Болезни Военный билет Призыв

Общая характеристика химические свойства галогенов. Галогены — Гипермаркет знаний. Галогеноводороды и галогеноводородные кислоты

Химия Элементов

Неметаллы VIIА-подгруппы

Элементы VIIА-подгруппы являются типичными неметаллами с высокой

электротрицательностью, они имеют групповое название – «галогены».

Основные вопросы, рассматриваемые в лекции

Общая характеристика неметаллов VIIА-подгруппы. Электронное строение, важнейшие характеристики атомов. Наиболее характерные сте-

пени окисления. Особенности химии галогенов.

Простые вещества.

Природные соединения.

Соединения галогенов

Галогенводородные кислоты и их соли. Соляная и плавиковая ки-

слота, получение и применение.

Галогенидные комплексы.

Бинарные кислородные соединения галогенов. Неустойчивость ок-

Окислительно-восстановительные свойства простых веществ и со-

единений. Реакции диспропорционирования. Диаграммы Латимера.

Исполнитель:

Мероприятие №

Химия элементов VIIA-подгруппы

Общая характеристика

Марганец

Технеций

VIIА-группу образуют р-элементы: фтор F, хлор

Cl, бром Br, иод I и астат At.

Общая формула валентных электронов – ns 2 np 5 .

Все элементы VIIА-группы – типичные неметаллы.

Как видно из распреде-

ления валентных электронов

по орбиталям атомам

не хватает всего одного электрона

для формирования устойчивой восьмиэлектронной обо-

лочки, поэтому у них сильно выражена тенденция к

присоединению электрона.

Все элементы легко образуют простые однозаряд-

ные анионы Г – .

В форме простых анионов элементы VIIА-группы находятся в природной воде и в кристаллах природных солей, например, галита NaCl, сильвина KCl, флюорита

CaF2 .

Общее групповое название элементов VIIА-

группы «галогены» , т. е. «рождающие соли», связано с тем, что большинство их соединений с металлами пред-

ставляет собой типичные соли (CaF2 , NaCl, MgBr2 , KI), ко-

торые могут быть получены при непосредственном взаи-

модействии металла с галогеном. Свободные галогены получают из природных солей, поэтому название «галогены» также переводят, как «рожденные из солей».

Исполнитель:

Мероприятие №

Минимальная степень окисления (–1) является наиболее устойчивой

у всех галогенов.

Некоторые характеристики атомов элементов VIIА-группы приведены в

Важнейшие характеристики атомов элементов VIIА-группы

Относитель-

Сродство

ная электро-

отрицатель-

ионизации,

ность (по

Поллингу)

увеличение числа

электронных слоев;

увеличение размера

уменьшение элек-

троотрицательности

Галогены отличаются высоким сродством к электрону (максимальным у

Cl) и очень большой энергией ионизации (максимальной у F) и максимально

возможной в каждом из периодов электроотрицательностью. Фтор – самый

электроотрицательный из всех химических элементов.

Наличие одного неспаренного электрона в атомах галогенов обуславли-

вает объединение атомов в простых веществах в двухатомные молекулы Г2 .

Для простых веществ галогенов наиболее характерны окислитель-

ные свойства , наиболее сильные у F2 и ослабевающие при переходе к I2 .

Галогены характеризуются наибольшей реакционной способностью из всех неметаллических элементов. Фтор даже среди галогенов выделя-

ется чрезвычайно высокой активностью.

Элемент второго периода – фтор наиболее сильно отличается от дру-

гих элементов подгруппы . Это общая закономерность для всех неметаллов.

Исполнитель:

Мероприятие №

Фтор , как самый электроотрицательный элемент, не проявляет поло-

жительных степеней окисления . В любых соединениях, в том числе с ки-

слородом, фтор находится в степени окисления (-1).

Все остальные галогены проявляют положительные степени окис-

ления вплоть до максимальной +7.

Наиболее характерные степени окисления галогенов:

F : -1, 0;

Cl, Br, I: -1, 0, +1, +3, +5, +7.

У Cl известны оксиды, в которых он находится в степенях окисления: +4 и +6.

Наиболее важными соединениями галогенов, в положительных сте-

пенях окисления, являются кислородсодержащие кислоты и их соли.

Все соединения галогенов в положительных степенях окисления яв-

ляются сильными окислителями.

жуточную степень окисления. Диспропорционированию способствует щелочная среда.

Практическое применение простых веществ и кислородных соедине-

ний галогенов связано главным образом с их окислительным действием.

Самое широкое практическое применение находят простые вещества Cl2

и F2 . Наибольшее количество хлора и фтора расходуется в промышленном ор-

ганическом синтезе: в производстве пластмасс, хладоагентов, растворителей,

ядохимикатов, лекарств. Значительное количество хлора и йода используется для получения металлов и для их рафинирования. Хлор используется также

для отбеливания целлюлозы, для обеззараживания питьевой воды и в произ-

водстве хлорной извести и соляной кислоты. Соли оксокислот используются в производстве взрывчатых веществ.

Исполнитель:

Мероприятие №

Широкое практическое применение находят кислоты – соляная и плави-

Фтор и хлор принадлежат к двадцати самым распространенным элемен-

там, значительно меньше в природе брома и иода. Все галогены находятся в природе в степени окисления (–1). Лишь йод встречается в виде соли KIO3 ,

которая как примесь входит в чилийскую селитру (KNO3 ).

Астат – искусственно полученный радиоактивный элемент (его нет в природе). Неустойчивость At отражается в названии, которое происходит от греч. «астатос» – «неустойчивый». Астат является удобным –излучателем для радиотерапии раковых опухолей.

Простые вещества

Простые вещества галогенов образованы двухатомными молекулами Г2 .

В простых веществах при переходе от F2 к I2 с увеличением числа элек-

тронных слоев и возрастанием поляризуемости атомов происходит усиление

межмолекулярного взаимодействия, приводящее к изменению агрегатного со-

стояния при стандартных условиях.

Фтор (при обычных условиях) – желтый газ, при –181о С переходит в

жидкое состояние.

Хлор – желто-зеленый газ, переходит в жидкость при –34о С. С цветом га-

за связано название Cl, оно происходит от греческого «хлорос» – «желто–

зеленый». Резкое повышение температуры кипения у Cl2 по сравнению с F2 ,

указывает на усиление межмолекулярного взаимодействия.

Бром – темно-красная, очень летучая жидкость, кипит при 58,8о С. На-

звание элемента связано с резким неприятным запахом газа и образовано от

«бромос» – «зловонный».

Йод – темно-фиолетовые кристаллы, со слабым «металлическим» бле-

ском, которые при нагревании легко возгоняется, образуя фиолетовые пары;

при быстром охлаждении

паров до 114о С

образуется жидкость. Температура

Исполнитель:

Мероприятие №

кипения йода равна 183о С. От цвета паров йода происходит его название –

«иодос» – «фиолетовый».

Все простые вещества имеют резкий запах и являются ядовитыми.

Вдыхание их паров вызывает раздражение слизистых оболочек и дыхательных органов, а при больших концентрациях – удушье. Во время первой мировой войны хлор применяли в качестве отравляющего вещества.

