12). Вынесите за скобку общий множитель a² в первой группе и общий множитель 4 во второй группе. Отсюда: a²(a–3)+4(a–3). Вынесите за скобки многочлен a–3, получите: (a–3)(a²+4). Следовательно, a³–3a²+4a–12=(a–3)(a²+4).

Некоторые многочлены раскладываются на множители при помощи формул сокращенного умножения. Для этого приведите многочлен к нужному виду способом группировки или при помощи вынесения за скобки общего множителя. Далее примените соответствующую формулу сокращенного умножения.

Пример. Разложите на множители многочлен 4x²–m²+2mn–n². Объедините в скобки последние три члена, при этом вынесите за скобки –1. Получите: 4x²–(m²–2mn+n²). Выражение в скобках можно представить в виде квадрата разности. Отсюда: (2x)²–(m–n)². Это есть разность квадратов, можно записать: (2x–m+n)(2x+m+n). Таким образом, 4x²–m²+2mn–n²=(2x–m+n)(2x+m+n).

Некоторые многочлены можно разложить на множители методом неопределенных коэффициентов. Так, каждый многочлен можно представить в виде (y–t)(my²+ny+k), где t, m, n, k – числовые коэффициенты. Следовательно, задача сводится к определению значений этих коэффициентов. Это делается, исходя из данного равенства: (y–t)(my²+ny+k)=my³+(n–mt)y²+(k–nt)y–tk.

Пример. Разложите на множители многочлен 2a³–a²–7a+2. Из второй части для многочлена третьей степени составьте равенства: m=2; n–mt=–1; k–nt=–7; –tk=2. Запишите их в виде системы . Решите ее. Вы найдете значения t=2; n=3; k=–1. Подставьте вычисленные коэффициенты в первую часть формулы, получите: 2a³–a²–7a+2=(a–2)(2a²+3a–1).

Источники:

  • Разложение многочленов на множители
  • как разложить на множители на многочлен

Математическая наука изучает различные структуры, последовательности чисел, отношений между ними, составление уравнений и их решение. Это формальный язык, которым можно четко описать приближенные к идеальным свойства реальных объектов, изучаемых в других областях науки. Одной из таких структур является многочлен.

Инструкция

Многочлен или (от греч. «поли» - много и лат. «номен» - имя) – элементарных функций классической алгебры и алгебраической геометрии. Это функция одной переменной, которая имеет вид F(x) = c_0 + c_1*x + … + c_n*x^n, где c_i – фиксированные коэффициенты, x – переменная.

Многочлены применяются во многих разделах, в том числе рассмотрении нуля, отрицательных и комплексных чисел, теории групп, колец, узлов, множеств и т.д. Использование полиномиальных вычислений значительно упрощает выражение свойств разных объектов.

Основные определения :
Каждое слагаемое полинома называется или мономом.
Многочлен, состоящий из двух одночленов, называют двучленом или биномом.
Коэффициенты полинома – вещественные или комплексные числа.
Если коэффициент равен 1, то называют унитарным (приведенным).
Степени переменной в каждом одночлене – целые неотрицательные числа, максимальная степень определяет степень многочлена, а его полной степенью называется целое число, равное сумме всех степеней.
Одночлен, соответствующий нулевой степени, называется свободным членом.
Многочлен, все которого имеют одинаковую полную степень, называется однородным.

Некоторые часто используемые многочлены названы по фамилии ученого, который их определил, а также функции, которые они задают. Например, Бином Ньютона – это для разложения полинома на отдельные слагаемые для вычисления степеней. Это известные из школьной программы записи квадратов суммы и разности (a + b)^2 – a^2 + 2*a*b + b^2, (a – b)^2 = a^2 – 2*a*b + b^2 и разность квадратов (a^2 – b^2) = (a - b)*(a + b).

Если допустить в записи многочлена отрицательные степени, то получится многочлен или ряд Лорана; многочлен Чебышева используется в теории приближений; многочлен Эрмита – в теории вероятностей; Лагранжа – для численного интегрирования и интерполяции; Тейлора – при аппроксимации функции и т.д.

Обратите внимание

Бином Ньютона часто упоминают в книгах («Мастер и Маргарита») и фильмах («Сталкер»), когда герои решают математические задачи. Этот термин на слуху, поэтому считается самым известным многочленом.

Совет 3: Как 90 разложить на два взаимно простых множителя

Взаимно простыми множителями называются числа, не имеющие общих делителей, кроме единицы. Алгоритм достаточно прост, попробуйте рассмотреть его на примере: разложите на два взаимно простых множителя число 90.