Газообразный фтор и жидкий бром вызывают ожоги кожи. Работая с га-

логенами, следует соблюдать меры предосторожности.

Поскольку простые вещества галогенов образованы неполярными моле-

кулами, они хорошо растворяются в неполярных органических растворителях:

спирте, бензоле, четыреххлористом углероде и т. п. В воде хлор, бром и иод ограниченно растворимы, их водные растворы называют хлорной, бромной и иодной водой. Лучше других растворяется Br2 , концентрация брома в насы-

щенном растворе достигает 0,2 моль/л, а хлора – 0,1 моль/л.

Фтор разлагает воду:

2F2 + 2H2 O = O2 + 4HF

Галогены проявляют высокую окислительную активность и перехо-

дят в галогенидные анионы.

Г2 + 2e–  2Г–

Особенно высокой окислительной активностью обладает фтор. Фтор окисляет благородные металлы (Au, Pt).

Pt + 3F2 = PtF6

Взаимодействует даже с некоторыми инертными газами (криптоном,

ксеноном и радоном), например,

Xe + 2F2 = XeF4

В атмосфере F2 горят многие очень устойчивые соединения, например,

вода, кварц (SiO2 ).

SiO2 + 2F2 = SiF4 + O2

Исполнитель:

Мероприятие №

В реакциях с фтором даже такие сильные окислители, как азотная и сер-

ная кислота, выступают в роли восстановителей, при этом фтор окисляет вхо-

дящий в их состав О(–2).

2HNO3 + 4F2 = 2NF3 + 2HF + 3O2 H2 SO4 + 4F2 = SF6 + 2HF + 2O2

Высокая реакционная способность F2 создает трудности с выбором кон-

струкционных материалов для работы с ним. Обычно для этих целей использу-

ют никель и медь, которые, окисляясь, образуют на своей поверхности плотные защитные пленки фторидов. Название F связано с его агрессивным действи-

ем, оно происходит от греч. «фторос» – «разрушающий».

В ряду F2 , Cl2 , Br2 , I2 окислительная способность ослабевает из-за уве-

личения размера атомов и уменьшения электроотрицательности.

В водных растворах окислительные и восстановительные свойства ве-

ществ обычно характеризуют с помощью электродных потенциалов. В таблице приведены стандартные электродные потенциалы (Ео , В) для полуреакций вос-

становления галогенов. Для сравнения также приведено значение Ео для ки-

слорода – самого распространенного окислителя.

Стандартные электродные потенциалы для простых веществ галогенов

Ео , В, для реакции

O2 + 4e– + 4H+  2H2 O

Ео , В

для электродной

2Г– +2е – = Г2

Уменьшение окислительной активности

Как видно из таблицы, F2 – окислитель значительно более сильный,

чем О2 , поэтому F2 в водных растворах не существует, он окисляет воду,

восстанавливаясь до F– . Судя по значению Eо окислительная способность Cl2

Исполнитель:

Мероприятие №

также выше, чем у О2 . Действительно при длительном хранении хлорной воды происходит ее разложение с выделением кислорода и с образованием HCl. Но реакция идет медленно (молекула Cl2 заметно прочнее, чем молекула F2 и

энергия активации для реакций с хлором выше), быстрее происходит диспро-

порционирование:

Cl2 + H2 O  HCl + HOCl

В воде оно не доходит до конца (К = 3,9 . 10–4 ), поэтому Cl2 существует в водных растворах. Еще большей устойчивостью в воде характеризуются Br2 и I2 .

Диспропорционирование это очень характерная окислительно-

восстановительная реакция для галогенов. Диспропорционирование уси-

ливается в щелочной среде.

Диспропорционирование Cl2 в щелочи приводит к образованию анионов

Cl– и ClO– . Константа диспропорционирования равна 7,5 . 1015 .

Cl2 + 2NaOH = NaCl + NaClO + H2 O

При диспропорционировании йода в щелочи образуются I– и IO3 – . Ана-

логично йоду диспропорционирует Br2 . Изменение продукта диспропорцио-

нирования обусловлено тем, что анионы ГО– и ГО2 – у Br и I неустойчивы.

Реакция диспропорционирования хлора используется в промышленно-

сти для получения сильного и быстро действующего окислителя гипохлорита,

белильной извести, бертолетовой соли.

3Cl2 + 6 KOH = 5KCl + KClO3 + 3H2 O

Исполнитель:

Мероприятие №

Взаимодействие галогенов с металлами

Галогены энергично взаимодействуют со многими металлами, например:

Mg + Cl2 = MgCl2 Ti + 2I2  TiI4

ГалогенидыNa + , в которых металл имеет низкую степень окисления (+1, +2),

– это солеобразные соединения с преимущественно ионной связью. Как прави-

ло, ионные галогениды – это твердые вещества с высокой температурой плав-

Галогениды металлов, в которых металл имеет высокую степень окисле-

ния, – это соединения с преимущественно ковалентной связью.

Многие из них при обычных условиях являются газами, жидкостями или легкоплавкими твердыми веществами. Например, WF6 – газ, MoF6 – жидкость,

TiCl4 – жидкость.

Взаимодействие галогенов с неметаллами

Галогены непосредственно взаимодействуют со многими неметаллами:

водородом, фосфором, серой и др. Например:

H2 + Cl2 = 2HCl 2P + 3Br2 = 2PBr3 S + 3F2 = SF6

Связь в галогенидах неметаллов преимущественно ковалентная.

Обычно эти соединения имеют невысокие температуры плавления и кипения.

При переходе от фтора к йоду ковалентный характер галогенидов усиливается.

Ковалентные галогениды типичных неметаллов являются кислотными соединениями; при взаимодействии с водой они гидролизуются с образованием кислот. Например:

PBr3 + 3H2 O = 3HBr + H3 PO3

PI3 + 3H2 O = 3HI + H3 PO3

PCl5 + 4H2 O = 5HCl + H3 PO4

Исполнитель:

Мероприятие №

Две первые реакции используются для получения бромо- и иодоводород-

ной кислоты.

Интергалиды. Галогены, соединяясь друг с другом, образуют интерга-

лиды . В этих соединениях более легкий и более электроотрицательный галоген находится в степени окисления (–1), а более тяжелый – в положительной сте-

пени окисления.

За счет непосредственного взаимодействия галогенов при нагревании получаются: ClF, BrF, BrCl, ICl. Существуют и более сложные интергалиды:

ClF3 , BrF3 , BrF5 , IF5 , IF7 , ICl3 .

Все интергалиды при обычных условиях – жидкие вещества с низкими температурами кипения. Интергалиды имеют высокую окислительную ак-

тивность . Например, в парах ClF3 горят такие химически устойчивые вещества, как SiO2 , Al2 O3 , MgO и др.

2Al2 O3 + 4ClF3 = 4 AlF3 + 3O2 + 2Cl2

Фторид ClF 3 – агрессивный фторирующий реагент, действующий быст-

рее F2 . Его применяют в органических синтезах и для получения защитных пленок на поверхности никелевой аппаратуры для работы с фтором.