- многочленами . В этой статье мы изложим все начальные и необходимые сведения о многочленах. К ним, во-первых, относится определение многочлена с сопутствующими определениями членов многочлена, в частности, свободного члена и подобных членов. Во-вторых, остановимся на многочленах стандартного вида, дадим соответствующее определение и приведем их примеры. Наконец, введем определение степени многочлена, разберемся, как ее найти, и скажем про коэффициенты членов многочлена.

Навигация по странице.

Многочлен и его члены – определения и примеры

В 7 классе многочлены изучаются сразу после одночленов, это и понятно, так как определение многочлена дается через одночлены. Дадим это определение, объясняющее что такое многочлен.

Определение.

Многочлен – это сумма одночленов; одночлен считается частным случаем многочлена.

Записанное определение позволяет привести сколько угодно примеров многочленов. Любой из одночленов 5 , 0 , −1 , x , 5·a·b 3 , x 2 ·0,6·x·(−2)·y 12 , и т.п. является многочленом. Также по определению 1+x , a 2 +b 2 и - это многочлены.

Для удобства описания многочленов вводится определение члена многочлена.

Определение.

Члены многочлена – это составляющие многочлен одночлены.

Например, многочлен 3·x 4 −2·x·y+3−y 3 состоит из четырех членов: 3·x 4 , −2·x·y , 3 и −y 3 . Одночлен считается многочленом, состоящим из одного члена.

Определение.

Многочлены, которые состоят из двух и трех членов, имеют специальные названия – двучлен и трехчлен соответственно.

Так x+y – это двучлен, а 2·x 3 ·q−q·x·x+7·b – трехчлен.

В школе наиболее часто приходится работать с линейным двучленом a·x+b , где a и b – некоторые числа, а x – переменная, а также с квадратным трехчленом a·x 2 +b·x+c , где a , b и c – некоторые числа, а x – переменная. Вот примеры линейных двучленов: x+1 , x·7,2−4 , а вот примеры квадратных трехчленов: x 2 +3·x−5 и .

Многочлены в своей записи могут иметь подобные слагаемые . Например, в многочлене 1+5·x−3+y+2·x подобными слагаемыми являются 1 и −3 , а также 5·x и 2·x . Они имеют свое особое название – подобные члены многочлена.

Определение.

Подобными членами многочлена называются подобные слагаемые в многочлене.

В предыдущем примере 1 и −3 , как и пара 5·x и 2·x , являются подобными членами многочлена. В многочленах, имеющих подобные члены, можно для упрощения их вида выполнять приведение подобных членов .

Многочлен стандартного вида

Для многочленов, как и для одночленов, существует так называемый стандартный вид. Озвучим соответствующее определение.

Исходя из данного определения, можно привести примеры многочленов стандартного вида. Так многочлены 3·x 2 −x·y+1 и записаны в стандартном виде. А выражения 5+3·x 2 −x 2 +2·x·z и x+x·y 3 ·x·z 2 +3·z не являются многочленами стандартного вида, так как в первом из них содержатся подобные члены 3·x 2 и −x 2 , а во втором – одночлен x·y 3 ·x·z 2 , вид которого отличен от стандартного.

Заметим, что при необходимости всегда можно привести многочлен к стандартному виду .

К многочленам стандартного вида относится еще одно понятие – понятие свободного члена многочлена.

Определение.

Свободным членом многочлена называют член многочлена стандартного вида без буквенной части.

Иными словами, если в записи многочлена стандартного вида есть число, то его называют свободным членом. Например, 5 – это свободный член многочлена x 2 ·z+5 , а многочлен 7·a+4·a·b+b 3 не имеет свободного члена.

Степень многочлена – как ее найти?

Еще одним важным сопутствующим определением является определение степени многочлена. Сначала определим степень многочлена стандартного вида, это определение базируется на степенях одночленов , находящихся в его составе.

Определение.

Степень многочлена стандартного вида – это наибольшая из степеней входящих в его запись одночленов.

Приведем примеры. Степень многочлена 5·x 3 −4 равна 3 , так как входящие в его состав одночлены 5·x 3 и −4 имеют степени 3 и 0 соответственно, наибольшее из этих чисел есть 3 , оно и является степенью многочлена по определению. А степень многочлена 4·x 2 ·y 3 −5·x 4 ·y+6·x равна наибольшему из чисел 2+3=5 , 4+1=5 и 1 , то есть, 5 .

Теперь выясним, как найти степень многочлена произвольного вида.

Определение.

Степенью многочлена произвольного вида называют степень соответствующего ему многочлена стандартного вида.

Итак, если многочлен записан не в стандартном виде, и требуется найти его степень, то нужно привести исходный многочлен к стандартному виду, и найти степень полученного многочлена – она и будет искомой. Рассмотрим решение примера.

Пример.

Найдите степень многочлена 3·a 12 −2·a·b·c·a·c·b+y 2 ·z 2 −2·a 12 −a 12 .

Решение.

Сначала нужно представить многочлен в стандартном виде:
3·a 12 −2·a·b·c·a·c·b+y 2 ·z 2 −2·a 12 −a 12 = =(3·a 12 −2·a 12 −a 12)− 2·(a·a)·(b·b)·(c·c)+y 2 ·z 2 = =−2·a 2 ·b 2 ·c 2 +y 2 ·z 2 .

В полученный многочлен стандартного вида входят два одночлена −2·a 2 ·b 2 ·c 2 и y 2 ·z 2 . Найдем их степени: 2+2+2=6 и 2+2=4 . Очевидно, наибольшая из этих степеней равна 6 , она по определению является степенью многочлена стандартного вида −2·a 2 ·b 2 ·c 2 +y 2 ·z 2 , а значит, и степенью исходного многочлена. , 3·x и 7 многочлена 2·x−0,5·x·y+3·x+7 .

Список литературы.

  • Алгебра: учеб. для 7 кл. общеобразоват. учреждений / [Ю. Н. Макарычев, Н. Г. Миндюк, К. И. Нешков, С. Б. Суворова]; под ред. С. А. Теляковского. - 17-е изд. - М. : Просвещение, 2008. - 240 с. : ил. - ISBN 978-5-09-019315-3.
  • Мордкович А. Г. Алгебра. 7 класс. В 2 ч. Ч. 1. Учебник для учащихся общеобразовательных учреждений / А. Г. Мордкович. - 17-е изд., доп. - М.: Мнемозина, 2013. - 175 с.: ил. ISBN 978-5-346-02432-3.
  • Алгебра и начала математического анализа. 10 класс: учеб. для общеобразоват. учреждений: базовый и профил. уровни / [Ю. М. Колягин, М. В. Ткачева, Н. Е. Федорова, М. И. Шабунин]; под ред. А. Б. Жижченко. - 3-е изд. - М.: Просвещение, 2010.- 368 с. : ил. - ISBN 978-5-09-022771-1.
  • Гусев В. А., Мордкович А. Г. Математика (пособие для поступающих в техникумы): Учеб. пособие.- М.; Высш. шк., 1984.-351 с., ил.

19. Возьмем формулу

мы ее читали так: «разность числе a и b». Мы можем в этой формуле число a заменить нулем; тогда она обратится в

0 – b или просто в –b.

Из нуля вычесть b значит, согласно тому, что мы знаем о вычитании относительных чисел, к нулю приписать число b, взятое с обратным знаком. Поэтому выражение –b должно понимать, как число, обратное по знаку числу b. Если, напр., b = +5, то –b = –5; если b = –4, то –b = +4 и т. п. Если мы напишем выражение +a, то его надо понимать, как число, равное числу a. Если a = +5, то +a = +5; если a = –4, то +a = 4 и т. п.

Поэтому формулу

мы можем понимать, без различия результата, или в смысле

или в смысле

Таким образом мы всегда можем заменять вычитание сложением и всякую разность понимать, как сумму двух чисел:
a – b есть сумма чисел a и (–b)
x – y есть сумма чисел x и (–y)
–a – b есть сумма чисел (–a) и (–b) и т. п.

Те формулы, где, с точки зрения арифметики, имеют место несколько сложений и вычитаний, напр.,

a – b + c + d – e – f,

мы можем теперь, с точки зрения алгебры, понимать только, как сумму, а именно:

a – b + c + d – e – f = (+a) + (–b) + (+c) + (+d) + (–e) + (–f).

Поэтому принято подобные выражения называть именем «алгебраическая сумма».

20. Возьмем какую-нибудь алгебраическую сумму

a – b – c или –3bc² + 2ab – 4a²b и т. п.

Принято называть эти выражения именем многочлен , причем это слово заменяет собою слово «сумма» или название «алгебраическая сумма». Мы знаем что

a – b – c = (+a) + (–b) + (–c)
–abc – 3bc² + 2ab – 4a²b = (–abc) + (–3bc²) + (+2ab) + (–4a²b) и т. п.

Отдельно каждое слагаемое называют именем член многочлена.

Первый многочлен,

состоит из трех членов: (+a), (–b) и (+c).

Второй многочлен,

–abc – 3bc² + 2ab – 4a²b,

состоит из четырех членов: (–abc), (–3bc²), (+2ab) и (–4a²b).