В воде интергалиды гидролизуются с образованием кислот. Например,

ClF5 + 3H2 O = HClO3 + 5HF

Галогены в природе. Получение простых веществ

В промышленности галогены получают из их природных соединений. Все

процессы получения свободных галогенов основаны на окислении галоге-

нид-ионов.

2Г –  Г2 + 2e–

Значительное количество галогенов находится в природных водах в виде анионов: Cl– , F– , Br – , I– . В морской воде может содержаться до 2,5 % NaCl.

Бром и иод получают из воды нефтяных скважин и морской воды.

Исполнитель:

Мероприятие №

Подгруппу галогенов составляют элементы фтор, хлор, бром и иод.

Электронные конфигурации внешнего валентного слоя галогенов относятся к типу соответственно у фтора, хлора, брома и иода). Такие электронные конфигурации обусловливают типичные окислительные свойства галогенов - способностью присоединять электроны обладают все галогены, хотя при переходе к иоду окислительная способность галогенов ослабляется.

При обычных условиях галогены существуют в виде простых веществ, состоящих из двухатомных молекул типа с ковалентными связями. Физические свойства галогенов существенно различаются: так, при нормальных условиях фтор - газ, который трудно сжижается, хлор - также газ, но сжижается легко, бром - жидкость, иод - твердое вещество.

Химические свойства галогенов.

В отличие от всех других галогенов фтор во всех своих соединениях проявляет только одну степень окисления 1- и не проявляет переменной валентности. Для других галогенов наиболее характерной степенью окисления также является 1-, однако благодаря наличию свободных -орбиталей на внешнем уровне они могут проявлять и другие нечетные степени окисления от до за счет частичного или полного распаривания валентных электронов.

Наибольшей активностью обладает фтор. Большинство металлов даже при комнатной температуре загорается в его атмосфере, выделяя большое количество теплоты, например:

Без нагревания фтор реагирует и со многими неметаллами (водородом - см. выше, ), выделяя при этом также большое количество теплоты:

При нагревании фтор окисляет все другие галогены по схеме:

где , причем в соединениях степени окисления хлора, брома и иода равны .

Наконец, при облучении фтор реагирует даже с инертными газами:

Взаимодействие фтора со сложными веществами также протекает очень энергично. Так, он окисляет воду, при этом реакция носит взрывной характер:

Свободный хлор также очень реакционноспособен, хотя его активность и меньше, чем у фтора. Он непосредственно реагирует со всеми простыми веществами, за исключением кислорода, азота и благородных газов, например:

Для этих реакций, как и для всех других, очень важны условия их протекания. Так, при комнатной температуре хлор с водородом не реагирует; при нагревании эта реакция протекает, но оказывается сильно обратимой, а при мощном облучении протекает необратимо (со взрывом) по цепному механизму.

Хлор вступает в реакции со многими сложными веществами, например замещения и присоединения с углеводородами:

Хлор способен при. нагревании вытеснять бром или иод из их соединений с водородом или металлами:

а также обратимо реагирует с водой:

Хлор, растворяясь в воде и частично реагируя с ней, как это показано выше, образует равновесную смесь веществ, называемую хлорной водой.

Заметим также, что хлор в левой части последнего уравнения имеет степень окисления 0. В результате реакции у одних атомов хлора степень окисления стала 1- (в ), у других (в хлорноватистой кислоте ). Такая реакция - пример реакции самоокисления-самовосстановления, или диспропорционирования.

Напомним, что хлор может таким же образом реагировать (диспропорционировать) с щелочами (см. раздел «Основания» в § 8).

Химическая активность брома меньше, чем фтора и хлора, но все же достаточно велика в связи с тем, что бром обычно используют в жидком состоянии и поэтому его исходные концентрации при прочих равных условиях больше, чем у хлора. Являясь более «мягким» реагентом, бром находит широкое применение в органической химии.

Отметим, что бром, так же, как и хлор, растворяется в воде, и, частично реагируя с ней, образует так называемую «бромную воду», тогда как иод практически в воде не растворим и не способен ее окислять даже при нагревании; по этой причине не существует «йодной воды».

Получение галогенов.

Наиболее распространенным технологическим методом получения фтора и хлора является электролиз расплавов их солей (см. § 7). Бром и иод в промышленности, как правило, получают химическим способом.

В лаборатории хлор получают действием различных окислителей на соляную кислоту, например:

Еще более эффективно окисление проводится перманганатом калия - см. раздел «Кислоты» в § 8.

Галогеноводороды и галогеноводородные кислоты.

Все галогеноводороды при обычных условиях газообразны. Химическая связь, осуществляемая в их молекулах, - ковалентная полярная, причем полярность связи в ряду падает. Прочность связи также уменьшается в этом ряду. Вследствие своей полярности, все галогеноводороды, в отличие от галогенов, хорошо растворимы в воде. Так, при комнатной температуре в 1 объеме воды можно растворить около 400 объемов объемов и около 400 объемов

При растворении галогеноводородов в воде происходит их диссоциация на ионы, и образуются растворы соответствующих галогеноводородных кислот. Причем при растворении и HCI диссоциируют почти полностью, поэтому образующиеся кислоты относятся к числу сильных. В отличие от них, фтороводородная (плавиковая) кислота является слабой. Это объясняется ассоциацией молекул HF вследствие возникновения между ними водородных связей. Таким образом, сила кислот уменьшается от HI к HF.

Поскольку отрицательные ионы галогеноводородных кислот могут проявлять только восстановительные свойства, то при взаимодействии этих кислот с металлами окисление последних может происходить только за счет ионов Поэтому кислоты реагируют только с металлами, стоящими в ряду напряжений левее водорода.

Все галогениды металлов, за исключением солей Ag и Pb, хорошо растворимы в воде. Малая растворимость галогенидов серебра позволяет использовать обменную реакцию типа

как качественную для обнаружения соответствующих ионов. В результате реакции AgCl выпадает в виде осадка белого цвета, AgBr - желтовато-белого, Agl - ярко-желтого цвета.

В отличие от других галогеноводородных кислот, плавиковая кислота взаимодействует с оксидом кремния (IV):

Так как оксид кремния входит в состав стекла, то плавиковая кислота разъедает стекло, и поэтому в лабораториях ее хранят в сосудах из полиэтилена или тефлона.

Все галогены, кроме фтора, могут образовывать соединения, в которых они обладают положительной степенью окисления. Наиболее важными из таких соединений являются кислородсодержащие кислоты галогенов типа и соответствующие им соли и ангидриды.

ОПРЕДЕЛЕНИЕ

Галогены – элементы VIIА группы – фтор (F), хлор (Cl), бром (Br) и йод (I).

Электронная конфигурация внешнего энергетического уровня галогенов ns 2 np 5 . Поскольку, до завершения энергетического уровня галогенам не хватает всего 1-го электрона, в ОВР они чаще всего проявляют свойства окислителей. Степени окисления галогенов: от «-1» до «+7». Единственный элемент группы галогенов – фтор – проявляет только одну степень окисления «-1» и является самым электроотрицательным элементом.