Слагаемые суммы можно переставлять в любом порядке:

–abc – 3bc² + 2ab – 4a²b = (–abc) + (–3bc²) + (+2ab) + (–4a²b) =
= (+2ab) + (–3bc²) + (–4a²b) + (–abc) = 2ab – 3bc² – 4a²b – abc.

Это свойство суммы теперь можно выразить иначе: члены многочлена можно переставлять в любом порядке. Это и сделано выше для многочлена –abc – 3bc² + 2ab – 4a²b, притом так, что впереди теперь оказался член (+2ab). Это позволило несколько упростить выражение: впереди знак + можно не писать. Конечно, надо подобные перестановки делать сразу, не заключая предварительно (как выше) каждое слагаемое в скобки.

Еще пример:

1 – 3a + 2a² – a³ + 3a 4 = 3a 4 – a³ + 2a² – 3a + 1.

Первый член этого многочлена был первоначально (+1) – знак + подразумевался перед единицею; когда мы переносим этот член на другое, кроме первого, место (выше мы перенесли его на последнее место), то уже этот знак + пропускать нельзя.

Мы можем заметить, что в предыдущем примере мы перестановкою членов многочлена достигли некоторого порядка: на первом месте стоит член с буквою a в 4-ой степени, на следующем – член с буквою a в 3-ей степени, потом идет член с буквою a во 2-ой степени, потом – a в 1-ой степени и, наконец, член, где буквы a вовсе нет.

Подобное расположение членов многочлена выражают словами «многочлен расположен по нисходящим степеням буквы a».

Вот еще примеры подобного расположения:

3x 5 – 2ax 3 + b (по нисходящим степеням буквы x)
a 4 – a 3 b + a 2 b 2 – ab 3 + b 4 (по нисходящим степеням буквы a)
3ab 5 – 4a 3 b 3 + 5a 4 b 2 – 2a 6 (по нисходящим степеням буквы b)
4x 4 – 3x 3 + 2x 3 (по нисходящим степеням буквы x).

Употребляют часто и обратное «по восходящим степеням» расположение, при котором степень избранной буквы постепенно повышается, причем в 1-м члене или вовсе этой буквы нет, или она имеет здесь наименьшую степень сравнительно с другими членами. О втором из предыдущих примеров мы могли бы сказать, что здесь многочлен расположен по восходящим степеням буквы b. Вот примеры:
3 – 2a + 3a 2 – 4a 3 (по восходящим степеням буквы a );
–x + x 2 – 3x 3 – 4x 4 (по восходящим степеням буквы х );
ax 2 – bx 3 + cx 5 – dx 6 (по восходящим степеням буквы x );
a 3 – 2ab + b 2 (по восходящим степеням буквы b или по нисходящим степеням буквы a);
3x 5 – 4yx 4 – 5y 3 x 2 – 6y 4 x (по нисходящим степеням буквы x или по восходящим степеням буквы y ).

21. Многочлен о двух членах называется двучленом (напр., 3a + 2b), о трех членах – трехчленом (напр., 2a² – 3ab + 4b²) и т. д. Возможно говорить о сумму из одного слагаемого (другое слагаемое равно нулю), или о многочлене об одном члене. Тогда уже, конечно, название «многочлен» неуместно и употребляется название «одночлен». Каждый член любого многочлена, взятый в отдельности, является одночленом. Вот примеры простейших одночленов:

2; –3a; a²; 4x³; –5x4; ab; ab²; –3abc; и т. д.

Почти все одночлены из выше написанных являются произведениями двух или более множителей, причем у большинства из них имеются и числовой множитель и буквенные. Напр., в одночлене –3abc имеется числовой множитель –3 и буквенные множители a, b и c; в одночлене 4x³ имеется числовой множитель +4 (знак + подразумевается) и буквенный множитель x³ и т. д. Если бы мы написали одночлен с несколькими числовыми множителями (а также и с буквенными), вроде следующего

,

то удобнее, переставив множителей так, чтобы числовые множители оказались рядом, т. е.

,

эти числовые множители перемножить – получим

–4a²bc² (точки, знаки умножения пропускаем).

Принято также, в громадном большинстве случаев, числовой множитель писать впереди. Пишут:

4a, а не a 4
–3a²b, а не a²(–3)b

Числовой множитель одночлена называется коэффициентом.

Если в одночлене не написан числовой множитель, например, ab, то можно всегда его подразумевать. В самом деле

a = (+1) ∙ a; ab = (+1)ab;
–a = (–1) ∙ a; a³ = (–1) ∙ a³ и т. п.

Итак, у одночленов a², ab, ab² подразумевается, у каждого, коэффициент 1 (точнее: +1). Если напишем одночлены –ab, –a², –ab² и т. п., то у них должно подразумевать коэффициент –1.

22. Более сложные примеры многочленов и одночленов.

(a + b)² + 3(a – b)² … эта формула выражает сумму двух слагаемых: первым является квадрат суммы чисел a и b, а вторым – произведение числа 3 на квадрат разности тех же чисел. Поэтому эту формулу должно признать двучленом: первый член есть (a + b)² и второй 3(a – b)². Если взять выражение (a + b)² отдельно, то в силу предыдущего, его надо считать одночленом, причем его коэффициент = +1.

a(b – 1) – b(a – 1) – (a – 1)(b – 1) … должно признать за трехчлен (сумма трех слагаемых): первый член есть a(b – 1) и его коэффициент = +1, второй член –b(a – 1), его коэффициент = –1, третий член –(a – 1)(b – 1), его коэффициент = – 1.

Иногда искусственно уменьшают число членов многочлена. Так трехчлен

можно, например, рассматривать за двухчлен, причем a + b, например, считают за один член (за одно слагаемое). Чтобы это яснее отметить, пользуются скобками:

Тогда у члена (a + b) подразумевается коэффициент +1

[в самом деле (a + b) = (+1)(a + b)].

Понятия "многочлен" и "разложение многочлена на множители" по алгебре встречаются очень часто, ведь их необходимо знать, чтобы с легкостью производить вычисления c большими многозначными числами. В этой статье будет описано несколько способов разложения. Все они достаточно просты в применении, стоит лишь правильно подобрать нужный в каждом конкретном случае.

Понятие многочлена

Многочлен является суммой одночленов, то есть выражений, содержащих только операцию умножения.

Например, 2 * x * y - это одночлен, а вот 2 * x * y + 25 - многочлен, который состоит из 2 одночленов: 2 * x * y и 25. Такие многочлены называет двучленами.

Иногда для удобства решения примеров с многозначными значениями выражение необходимо преобразовать, например, разложить на некоторое количество множителей, то есть чисел или выражений, между которыми производится действие умножения. Есть ряд способов разложения многочлена на множители. Стоит рассмотреть их начиная с самого примитивного, который применяют еще в начальных классах.

Группировка (запись в общем виде)

Формула разложения многочлена на множители способом группировки в общем виде выглядит таким образом:

ac + bd + bc + ad = (ac + bc) + (ad + bd)

Необходимо сгруппировать одночлены так, чтобы в каждой группе появился общий множитель. В первой скобке это множитель с, а во второй - d. Это нужно сделать для того, чтобы затем вынести его за скобку, тем самым упростив вычисления.

Алгоритм разложения на конкретном примере

Простейший пример разложения многочлена на множители способом группировки приведен ниже:

10ас + 14bc - 25a - 35b = (10ас - 25а) + (14bc - 35b)

В первую скобку нужно взять слагаемые с множителем а, который и будет общим, а во вторую - со множителем b. Обратите внимание на знаки + и - в готовом выражении. Мы ставим перед одночленом тот знак, который был в начальном выражении. То есть нужно работать не с выражением 25а, а с выражением -25. Знак минус как бы «приклеить» к стоящему за ним выражению и всегда учитывать его при вычислениях.

На следующем шаге нужно вынести множитель, который является общим, за скобку. Именно для этого и делается группировка. Вынести за скобку - значит выписать перед скобкой (опуская знак умножения) все те множители, которые с точностью повторяются во всех слагаемых, которые находятся в скобке. Если в скобке не 2, а 3 слагаемых и больше, общий множитель должен содержаться в каждом из них, иначе его нельзя вынести за скобку.

В нашем случае - только по 2 слагаемых в скобках. Общий множитель сразу виден. В первой скобке - это а, во второй - b. Здесь нужно обратить внимание на цифровые коэффициенты. В первой скобке оба коэффициента (10 и 25) кратны 5. Это значит, что можно вынести за скобку не только а, но и 5а. Перед скобкой выписать 5а, а затем каждое из слагаемых в скобках поделить на общий множитель, который был вынесен, и также записать частное в скобках, не забывая о знаках + и - Со второй скобкой поступить также, вынести 7b, так как и 14 и 35 кратно 7.

10ас + 14bc - 25a - 35b = (10ас - 25а) + (14bc - 35b) = 5а(2c - 5) + 7b(2c - 5).

Получилось 2 слагаемых: 5а(2c - 5) и 7b(2c - 5). Каждое из них содержит общий множитель (все выражение в скобках здесь совпадает, значит, является общим множителем): 2с - 5. Его тоже нужно вынести за скобку, то есть во второй скобке остаются слагаемые 5а и 7b:

5а(2c - 5) + 7b(2c - 5) = (2c - 5)*(5а + 7b).