Молекулы галогенов двухатомны: F 2 , Cl 2 , Br 2 , I 2 . С ростом заряда ядра атома химического элемента, т.е. при переходе от фтора к йоду окислительная способность галогенов снижается, что подтверждается способностью вытеснения нижестоящих галогенов вышестоящими из галогеноводородных кислот и их солей:

Br 2 + 2HI = I 2 + 2HBr

Cl 2 + 2KBr = Br 2 + 2KCl

Физические свойства галогенов

При н.у. фтор – газ светло-желтого цвета, обладающий резким запахом. Ядовит. Хлор – газ светло-зеленого цвета, также как и фтор имеет резкий запах. Сильно ядовит. При повышенном давлении и комнатной температуре легко переходит в жидкое состояние. Бром – тяжелая жидкость красно-бурого цвета с характерным неприятным резким запахом. Жидкий бром, а также его пары сильно ядовиты. Бром плохо растворяется в воде и хорощо в неполярных растворителях. Йод – твердое вещество темно-серого цвета с металлическим блеском. Пары йода имеют фиолетовый цвет. Йод легко возгоняется, т.е. переходит в газообразное состояние из твердого, при этом минуя жидкое состояние.

Получение галогенов

Галогены можно получить при электролизе растворов или расплавов галогенидов:

MgCl 2 = Mg + Cl 2 (расплав)

Наиболее часто галогены получают по реакции окисления галогенводородных кислот:

MnO 2 + 4HCl = MnCl 2 + Cl 2 +2H 2 O

K 2 Cr 2 O 7 + 14HCl = 3Cl 2 + 2KCl +2CrCl 3 +7H 2 O

2KMnO 4 +16HCl = 2MnCl 2 +5Cl 2 +8H 2 O +2KCl

Химические свойства галогенов

Наибольшей химической активностью обладает фтор. Большинство химических элементов даже при комнатной температуре взаимодействует с фтором, выделяя большое количество теплоты. Во фторе горит даже вода:

2H 2 O + 2F 2 =4HF + O 2

Свободный хлор менее реакционноспособен, чем фтор. Он непосредственно не реагирует с кислородом, азотом и благородными газами. Со всеми остальными веществами он взаимодействует подобно фтору:

2Fe + Cl 2 = 2FeCl 3

2P + 5Cl 2 = 2PCl 5

При взаимодействии хлора с водой на холоде происходит обратимая реакция:

Cl 2 + H 2 O↔HCl +HClO

Смесь, представляющую собой продукты реакции, называют хлорной водой.

При взаимодействии хлора с щелочами на холоде образуются смеси хлоридов и гипохлоритов:

Cl 2 + Ca(OH) 2 = Ca(Cl)OCl + H 2 O

При растворении хлора в горячем растворе щелочи происходит реакция:

3Cl 2 + 6KOH=5KCl +KClO 3 +3H 2 O

Бром, как и хлор растворяется в воде и, частично реагируя с ней, образует так называемую «бромную воду», тогда как йод в воде практически нерастворим.

Йод существенно отличается по химической активности от остальных галогенов. Он не реагирует с большинством неметаллов, а с металлами медленно реагирует только при нагревании. Взаимодействие йода с водородом происходит только при сильном нагревании, реакция является эндотермической и сильно обратимой:

Н 2 + I 2 = 2HI - 53 кДж.

Примеры решения задач

ПРИМЕР 1

Задание Рассчитайте объем хлора (н. у.), который прореагировал с иодидом калия, если при этом образовался йод массой 508 г
Решение Запишем уравнение реакции:

Cl 2 + 2KI = I 2 + 2KCl

Найдем количество вещества образовавшегося йода:

v(I 2)=m(I 2)/M(I 2)

v(I 2)=508/254=2 моль

По уравнению реакции количество вещества хлора.

Общая характеристика

К галогенам относятся пять основных неметаллических элементов, которые расположены в VII группе таблицы Менделеева. В эту группу входят такие химические элементы, как фтор F, хлор Cl, бром Br, иод I, астат At.

Свое название галогены получили от греческого слова, которое в переводе обозначает образующий соль или «солеобразующий», так как в принципе большая часть соединений, которые содержат галогены и носят названия солей.

Галогены вступают в реакцию практически со всеми простыми веществами, за исключением только нескольких металлов. Они являются довольно таки энергичными окислителями, имеют очень сильный и резкий запах, прекрасно взаимодействуют с водой, а также имеют большую летучесть и высокую электроотрицательность. А вот в природе их можно встретить лишь в качестве соединений.

Физические свойства галогенов

1. Такие простые химические вещества, как галогены, состоят из двух атомов;
2. Если рассматривать галогены в обычных условиях, то следует знать, что фтор и хлор, находятся в газообразном состоянии, тогда как бром является жидким веществом, а йод и астат относятся к твердым веществам.



3. У галогенов температура плавления, кипения и плотность повышаются с увеличением атомной массы. Также при этом и меняется их окраска, она становиться более темной.
4. При каждом увеличении порядкового номера, уменьшается химическая активность, электроотрицательность и более слабыми становятся неметаллические свойства.
5. Галогены обладают способностью образовывать соединения между собой, как например BrCl.
6. Галогены при комнатной температуре могут находиться во всех трех состояниях материи.
7. Так же важно запомнить то, что галогены относятся к довольно таки токсичным химическим веществам.

Химические свойства галогенов

При химической реакции с металлами, галогены действуют, как окислители. Если, к примеру, взять фтор, то даже в обычных условиях он дает реакцию с большинством металлов. А вот алюминий и цинк воспламеняется даже в атмосфере: +2-1:ZnF2.



Получение галогенов

При получении фтора и хлора в масштабах промышленности используют электролиз или растворы солей.

Если вы внимательно рассмотрите рисунок, изображенный внизу, то увидите, как в лабораторных условиях с помощью установки для электролиза можно получить хлор:



На первом рисунке изображена установка для расплава хлорида натрия, а на втором уже для получения раствора хлорида натрия.

Такой процесс электролиза расплава хлорида натрия можно представить в виде даного уравнения:


При помощи такого электролиза, кроме получения хлора еще образуются также водород и гидроксид натрия:


Конечно же, водород получают более простым и дешевым способом, чего не скажешь об гидроксиде натрия. Его, так же, как и хлор получают практически всегда только с помощью электролиза раствора поваренной соли.


Если вы рассмотрите рисунок, изображенный вверху, то увидите, как лабораторным способом можно получить хлор. А получают его с помощью взаимодействия соляной кислоты с оксидом марганца:

В промышленности бром и йод получают с помощью реакции вытеснения этих веществ хлором из бромидов и йодидов.

Применение галогенов

Фтор или правильнее будет назвать фторид меди (CuF2) имеет довольно таки широкое применение. Его используют при изготовлении керамики, эмалей и различных глазурей. Имеющая в каждом доме тефлоновая сковородка и хладагент в холодильниках и кондиционере, также появились благодаря фтору.

Кроме бытовых нужд тефлон также используют в медицинских целях, так как его применяют при производстве имплантатов. Фтор необходим при изготовлении лизн в оптике и в зубных пастах.

Хлор также в нашей жизни встречается буквально на каждом шагу. Самым массовым и распространенным применением хлора, является, конечно же, поваренная соль NaCl. Она так же выступает в роли дезинтоксикационного средства и используется в борьбе с гололедом.

Кроме этого, хлор незаменим в производстве пластика, синтетического каучука и поливинилхлорида, благодаря которым мы получаем одежду, обувь и другие, нужные в нашей повседневной жизни вещи. Его используют при производстве отбеливателей, порошков, красителей, а также другой бытовой химии.

Бром, как правило, необходим, как светочувствительное вещество при печатании фотографий. В медицине он применяется, как успокаивающее средство. Также бром используют при производстве инсектицидов и пестицидов и т.д.

Ну, а всем известный йод, который имеется в аптечке у каждого человека, в первую очередь используется, как антисептик. Кроме своих антисептических свойств, йод присутствует в источниках света, а также является помощником для обнаружения отпечатков пальцев на бумажной поверхности.

Роль галогенов и их соединений для организма человека

Выбирая в магазине зубную пасту, наверное, каждый из вас обращал внимание на то, что на ее этикетке указывается содержание соединений фтора. И это неспроста, так как этот компонент участвует в построении зубной эмали и костей, повышает устойчивость зубов к кариесу. Также он играет важную роль в процессах обмена веществ, участвует в построении скелета костей и предупреждает появление такого опасного заболевания, как остеопороз.

Важная роль в организме человека отведена и хлору, так как он принимает активное участие в сохранении водно-солевого баланса и поддерживание осмотического давления. Хлор участвует в обмене веществ человеческого организма, построении тканей, ну и что тоже немаловажно – в избавление от лишнего веса. Соляная кислота, находящаяся в составе желудочного сока большое значение имеет для пищеварения, так как без нее невозможен процесс переваривания пищи.

Хлор необходим нашему организму и должен ежедневно в необходимых дозах поступать в него. Но если, же его норму поступления в организм превысить или резко снизить, то мы сразу же это ощутим в виде отеков, головных болей и других неприятных симптомов, которые способны не только нарушить обмен веществ, но и вызвать заболевания кишечника.

У человека в мозге, почках, крови и печени присутствует небольшое количество брома. В медицинских целях бром применяют, как успокоительное средство. Но при его передозировке могут быть неблагоприятные последствия, которые могут привести к угнетенному состоянию нервной системы, а в некоторых случаях и к психическим расстройствам. А недостаток брома в организме ведет к дисбалансу между процессами возбуждения и торможения.

Без йода наша щитовидная железа не может обходиться, так как он способен убивать микробы, поступающие в наше тело. При дефиците йода в организме человека может начаться заболевание щитовидной железы, под названием зоб. При этом заболевании появляются довольно неприятные симптомы. Человек, у которого появился зоб, чувствует слабость, сонливость, повышение температуры, раздражительность и упадок сил.

Из всего этого можно сделать вывод, что без галогенов человек мог бы не только лишиться многих необходимых в повседневной жизни вещей, но без них и не смог бы нормально функционировать наш организм.

от­но­сят фтор, хлор, бром, йод и астат. Они об­ра­зу­ют VIIА-груп­пу Пе­ри­о­ди­че­ской си­сте­мы хи­ми­че­ских эле­мен­тов.

Хи­ми­че­ские эле­мен­ты-га­ло­ге­ны и об­ра­зо­ван­ные ими про­стые

ве­ще­ства

На внеш­нем элек­трон­ном слое ато­мов га­ло­ге­нов на­хо­дят­ся 7 элек­тро­нов.

Наи­мень­ший ра­ди­ус атома среди всех га­ло­ге­нов имеет фтор, по­это­му у него самая вы­со­кая (даже среди всех хи­ми­че­ских эле­мен­тов) от­но­си­тель­ная элек­тро­от­ри­ца­тель­ность. По этой при­чине не су­ще­ству­ет ве­ществ, в ко­то­рых фтор имел бы по­ло­жи­тель­ную сте­пень окис­ле­ния, не го­во­ря о выс­шей сте­пе­ни окис­ле­ния, со­от­вет­ству­ю­щей но­ме­ру груп­пы (+7). Для фтора воз­мож­ны сте­пе­ни окис­ле­ния толь­ко –1 и 0. Осталь­ные га­ло­ге­ны в со­еди­не­нии с более элек­тро­от­ри­ца­тель­ным кис­ло­ро­дом могут об­ра­зо­вы­вать ве­ще­ства, в ко­то­рых сте­пень окис­ле­ния их ато­мов по­ло­жи­тель­на. Таким об­ра­зом, для Cl, Br, I ха­рак­тер­ны сте­пе­ни окис­ле­ния -1, 0, +1, +3, +5, +7.

Со­дер­жа­ние га­ло­ге­нов в зем­ной коре сни­жа­ет­ся от фтора к аста­ту. При­чем, если фтор, бром и йод можно от­не­сти к рас­про­стра­нен­ным хи­ми­че­ским эле­мен­там, то со­дер­жа­ние аста­та в зем­ной коре крайне мало. Га­ло­ге­ны вхо­дят в со­став мно­гих ми­не­ра­лов. Ис­клю­че­ние со­став­ля­ет астат. Астат об­на­ру­жен в про­дук­тах ра­дио­ак­тив­но­го рас­па­да урана.

Соли га­ло­ге­нов (га­ло­ге­ни­ды) вхо­дят в со­став мор­ской воды.

Галогены – элементы VII группы – фтор, хлор, бром, йод, астат (астат мало изучен в связи с его радиоактивностью). Галогены – ярко выраженные неметаллы. Лишь йод в редких случаях обнаруживает некоторые свойства, схожие с металлами.

В невозбужденном состоянии атомы галогенов имеют общие электронную конфигурацию: ns2np5. Это значит, что галогены имеют 7 валентных электронов, кроме фтора.

Физические свойства галогенов: F2 – бесцветный, трудно сжижающийся газ; Cl2 – желто-зеленый, легко сжижающийся газ с резким удушливым запахом; Br2 – жидкость красно-бурого цвета; I2 – кристаллическое вещество фиолетового цвета.

Водные растворы галогеноводородов образуют кислоты. НF – фтороводородная (плавиковая); НCl – хлороводородная (соляная); НBr – бромоводородная; НI – йодоводородная. Силы кислот сверху вниз снижаются. Плавиковая кислота является самой слабой в ряду галогеново-дородных кислот, а йодоводородная – самой сильной. Это объясняется тем, что энергия связи Нг сверху уменьшается. В том же направлении уменьшается и прочность молекулы Н Г, что связано с ростом межъядерного расстояния. Растворимость малорастворимых солей в воде тоже уменьшается:

Слева направо растворимость галогенидов уменьшается. АgF хорошо растворим в воде. Все галогены в свободном состоянии – окислители . Сила их как окислителей снижается от фтора к йоду. В кристаллическом, жидком и газообразном состоянии все галогены существуют в виде отдельных молекул. Атомные радиусы возрастают в том же направлении, что приводит к повышению температуры плавления и кипения. Фтор диссоциирует на атомы лучше йода. Электродные потенциалы при переходе вниз по подгруппе галогенов снижаются. У фтора самый высокий электродный потенциал. Фтор – самый сильный окислитель . Любой вышестоящий свободный галоген вытеснит нижестоящий, находящийся в состоянии отрицательного однозарядного иона в растворе.

Химические свойства галогенов

1. Взаимодействие с ксеноном. Наибольшей химической активностью обладает фтор, это сильнейший окислитель, который реагирует даже с инертными газами:

2F 2 + Xe = XeF 4 .

2. Взаимодействие с металлами. Все галогены взаимодействуют практически со всеми простыми веществами, наиболее энергично протекает реакция с металлами. Фтор при нагревании реагирует со всеми металлами, включая золото и платину, на холоде взаимодействует с щелочными металлами, свинцом и железом. Хлор, бром и йод при обычных условиях реагируют со щелочными металлами, а при нагревании – с медью, железом и оловом. В результате взаимодействия образуются галогениды, которые являются солями:

2М + nHal 2 = 2MHal n .

3. Взаимодействие с водородом. При обычных условиях фтор реагирует с водородом в темноте со взрывом, взаимодействие с хлором протекает на свету, бром и йод реагируют только при нагревании, причем реакция с йодом обратима.

Н 2 + Hal 2 = 2НHal.

Галогены в этой реакции проявляют окислительные свойства.

4. Взаимодействие с неметаллами. С кислородом и азотом галогены непосредственно не взаимодействуют, реагируют с серой, фосфором, кремнием, проявляя окислительные свойства, химическая активность у брома и йода выражена слабее, чем у фтора и хлора:

2P + 3Cl 2 = 2PCl 3 ;

Si + 2F 2 = SiF 4 .

5. Взаимодействие с водой. Галогены реагируют со многими сложными веществами. С водой фтор и остальные галогены реагируют по-разному:

F 2 + H 2 O = 2HF + O или

3F 2 + 3H 2 O = OF 2 + 4HF + H 2 O 2 ;

Hal + H 2 O = HHal + HHalO.

Эта реакции является реакцией диспропорционирования, где галоген одновременно является окислителем и восстановителем.

6. Взаимодействие со щелочами. Также галогены диспропорционируют в растворах щелочей:

Cl 2 + KOH = KClO + KCl (на холоде);

3Cl 2 + 6KOH = KClO 3 + 5KCl + 3Н 2 О (при нагревании).

Гипобромид-ион существует только при температуре ниже 0 °С, гипойодит-ион в растворах не существует.

7. Взаимодействие с сероводородом. Галогены способны отнимать водород от других веществ:

H 2 S + Br 2 = S + 2HBr.

8. Реакция замещения водорода в предельных углеводородах:

CH 4 + Cl 2 = CH 3 Cl + HCl.

9. Реакция присоединения к непредельным углеводородам:

C 2 H 4 + Cl 2 = C 2 H 4 Cl 2 .

10. Взаимное замещение галогенов. Реакционная способность галогенов снижается при переходе от фтора к йоду, поэтому предыдущий элемент вытесняет последующий из галогеноводородных кислот и их солей:

2KI + Br 2 = 2KBr+ I 2 ;

2HBr + Cl 2 = 2HCl + Br 2 .

ХЛОР

История открытия:

Впервые хлор был получен в 1772 г. Шееле, описавшим его выделение при взаимодействии пиролюзита с соляной кислотой в своём трактате о пиролюзите:

4HCl + MnO 2 = Cl 2 + MnCl 2 + 2H 2 O


Шееле отметил запах хлора, схожий с запахом царской водки, его способность взаимодействовать с золотом и киноварью, а также его отбеливающие свойства. Однако Шееле, в соответствии с господствовавшей в химии того времени теории флогистона, предположил, что хлор представляет собой дефлогистированную соляную кислоту, то есть оксид соляной кислоты.
Бертолле и Лавуазье предположили, что хлор является оксидом элемента мурия, однако попытки его выделения оставались безуспешными вплоть до работ Дэви, которому электролизом удалось разложить поваренную соль на натрий и хлор.
Название элемента происходит от греческогоclwroz - "зелёный".

Нахождение в природе, получение:

Природный хлор представляет собой смесь двух изотопов 35 Cl и 37 Cl. В земной коре хлор - самый распространённый галоген. Поскольку хлор очень активен, в природе он встречается только в виде соединений в составе минералов: галита NaCl, сильвина KCl, сильвинита KCl · NaCl, бишофита MgCl 2 ·6H 2 O, карналлита KCl·MgCl 2 ·6Н 2 O, каинита KCl·MgSO 4 ·3Н 2 О. Самые большие запасы хлора содержатся в составе солей вод морей и океанов.
В промышленных масштабах хлор получают вместе с гидроксидом натрия и водородом при электролизе раствора поваренной соли:


2NaCl + 2H 2 О => H 2 + Cl 2 + 2NaOH


Для рекуперации хлора из хлороводорода, являющегося побочным продуктом при промышленном хлорировании органических соединений используется процесс Дикона (каталитическое окисление хлороводорода кислородом воздуха):


4HCl + O 2 = 2H 2 O + 2Cl 2
В лабораториях обычно используют процессы, основанные на окислении хлороводорода сильными окислителями (например, оксидом марганца (IV), перманганатом калия, дихроматом калия):
2KMnO 4 + 16HCl = 5Cl 2 + 2MnCl 2 + 2KCl +8H 2 O
K 2 Cr 2 O 7 + 14HCl = 3Cl 2 + 2CrCl 3 + 2KCl + 7H 2 O

Физические свойства:

При нормальных условиях хлор - жёлто-зелёный газ с удушающим запахом. Хлор заметно растворяется в воде ("хлорная вода"). При 20°C в одном объеме воды растворяется 2,3 объема хлора. Температура кипения = -34°C; температура плавления = -101°C, плотность (газ, н.у.) = 3,214 г/л.

Химические свойства

На внешнем электронном уровне атома хлора находятся 7 электронов (s 2 p 5), поэтому он легко присоединяет электрон, образуя анион Сl - . Благодаря наличию незаполненного d-уровня в атоме хлора могут появляться 1, 3, 5 и 7 неспаренных электронов, поэтому в кислородсодержащих соединениях он может иметь степень окисления +1, +3, +5 и +7.

В отсутствии влаги хлор довольно инертен, но в присутствии даже следов влаги активность его резко возрастает. Он хорошо взаимодействует с металлами:

2 Fе + 3 Сl 2 = 2 FеСl 3 (хлорид железа (III));

Cu + Сl 2 = СuСl 2 (хлорид меди (II))

и многими неметаллами:

Н 2 + Сl 2 = 2 НСl (хлороводород);

2 S + Сl 2 = S 2 Cl 2 (хлорид серы (1));

Si + 2 Сl 2 = SiСl 4 (хлорид кремния. (IV));

2 Р + 5 Сl 2 = 2 РСl 5 (хлорид фосфора (V)).

С кислородом, углеродом и азотом хлор в непосредственное взаимодействие не вступает.

При растворении хлора в воде образуется 2 кислоты: хлороводородная, или соляная, и хлорноватистая:

Сl 2 + Н 2 О = НСl + HClO.

При взаимодействии хлора с холодными растворами щелочей образуются соответствующие соли этих кислот:

Сl 2 + 2 NaOН = NaСl + NaClО + Н 2 О.

Полученные растворы называются жавелевой водой, которая, как и хлорная вода, обладает сильными окислительными свойствами благодаря наличию иона ClO - и применяется для отбеливания тканей и бумаги. С горячими растворами щелочей хлор образует соответствующие соли соляной и хлорноватой кислот:

3 Сl 2 + 6 NаОН = 5 NаСl + NаСlO 3 + 3 Н 2 О;

3 Сl 2 + 6 КОН = 5 КСl + КСlO 3 + 3 Н 2 О.

Образовавшийся хлорат калия называется бертолетовой солью.

При нагревании хлор легко взаимодействует со многими органическими веществами. В предельных и ароматических углеводородах он замещает водород, образуя хлорорганическое соединение и хлороводород, а к непредельным присоединяется по месту двойной или тройной связи.

При очень высокой температуре хлор полностью отбирает водород у углерода. При этом образуются хлороводород и сажа. Поэтому высокотемпературное хлорирование углеводородов всегда сопровождается сажеобразованием.

Хлор - сильный окислитель, поэтому легко взаимодействует со сложными веществами, в состав которых входят элементы, способные окисляться до более высокого валентного состояния:

2 FеСl 2 + Сl 2 = 2 FеСl 3 ;

Н 2 SO 3 + Сl 2 + Н 2 О = Н 2 SО 4 + 2 НСl.

Важнейшие соединения:

Хлороводород HCl - бесцветный газ, на воздухе дымит вследствие образования с парами воды капелек тумана. Обладает резким запахом, сильно раздражает дыхательные пути. Содержится в вулканических газах и водах, в желудочном соке. Химические свойства зависят от того, в каком состоянии он находится (может быть в газообразном, жидком состоянии или в растворе). Раствор HCl называетсясоляной (хлороводородной) кислотой . Это сильная кислота, вытесняет более слабые кислоты из их солей. Соли -хлориды - твёрдые кристаллические вещества с высокими температурами плавления.
Ковалентные хлориды - соединения хлора с неметаллами, газы, жидкости или легкоплавкие твёрдые вещества, имеющие характерные кислотные свойства, как правило легко гидролизующиеся водой с образованием соляной кислоты:


PCl 5 + 4H 2 O = H 3 PO 4 + 5HCl


Оксид хлора(I) Cl 2 O. , газ буровато-желтого цвета с резким запахом. Поражает дыхательные органы. Легко растворяется в воде, образуя хлорноватистую кислоту.
Хлорноватистая кислота HClO . Существует только в растворах. Это слабая и неустойчивая кислота. Легко разлагается на соляную кислоту и кислород. Сильный окислитель. Образуется при растворении хлора в воде. Соли -гипохлориты , малоустойчивы (NaClO*H 2 O при 70 °C разлагается со взрывом), сильные окислители. Широко используется для отбеливания и дезинфекциихлорная известь , смешанная соль Ca(Cl)OCl
Хлористая кислота HClO 2 , в свободном виде неустойчива, даже в разбавленном водном растворе она быстро разлагается. Кислота средней силы, соли -хлориты , как правило, бесцветны и хорошо растворимы в воде. В отличие от гипохлоритов, хлориты проявляют выраженные окислительные свойства только в кислой среде. Наибольшее применение (для отбелки тканей и бумажной массы) имеет хлорит натрия NaClO 2 .
Оксид хлора(IV) ClO 2 , - зеленовато-желтый газ с неприятным (резким) запахом, ...
Хлорноватая кислота , HClO 3 - в свободном виде нестабильна: диспропорционирует на ClO 2 и HClO 4 . Соли -хлораты ; из них наибольшее значение имеют хлораты натрия, калия, кальция и магния. Это сильные окислители, в смеси с восстановителями взрывоопасны. Хлорат калия (бертолетова соль ) - KClO 3 , использовалась для получения кислорода в лаборатории, но из-за высокой опасности её перестали применять. Растворы хлората калия применялись в качестве слабого антисептика, наружного лекарственного средства для полоскания горла.
Хлорная кислота HClO 4 , в водных растворах хлорная кислота - самая устойчивая из всех кислородсодержащих кислот хлора. Безводная хлорная кислота, которую получают при помощи концентрированной серной кислоты из 72%-ной HСlO 4 мало устойчива. Это самая сильная одноосновная кислота (в водном растворе). Соли -перхлораты , применяются как окислители (твердотопливные ракетные двигатели).

Применение:

Хлор применяют во многих отраслях промышленности, науки и бытовых нужд:
- В производстве поливинилхлорида, пластикатов, синтетического каучука;
- Для отбеливания ткани и бумаги;
- Производство хлорорганических инсектицидов - веществ, убивающих вредных для посевов насекомых, но безопасных для растений;
- Для обеззараживания воды - "хлорирования";
- В пищевой промышленности зарегистрирован в качестве пищевой добавки E925;
- В химическом производстве соляной кислоты, хлорной извести, бертолетовой соли, хлоридов металлов, ядов, лекарств, удобрений;
- В металлургии для производства чистых металлов: титана, олова, тантала, ниобия.

Биологическая роль и токсичность:

Хлор относится к важнейшим биогенным элементам и входит в состав всех живых организмов. У животных и человека, ионы хлора участвуют в поддержании осмотического равновесия, хлорид-ион имеет оптимальный радиус для проникновения через мембрану клеток. Ионы хлора жизненно необходимы растениям, участвуя в энергетическом обмене у растений, активируя окислительное фосфорилирование.


Хлор в виде простого вещества ядовит, при попадании в лёгкие вызывает ожог лёгочной ткани, удушье. Раздражающее действие на дыхательные пути оказывает при концентрации в воздухе около 0,006 мг/л (т.е. в два раза выше порога восприятия запаха хлора). Хлор был одним из первых химических отравляющих веществ, использованных Германией в Первую Мировую войну.

УПРАЖНЕНИЯ

1. В сосуде, имеется смесь водорода и хлора. Как изменится давление в сосуде при пропускании через смесь электрической искры?

Решение:

При пропускании искры газы реагируют по уравнению:

Н 2 + Сl 2 = 2НСl.

В результате этой реакции общее количество молекул в газовой фазе не изменяется, поэтому давление в сосуде также остается неизменным.

2. Газ, выделившийся при действии 2,0 г цинка на 18,7 мл 14,6%-ной соляной кислоты (плотность раствора 1,07 г/мл), пропустили при нагревании над 4,0 г оксида меди (II). Чему равна масса полученной твердой смеси?

Решение:

При действии цинка на соляную кислоту выделяется водород:

Zn + 2НСl = ZnСl 2 + Н 2 ,

который при нагревании восстанавливает оксид меди (II) до меди:

СuО + Н 2 = Си + Н 2 О.

Найдем количества веществ в первой реакции: m(р-ра НСl) = 18,7 . 1,07 = 20,0 г. m(НСl) = 20,0 . 0,146 = 2,92 г. v(НСl) = 2,92/36,5 = 0,08 моль. v(Zn) = 2,0/65 = 0,031 моль. Цинк находится в недостатке, поэтому количество выделившегося водорода равно:v(Н 2) = v(Zn) = 0,031 моль.

Во второй реакции в недостатке находится водород, поскольку v(СuО) = 4,0/80 = 0,05 моль. В результате реакции 0,031 моль СuО превратится в 0,031 моль Сu, и потеря массы составит:

m(СuО) — m(Сu) = 0,031 . 80 — 0,031 . 64 = 0,50 г.

Масса твердой смеси СuО с Сu после пропускания водорода со­ставит 4,0-0,5 = 3,5 г.

Ответ. 3,5 г.

__________________________________________________________________

3. Напишите уравнения реакций, которые могут про­исходить при действии концентрированной серной кислоты на все твердые галогениды калия. Возможны ли эти реакции в вод­ном растворе?

Решение:

При действии концентрированной серной кислоты на фторид и хлорид калия при нагревании выделяются, соответ­ственно,фтороводород и хлороводород:

КF + Н 2 SО 4(конц) = НF + КНSО 4 ,

КСl + Н 2 SО 4(конц) = НCl + КНSО 4 .

Бромоводород и иодоводород — сильные восстановители и легко окисляются серной кислотой до свободных галогенов, при этом НBrвосстанавливает серную кислоту до SО 2 , а НI (как бо­лее сильный восстановитель) — до Н 2 S:

2КВr + 2Н 2 SО 4(конц) = Вr 2 + SO 2 + К 2 SО 4 + 2Н 2 О,

8КI + 5Н 2 SО 4(конц) = 4I 2 + Н 2 S + 4К 2 SО 4 + 4Н 2 О.

В водном растворе серная кислота уже не является сильным окислителем. Кроме того, все галогеноводородные кислоты — сильные (за исключением плавиковой кислоты), и серная кислота не может вытеснять их из солей. В водном растворе возможна единственная обменная реакция:

2КF + Н 2 SО 4 = 2НF + К 2 SО 4 .

Признак реакции — образование малодиссоциирующего вещества (слабой плавиковой кислоты).

__________________________________________________________________

4. Составьте уравнения следующих реакций:

1) FеSО 4 + КClO 3 + Н 2 SО 4 → …

2) FеSО 4 + КClO 3 + КОН → …

3) I 2 + Ва(ОН) 2 → …

4) КВr + КВrО 3 + Н 2 SО 4 → …

Решение:

1) СlO 3 — — сильный окислитель, восстанавливается до Сl — ; Fе 2+ — восстановитель, окисляется до Fе 3+ (Fе 2 (SО 4) 3):

6FеSО 4 + КClO 3 + 3Н 2 SО 4 = 3Fе 2 (SО 4) 3 + КСl + 3Н 2 О.

2) СlO 3 — — окислитель, восстанавливается до Сl — , Fе 2+ — восстано­витель, окисляется в до Fе 3+ (Fе(ОН) 3):

6FеSО 4 + КClO 3 + 12КОН + 3Н 2 О = 6Fе(ОН) 3 ↓ + КСl + 6К 2 SO 4 .

3) Как и все галогены (кроме фтора), иод в щелочной среде диспропорционирует:

6I 2 + 6Ва(ОН) 2 = 5ВаI 2 + Ва(IO 3) 2 + 6Н 2 О.

4) Бромид-ион — сильный восстановитель и окисляется бромат-ионом в кислой среде до брома:

5КВr + КВrО 3 + 3Н 2 SО 4 = 3Вr 2 + 3К 2 SО 4 + 3Н 2 О.

Эта реакция обратна реакции диспропорционирования галогенов в щелочной среде.

__________________________________________________________________

5. После нагревания 22,12 г перманганата калия образовалось 21,16 г твердой смеси. Какой максимальный объем хлора (н.у.) можно получить при действии на образовавшуюся смесь 36,5%-ной соляной кислоты (плотность 1,18 г/мл). Какой объем кислоты при этом расходуется?

Решение:

При нагревании перманганат калия разлагается:

0,06

0,03

0,03

0,03

2KMnO 4

K 2 MnO 4

MnO 2

Масса смеси уменьшается за счет выделившегося кислорода: v(О 2) = m/ М = (22,12-21,16) / 32 = 0,03 моль. В результате реакции также образовались 0,03 моль К 2 МnО 4 , 0,03 моль МnО 2 и израсходовано 0,06 моль КМnО 4 . Перманганат калия разложился не весь. После реакции он остался в смеси в количестве v(КMnО 4) = 22,12/158 — 0,06 = 0,08 моль.

Все три вещества, находящиеся в конечной смеси (КМnО 4 , К 2 МnО 4 , МnО 2), — сильные окислители и при нагревании окисляют соляную кислоту до хлора:

0,08

0,64

2KMnO 4

16HCl

5Cl 2

2KCl

2MnCl 2

8H 2 O

0,03

0,24

0,06

K 2 MnO 4

8HCl

2Cl 2

2KCl

MnCl 2

4H 2 O

0,03

0,12

0,03

MnO 2

4HCl

Cl 2

MnCl 2

2H 2 O

Общее количество хлора, который выделился в этих трех реакциях, равно: v(Сl 2) = (0,08 . 5/2) + (0,03 . 2) + 0,03 = 0,29 моль, а объем составляет V(Сl 2) = 0,29 . 22,4 = 6,50 л.

Количество израсходованного хлороводорода равно: v(НСl) = (0,08 . 16/2) + (0,03 . 8) + (0,03 . 4) = 0,96 моль,

m(НСl) = v . M = 0,96 . 36,5 = 35,04 г,

m(р-ра НСl) = m(НСl)/ω(НСl) = 35,04/0,365 = 96,0 г,

V(р-ра НСl) = т/ρ= 96,0/1,18 = 81,4 мл.

Ответ. V(Сl 2) = 6,50 л, V(р-ра НСl) = 81,4 мл.

________________________________________________________________

ЗАДАНИЯ ДЛЯ САМОСТОЯТЕЛЬНОГО РЕШЕНИЯ

1. Какой из галогенов является самым активным и какой – наименее активным окислителем.

2. Напишите формулы известных оксидов хлора и назовите их.

3. Приведите примеры солей, образованных кислородсодержащими кислотами хлора. Назовите эти соли.

4. В виде каких соединений хлор встречается в природе.

5. Какая реакция является качественной реакцией на хлорид-ион.

6. Во сколько раз хлор тяжелее воздуха.

7. Закончите уравнения реакций:

.

8. Как осуществить следующие превращения:

9. Смешали 1л хлора и 2 л водорода (н.у.). Сколько граммов хлороводорода можно получить из такой смеси. Чему будет равен объем смеси после реакции.

10. Какой объем хлора может быть получен при взаимодействии 2 моль хлороводорода и 3 моль оксида марганца (IV ).

ВИДЕО ОПЫТ


1. Укажите символ иона с наиболее выраженными восстановительными свойствами:

а) Br -

б) Cl -

в) I -

г) F -

2. В каком ряду вещества перечислены в порядке последовательного возрастания температуры плавления:

а) бром, хлор, йод

б) йод, бром, хлор

в) хлор, йод, бром

г) хлор, бром, йод

3. Какова максимальная валентность хлора в соединениях:

а) I

б) V

в) VII