Итак, полное выражение:

10ас + 14bc - 25a - 35b = (10ас - 25а) + (14bc - 35b) = 5а(2c - 5) + 7b(2c - 5) = (2c - 5)*(5а + 7b).

Таким образом, многочлен 10ас + 14bc - 25a - 35b раскладываается на 2 множителя: (2c - 5) и (5а + 7b). Знак умножения между ними при записи можно опускать

Иногда встречаются выражения такого типа: 5а 2 + 50а 3 , здесь можно вынести за скобку не только а или 5а, а даже 5а 2 . Всегда нужно стараться вынести максимально большой общий множитель за скобку. В нашем случае, если разделить каждое слагаемое на общий множитель, то получается:

5а 2 / 5а 2 = 1; 50а 3 / 5а 2 = 10а (при вычислении частного нескольких степеней с равными основаниями основание сохраняется, а показатель степени вычитается). Таким образом, в скобке остается единица (ни в коем случае не забывайте писать единицу, если выносите за скобку целиком одно из слагаемых) и частное от деления: 10а. Получается, что:

5а 2 + 50а 3 = 5а 2 (1 + 10а)

Формулы квадратов

Для удобства вычислений были выведены несколько формул. Они называются формулами сокращенного умножения и используются довольно часто. Эти формулы помогают разложить на множители многочлены, содержащие степени. Это еще один действенный способ разложения на множители. Итак, вот они:

  • a 2 + 2ab + b 2 = (a + b) 2 - формула, получившая название "квадрат суммы", так как в результате разложения в квадрат берется сумма чисел, заключенная в скобки, то есть значение этой суммы умножается само на себя 2 раза, а значит, является множителем.
  • a 2 + 2ab - b 2 = (a - b) 2 - формула квадрата разности, она аналогична предыдущей. В результате получается разность, заключенная в скобки, содержащаяся в квадратной степени.
  • a 2 - b 2 = (a + b)(а - b) - это формула разности квадратов, так как изначально многочлен состоит из 2 квадратов чисел или выражений, между которыми производится вычитание. Пожалуй, из трех названных она используется чаще всего.

Примеры на вычисления по формулам квадратов

Вычисления по ним производятся достаточно просто. Например:

  1. 25x 2 + 20xy + 4y 2 - используем формулу "квадрат суммы".
  2. 25x 2 является квадратом выражения 5х. 20ху - удвоенное произведение 2*(5х*2у), а 4y 2 - это квадрат 2у.
  3. Таким образом, 25x 2 + 20xy + 4y 2 = (5x + 2у) 2 = (5x + 2у)(5x + 2у). Данный многочлен раскладывается на 2 множителя (множители одинаковые, поэтому записывается в виде выражения с квадратной степенью).

Действия по формуле квадрата разности производятся аналогично этим. Остается формула разность квадратов. Примеры на эту формулу очень легко определить и найти среди других выражений. Например:

  • 25а 2 - 400 = (5а - 20)(5а + 20). Так как 25а 2 = (5а) 2 , а 400 = 20 2
  • 36х 2 - 25у 2 = (6х - 5у) (6х + 5у). Так как 36х 2 = (6х) 2 , а 25у 2 = (5у 2)
  • с 2 - 169b 2 = (с - 13b)(c + 13b). Так как 169b 2 = (13b) 2

Важно, чтобы каждое из слагаемых являлось квадратом какого-либо выражения. Тогда этот многочлен подлежит разложению на множители по формуле разности квадратов. Для этого не обязательно, чтобы над числом стояла именно вторая степень. Встречаются многочлены, содежащие большие степени, но все равно подходящие к этим формулам.

a 8 +10a 4 +25 = (a 4) 2 + 2*a 4 *5 + 5 2 = (a 4 +5) 2

В данном примере а 8 можно представить как (a 4) 2 , то есть квадрат некого выражения. 25 - это 5 2 , а 10а 4 - это удвоенное произведениеслагаемых2*a 4 *5. То есть данное выражение, несмотря на наличие степеней с большими показателями, можно разложить на 2 множителя, чтобы в последствии работать с ними.

Формулы кубов

Такие же формулы существуют для разложения на множители многочленов, содержащих кубы. Они немного посложнее тех, что с квадратами:

  • a 3 + b 3 = (а + b)(a 2 - ab + b 2) - эту формулу называют суммой кубов, так как в начальном виде многочлен представляет собой сумму двух выражений или чисел, заключенных в куб.
  • a 3 - b 3 = (а - b)(a 2 + ab + b 2) - формула, идентичная предыдущей, обозначена как разность кубов.
  • a 3 + 3a 2 b + 3ab 2 + b 3 = (a + b) 3 - куб суммы, в результате вычислений получается сумма чисел или выражений, заключенная в скобки и умноженная сама на себя 3 раза, то есть находящаяся в кубе
  • a 3 - 3a 2 b + 3ab 2 - b 3 = (a - b) 3 - формула, составленная по аналогии предыдущей с изменением лишь некоторых знаков математических операций (плюс и минус), имеет название "куб разности".

Последние две формулы практически не испольуются с целью разложения многочлена на множители, так как они сложны, и достаточно редко встречаются многочлены, полностью соответствующие именно такому строению, чтобы их можно было разложить по этим формулам. Но их все равно нужно знать, так как они потребуются при действиях в обратном направлении - при раскрытии скобок.

Примеры на формулы кубов

Рассмотрим пример: 64a 3 − 8b 3 = (4a) 3 − (2b) 3 = (4a − 2b)((4a) 2 + 4a*2b + (2b) 2) = (4a−2b)(16a 2 + 8ab + 4b 2).

Здесь взяты достаточно простые числа, поэтому сразу можно увидеть, что 64а 3 - это (4а) 3 , а 8b 3 - это (2b) 3 . Таким образом, этот многочлен раскладывается по формуле разность кубов на 2 множителя. Действия по формуле суммы кубов производятся по аналогии.

Важно понимать, что далеко не все многочлены подлежат разложению хотя бы одним из способов. Но есть такие выражения, которые содержат большие степени, чем квадрат или куб, но их также можно разложить по формуам сокращенного умножения. Например: x 12 + 125y 3 =(x 4) 3 +(5y) 3 =(x 4 +5y)*((x 4) 2 − x 4 *5y+(5y) 2)=(x 4 + 5y)(x 8 − 5x 4 y + 25y 2).

В этом примере содержится аж 12 степень. Но даже его возможно разложить на множители по формуле суммы кубов. Для этого нужно представить х 12 как (x 4) 3 , то есть как куб какого-либо выражения. Теперь в формулу вместо а нужно подставлять именно его. Ну а выражение 125у 3 - это куб 5у. Далее следует составить произведение по формуле и произвести вычисления.

На первых порах или в случае возникших сомнений, вы всегда можете произвести проверку обратным умножением. Вам нужно лишь раскрыть скобки в получившемся выражении и выполнить действия с подобными слагаемыми. Этот метод относится ко всем перечисленным способам сокращения: как к работе с общим множителем и группировке, так и к действиям по формулам кубов и квадратных степеней.

После изучения одночленов переходим к многочленам. Данная статья расскажет о всех необходимых сведениях, необходимых для выполнения действий над ними. Мы определим многочлен с сопутствующими определениями члена многочлена, то есть свободный и подобный, рассмотрим многочлен стандартного вида, введем степень и научимся ее находить, поработаем с его коэффициентами.

Yandex.RTB R-A-339285-1

Многочлен и его члены – определения и примеры

Определение многочлена было надо еще в 7 классе после изучения одночленов. Рассмотрим его полное определение.

Определение 1

Многочленом считается сумма одночленов, причем сам одночлен – это частный случай многочлена.

Из определения следует, что примеры многочленов могут быть различными: 5 , 0 , − 1 , x , 5 · a · b 3 , x 2 · 0 , 6 · x · (− 2) · y 12 , - 2 13 · x · y 2 · 3 2 3 · x · x 3 · y · z и так далее. Из определения имеем, что 1 + x , a 2 + b 2 и выражение x 2 - 2 · x · y + 2 5 · x 2 + y 2 + 5 , 2 · y · x являются многочленами.

Рассмотрим еще определения.

Определение 2

Членами многочлена называются его составляющие одночлены.

Рассмотрим такой пример, где имеем многочлен 3 · x 4 − 2 · x · y + 3 − y 3 , состоящий из 4 членов: 3 · x 4 , − 2 · x · y , 3 и − y 3 . Такой одночлен можно считать многочленом, который состоит из одного члена.

Определение 3

Многочлены, которые имеют в своем составе 2 , 3 трехчлена имеют соответственное название – двучлен и трехчлен .

Отсюда следует, что выражение вида x + y – является двучленом, а выражение 2 · x 3 · q − q · x · x + 7 · b – трехчленом.

По школьной программе работали с линейным двучленом вида a · x + b , где а и b являются некоторыми числами, а х – переменной. Рассмотрим примеры линейных двучленов вида: x + 1 , x · 7 , 2 − 4 с примерами квадратных трехчленов x 2 + 3 · x − 5 и 2 5 · x 2 - 3 x + 11 .

Для преобразования и решения необходимо находить и приводить подобные слагаемые. Например, многочлен вида 1 + 5 · x − 3 + y + 2 · x имеет подобные слагаемые 1 и - 3 , 5 х и 2 х. Их подразделяют в особую группу под названием подобных членов многочлена.

Определение 4

Подобные члены многочлена – это подобные слагаемые, находящиеся в многочлене.

В примере, приведенном выше, имеем, что 1 и - 3 , 5 х и 2 х являются подобными членами многочлена или подобными слагаемыми. Для того, что бы упростить выражение, применяют нахождение и приведение подобных слагаемых.

Многочлен стандартного вида

У всех одночленов и многочленов имеются свои определенные названия.

Определение 5

Многочленом стандартного вида называют многочлен, у которого каждый входящий в него член имеет одночлен стандартного вида и не содержит подобных членов.

Из определения видно, что возможно приведение многочленов стандартного вида, например, 3 · x 2 − x · y + 1 и __formula__, причем запись в стандартном виде. Выражения 5 + 3 · x 2 − x 2 + 2 · x · z и 5 + 3 · x 2 − x 2 + 2 · x · z многочленами стандартного вида не является, так как первый из них имеет подобные слагаемые в виде 3 · x 2 и − x 2 , а второй содержит одночлен вида x · y 3 · x · z 2 , отличающийся от стандартного многочлена.

Если того требуют обстоятельства, иногда многочлен приводится к стандартному виду. Многочленом стандартного вида считается и понятие свободного члена многочлена.

Определение 6

Свободным членом многочлена является многочлен стандартного вида, не имеющий буквенной части.

Иначе говоря, когда запись многочлена в стандартном виде имеет число, его называют свободным членом. Тогда число 5 является свободным членом многочлена x 2 · z + 5 , а многочлен 7 · a + 4 · a · b + b 3 свободного члена не имеет.

Степень многочлена – как ее найти?

Определение самой степени многочлена базируется на определении многочлена стандартного вида и на степенях одночленов, которые являются его составляющими.

Определение 7

Степенью многочлена стандартного вида называют наибольшую из степеней, входящих в его запись.

Рассмотрим на примере. Степень многочлена 5 · x 3 − 4 равняется 3 , потому как одночлены, входящие в его состав, имеют степени 3 и 0 , а большее из них 3 соответственно. Определение степени из многочлена 4 · x 2 · y 3 − 5 · x 4 · y + 6 · x равняется наибольшему из чисел, то есть 2 + 3 = 5 , 4 + 1 = 5 и 1 , значит 5 .

Следует выяснить, каким образом находится сама степень.

Определение 8

Степень многочлена произвольного числа - это степень соответствующего ему многочлена в стандартном виде.

Когда многочлен записан не в стандартном виде, но нужно найти его степень, необходимо приведение к стандартному, после чего находить искомую степень.

Пример 1

Найти степень многочлена 3 · a 12 − 2 · a · b · c · a · c · b + y 2 · z 2 − 2 · a 12 − a 12 .

Решение

Для начала представим многочлен в стандартном виде. Получим выражение вида:

3 · a 12 − 2 · a · b · c · a · c · b + y 2 · z 2 − 2 · a 12 − a 12 = = (3 · a 12 − 2 · a 12 − a 12) − 2 · (a · a) · (b · b) · (c · c) + y 2 · z 2 = = − 2 · a 2 · b 2 · c 2 + y 2 · z 2

При получении многочлена стандартного вида получаем, что отчетливо выделяются два из них − 2 · a 2 · b 2 · c 2 и y 2 · z 2 . Для нахождения степеней посчитаем и получим, что 2 + 2 + 2 = 6 и 2 + 2 = 4 . Видно, что наибольшая из них равняется 6 . Из определения следует, что именно 6 является степенью многочлена − 2 · a 2 · b 2 · c 2 + y 2 · z 2 , следовательно и исходного значения.

Ответ : 6 .

Коэффициенты членов многочлена

Определение 9

Когда все члены многочлена являются одночленами стандартного вида, то в таком случаем они имеют название коэффициентов членов многочлена. Иначе говоря, их можно называть коэффициентами многочлена.

При рассмотрении примера видно, что многочлен вида 2 · x − 0 , 5 · x · y + 3 · x + 7 имеет в своем составе 4 многочлена: 2 · x , − 0 , 5 · x · y , 3 · x и 7 с соответствующими их коэффициентами 2 , − 0 , 5 , 3 и 7 . Значит, 2 , − 0 , 5 , 3 и 7 считаются коэффициентами членов заданного многочлена вида 2 · x − 0 , 5 · x · y + 3 · x + 7 . При преобразовании важно обращать внимание на коэффициенты, стоящие перед переменными.

Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter