Болезни Военный билет Призыв

«Нужно, чтобы они жили по тем же законам, что и вся Украина» – эксперты о работе депутатов. Рак развивается по тем же законам, что чума и холера, историю развития которых я хорошо изучил

Города меняются вслед за изменениями плотности населения так же, как галактики формировались из плотного вещества ранней Вселенной, считают ученые. Математический закон, лежащий в основе и того, и другого процесса они описали в статье, опубликованной на сайте arxiv . org . Плотность и пространственное распределение городов по планете удивительным образом предсказывает эмпирический закон, называемый законом Ципфа. Эта математическая закономерность была сформулирована американским лингвистом Джорджем Ципфом для описания распределения частоты слов естественного языка. Он доказал, что если все слова языка расположить на шкале по частоте их использования от большего к меньшему, частота слова в списке окажется приблизительно обратно пропорциональной его порядковому номеру или рангу. То есть второе по частоту используемости слово встречается примерно в два раза реже первого, третье – уже в три раза реже и так далее. Тому же математическому закону подчиняется и развитие городов. Если расположить города на одной шкале в порядке убывания их населения, окажется, что порядковый номер города в этом списке будет обратно пропорционален численности его населения. Если в самом большой городе страны живет 8 млн человек, то во втором по численности будет примерно в два раза меньше и так далее. Почему этот закон работает именно так, а не иначе никто объяснить не мог. Лин и Лоеб же начали с того, что создали математическую модель того, как плотность населения Земли распределяется в плоском Евклидовом пространстве (кривизну земной поверхности они игнорировали, доказав ее незначительное влияние на распределение). Именно таким образом астрономы математически моделируют, как эволюционируют галактики, исходя из изначального состояния плотности материи ранней Вселенной. Этот отработанный десятилетиями механизм моделирования ученые теперь приложили к новому материалу – росту городов вследствие изменения плотности населения. «Мы рассматриваем плотность населения как фундаментальную величину, считая, что города появляются тогда, когда плотность превышает критический порог», - поясняют ученые в статье. Созданную модель они протестировали на соответствие известным данным о плотности населения. И теоретически выстроенная система очень близко повторила ту, что имеет место в реальном мире. Они подсчитали число городов с населением выше определенного порога и показали с использованием своей математической модели, что это число также относится к количеству жителей города, как уже ранее было показано в законе Ципфа. Таким образом, модель, используемая для анализа и предсказания развития галактик, подходит и для работы с другими данными, как в данном случае – с анализом развития городов. Работа ученых, на самом деле, имеет очень важные следствия. Используя эту единую математическую модель, можно будет, например, предсказывать распространение эпидемий по планете.

24 ноября 1859 года Чарльз Дарвин опубликовал свою работу «О происхождении видов». Первый тираж этой книги разошелся всего за один день... Можно сказать, что сэр Чарльз устроил еще один «Большой Взрыв»! Отголоски этого взрыва докатываются до нас до сих пор. Теория эволюции остается самой обсуждаемой научной теорией в мире.

Увидеть слона целиком

Люди продолжают горячо спорить о законах развития и о механизмах, которые лежат в их основе. Дискуссии в ученых кругах воспринимаются положительно, так как их итогом является новое знание. Но что движет скептиками? Слишком простое объяснение существующей сложности? Слишком сложное объяснение «божественной простоты»? Причин может быть много, и разбираться в них – терять время.

Да, эволюционисты рассказывают и убеждают, пишут книги, снимают фильмы и читают лекции, но «отрицателей» не становится меньше. Принципиальный момент: поиск доказательств эволюции идет исключительно «внутри биосферы». Пытаясь достучаться до сердец и мозгов, ученые углубляются во все более глубокие материи и порой столь несущественные детали, что уверенности в успехе это не прибавляет. В итоге общая картина не складывается. Мы по-прежнему рассматриваем слона по частям. Может, есть смысл пересмотреть стратегию?

Конечно, многие эволюционисты не раз говорили о технике и прочих небиологических системах, рассуждая о них именно с дарвиновских позиций, но никто из ученых не объединил эти идеи и не понес знамя Дарвина дальше, словно испугавшись собственной смелости. Скепсис понятен: эволюция воспринимается свойством исключительно живой природы, и пока приходится признать, что аналогии с наследственностью, изменчивостью и отбором в той же технике используются в качестве красивой иллюстрации и не являются объективным описанием происходящих процессов.

Повторим основной постулат: в живой природе большие шансы на выживание имеют организмы, обладающие большим числом полезных свойств (кости прочнее, хвост пышнее). Если же у организма перья жиже, а голос противнее (вредные свойства), то скорее всего жизнь его будет недолгой и пройдет в одиночестве. Эти свойства определяются генами, мутации которых носят случайный характер. В итоге давление отбора ведет к тому, что организмы избавляются от недостатков и становятся все более жизнеспособными. Так что там у нас с неживой природой?

5000 якорей

Якорь – одно из важнейших приспособлений, придуманных человеком. Он наверняка появился одновременно с первой лодкой, и вся остальная его история неразрывно связана с мореплаванием.

Неизвестные типы грунта, морские течения, приливы и отливы – эти и многие другие факторы предъявляли требования к якорным устройствам. Статистика катастроф на море свидетельствует, что якорь очень часто оказывался последним средством спасения. История якоря – ярчайшее свидетельство эволюции технической системы «по Дарвину», гимн наследственности, изменчивости и отбору.

Первое же в истории научное обоснование выгодной формы и пропорций якоря принадлежит выдающемуся математику своего времени Иоганну Бернулли. Его «Мемуар о якорях» 1737 года был удостоен высшей премии Французской академии наук. Активно развивалось кораблестроение, шла эпоха великих географических открытий, множились маршруты. И условия, в которых порой оказывались моряки, были разными и непредсказуемыми.

Естественно, люди стремились улучшить конструкцию судового якоря, сделать ее более надежной. Об этом говорит количество известных выданных на усовершенствование якоря патентов и авторских свидетельств. На сегодня это число превысило 5000! Если считать, что люди занимаются судоходством 5 тыс. лет, то получится, что в среднем каждый год человек изобретал новую конструкцию.

Каждая скрипка – «мутант»

Прислушаемся к чарующим звукам скрипки. Прародителями ее стали такие инструменты, как ребараб и кобыз (древние тюркские и арабские инструменты, в которых в качестве струн использовались конские волосы), а также фидель и кротта – их европейские «родственники». Перед тем как в XVI веке обрести свою окончательную форму, скрипка подвергалась множеству экспериментов. Изготавливались инструменты выпуклые, как мандолина, высокие, низкие, плоские, в разных частях корпуса вырезались отверстия самых причудливых форм.

Ученый-генетик Дэниэл Читвуд из Центра растениеводства имени Дональда Дэнфорта, сам скрипач и любитель музыки, проследил эволюцию струнно-смычковых инструментов от момента их возникновения до наших дней.

«Моей основной деятельностью является изучение формирования и функционирования сложных систем, и необязательно речь должна идти о живых организмах, – подчеркивает доктор Читвуд, – изготавливаемые людьми вещи (продукты нашей культуры) формируются при помощи тех же процессов, что и окружающий мир. Понимание того, как с течением времени менялась форма скрипки, косвенно помогает мне разобраться в эволюции растений».

Профессор изучил более 9 тыс. образцов струнно-смычковых музыкальных инструментов (скрипок, виолончелей, альтов и контрабасов), изготовленных за последние 400 лет. Ученый разделил скрипки на четыре группы, каждую из которых он назвал по имени основателей течения: Страдивари, Паоло, Амати, Маджини и Якоб Штайнер. Описывая эволюцию формы инструментов, Читвуд сравнил передачу навыков с передачей генов, а использование популярной формы скрипки в качестве основы и небольшие видоизменения – с мутациями и наследственностью.

Скрипичных дел мастера, стараясь добиться лучшего звучания и стараясь превзойти конкурентов, экспериментировали с материалами, формой, технологиями сборки и отделки частей скрипок. Впрочем, в эпоху индивидуального ручного производства даже у такого скрипичного гения, как Страдивари, не могло быть двух совершенно одинаковых инструментов! Каждая скрипка была «мутантом» и хоть чуть-чуть, да отличалась от своих сестер.

Развивалась музыкальная культура – менялась сама музыка, повышалось мастерство исполнителей, расширялся их музыкальный репертуар, менялась акустика залов (новые архитектурные решения, даже женская мода на платья меняла звучание) – все это вместе предъявляло новые требования к качеству звучания и заставляло инструменты меняться. Возникает резонный вопрос: какая еще теория, кроме дарвиновской, может описать эволюцию скрипки?

Самолеты – в очередь

Вот – «Флаер-1», самолет братьев Райт, дедушка всех самолетов, а вот – современный «Боинг 787 Дримлайнер», его пра-...-правнук. Разница между хрупкой «этажеркой», поднявшейся в воздух в 1903 году, и мощным красавцем 787-м, колоссальна. Самолет, построенный Уилбуром и Орвиллом Райтами, появился не на пустом месте. К этому времени человек более-менее освоил воздушное пространство и страстно желал большего. «Флаер» был не идеален, но первый успешный опыт полета породил огромное количество последователей. Вспомните кинохронику. Сколько смешных, забавных, необычных моделей скакали, крутились и дергались, пытаясь взлететь! Представить эволюцию самолета можно как смену поколений на S-образной кривой – от «Флаера» до 787-го.

Вся история самолета – путь изменений. Инженеры постоянно вносят новшества в конструкцию, в устройство его узлов и деталей. Изменчивость? Она самая. Новшества – не каприз конструкторов, а требования законов воздушной среды. Те изменения, что делают самолет лучше, прочнее, быстрее, экономичнее, – остаются, закрепляются в чертежах, инструкциях и учебниках. Это простой и понятный пример наследственности, закрепления полезных признаков. Каждая следующая модель самолета постепенно избавлялась от недостатков предыдущей.

Конечно, развитие самолета – не прямая линия. Филогенетическое древо больше подходит для его иллюстрации. Корень этого дерева, предок всех самолетов, – простая конструкция американских энтузиастов. Многие ветви хитро запутаны, многие – уже засохли, но дерево цветет и активно плодоносит.

На этом эволюционном древе мы найдем все: от примитивных бумажных самолетиков до агрессивных истребителей. От огромных пассажирских лайнеров до юрких спортивных машин. Мы можем проследить всю историю авиации, понять, как, когда и с какой целью появилось каждое новое семейство, как эволюционировал каждый вид и тип.

Все как в живой природе, верно? Только главным фактором отбора в этом непрекращающемся развитии является не слепой случай, а человек. В этом – главное отличие неспешного естественного развития от эволюции, управляемой человеком. Человек управляет изменчивостью и следит за наследственностью, отбирая лучшее. Не в обиду авиаконструкторам, но в этом отношении развитие самолетов ничем не отличается от выведения новой породы поросят.

Как выживают теории

Скрипку можно дернуть за струну, самолет – погладить по гладкому борту, а как насчет науки?

Самое простое из возможных определений: наука – это и непосредственная деятельность по получению знаний с целью объяснения свойств и явлений мира, это и сами знания, приведенные в систему (так называемая научная картина мира). Способов объяснить все происходящее (в самом общем смысле) человечество разработало несколько: науку и религию, философию и искусство. Из упомянутых способов наука оказалась самым эффективным. И что особенно важно, способом, применимым на практике. Ведь объяснить мало, нужно уметь на основе полученных и систематизированных знаний предсказать будущие свойства и явления мира. В этом с наукой вряд ли какой другой метод сравнится! Посмотрим, применимы ли идеи дарвиновской эволюции к науке...

Что является объектом отбора в науке? Идеи. Для простоты будем использовать слово «гипотеза». Допустим, имеется некоторое Явление, требующее своего объяснения. Ученые наблюдают Явление и делятся своими идеями – выдвигают гипотезы о сути происходящего. Та Гипотеза, которая по итогам проверки лучше объясняет Явление и, не забудем – лучше предсказывает, где искать новые факты, принимается научным сообществом для использования на практике в качестве Теории, то есть «выживает».

Остальные гипотезы, требующие больше ресурсов для объяснения и использования, отправляются в «утиль». Вспомним слова Анри Пуанкаре: «Наука – кладбище гипотез». Увы, если они где-то и упоминаются, то только в учебниках по истории науки. Впрочем, объяснение Явления, длящегося длительное время, может быть окончательно подтверждено, изменено или опровергнуто не сразу. А до этого момента конкурирующие теории могут сосуществовать, «толкаясь локтями».

О том, что развитие науки описывается дарвиновскими законами, прекрасно осведомлены и сами ученые.

Герберт Спенсер, «Система синтетической философии»: Развитие является высшим законом всей природы, а не только органической. Эти процессы происходят одновременно, включаются в историю всего сущего... Тот же самый вид интеграции наблюдается в социальных организмах... Подобный вид интеграции виден в развитии языка, искусства и науки, а особенно в философии. (Кстати, эта идея высказана даже раньше публикации Чарлза Дарвина «О происхождении видов»!)

Томас Кун, американский историк и философ науки, один из лидеров исторической школы в методологии и философии науки, в знаменитой своей работе «Структура научных революций» отмечал: «Наука представлена как смена нормальных и революционных периодов в ее развитии, как результат конкурентной борьбы между различными научными сообществами».

Михаил Бахтин: «...посмертная жизнь великих произведений науки парадоксальна. Ч. Дарвин, не обойденный прижизненной славой, не мог подозревать, что «схема естественного отбора» станет категориальной схемой мышления вообще, что она потеряет непосредственную связь с биологией и будет фигурировать в трудах по кибернетике и теории познания».

Карл Поппер: «...рост наших знаний происходит в результате процесса, напоминающего «естественный отбор» Дарвина. В данном случае речь идет о естественном отборе гипотез: наши знания в каждый данный момент состоят из гипотез, проявивших на данном этапе свою способность выжить в борьбе за существование; нежизнеспособные же гипотезы устраняются в процессе этой конкурентной борьбы. Изложенная концепция приложима к знаниям животных, к донаучным знаниям и к научным знаниям».

И в качестве своеобразного резюме приведем слова австрийского философа, профессора Венского университета Эрхарда Эзера из его работы «Динамика теорий и фазовые переходы». В ней Эзер отмечал, что несмотря на все расхождения во взглядах сторонников того или иного философского направления, революционной или эволюционной моделей развития науки, между ними существует некая фундаментальная общность: «Не только авторы теории научного развития, как, например, Т. Кун и С. Тулмин, но и К. Поппер прибегают к аналогии с дарвиновской эволюционной теорией».

Наблюдая за развитием тех или иных теорий, сложно не увидеть четкие прямые аналогии с развитием биологических видов и не вырастить в своем воображении уже знакомое древо эволюции, густые и разросшиеся ветви которого символизируют отдельные направления науки.

Природа – частный случай

Кто-то скажет, что самолеты, скрипки, якоря – это отдельно взятые случаи и вообще – «тенденциозно поданные факты». В некотором смысле это так, объем газетной публикации не позволяет вместить больше. Но... что мешает пытливому читателю взять любой из хорошо известных ему, понятных и знакомых объектов и изучить его эволюцию самостоятельно?

Сколько «отдельно взятых случаев» нужно, чтобы убедиться в том, что наследственность–изменчивость–отбор, триединое ядро эволюции – универсально? Да, конечно, конкретные способы и приемы наследственности/изменчивости отличаются, если рассматривать фактическую разницу между живыми организмами, общественными, техническими и прочими системами. Но почему мы упорно продолжаем углубляться в детали, которые очевидным образом только усложнят и, возможно, даже сделают невозможным понимание единства? Надо прекратить спорить о мелких различиях и серьезно присмотреться к объективно существующим глобальным эволюционным процессам.

Давайте же, наконец, посмотрим на всего слона целиком! Да, в результате эволюция живой природы будет частным случаем. И что? Планета Земля когда-то перестала быть центром Солнечной системы и Вселенной. Человек перестал быть венцом творения – прекрасно! Дарвин сам признавался в том, что испытывал страх и волнение в отношении реакции общества на его работу, но не остановился. Он сделал то, что должен был сделать. Так что нам стоит взять с него пример.

Морфологические и функциональные особенности вегетативной нервной системы:

1. Очаговое представительство нервных центров СНС и ПСНС в ЦНС и.

Тела первых нейронов располагаются

А/. СНС - боковые рога торако-люмбального отдела спинного мозга . Б/. ПСНС - три зоны, где лежат её центры:а) мезенцефальный отдел (ветви в составе глазодвигательного нерва - зрачок, некоторые слюнные железы) ;б) бульбарный отдел - лицевой, языкоглоточный нерв и n. vagus;в ) сакральный отдел - центры ПС иннервации органов малого таза . И как следствие очаговый выход за пределы ЦНС

2. Несегментарная иннервация . Иннервируют не сегменты (как соматическая НС), а большие зоны, нет определенного упорядочения (одни зоны иннервации наслаиваются на другие).

3. Двухнейронность - содержит два класса нейронов (1-ый и 2-ой нейроны ВНС ). Для обоих нейронов характерна более низкая возбудимость по сравнению с нейронами соматической нервной системой. Первый нейрон располагается в пределах ЦНС, второй - в вегетативных ганглиях .

4. Наличие ганглиев - часть ЦНС, вынесенная в ходе эволюции на периферию. Двухнейронность и наличие ганглия позволяет выделить преганглионарное во­­локно (аксон 1-го нейрона, не доходит до исполнительного органа) и посганглионар­­ное (аксон 2-го нейрона).

5.Низкая скорость проведения возбуждения . Наличие медленного преганглионарного волокна (представленного типом В), ещё более медленного постганглионарного волокна (типа С) и дополнительного синапса с синаптической задержкой обуславливаютнизкую скорость проведения возбуждения.

6. Наличие двух синапсов (центральный илипреганглионарный ипериферический илипостганглионарный ).

Особенности проведения возбуждения в вегетативных синапсах:

а).Значительная синаптическая задержка (в 5 раз больше, чем в центральных синапсах).

б). Большая длительность ВПСП (возбуждающего постсинаптического потенциала).

в). Выраженная и продолжительная следовая гиперполяризация нейронов ганглия.

г). Понижающая трансформация ритма иочень низкая лабильность (не более 15 импульсов в сек.)

ВНС представлена двумя отделами : а) симпатическая нервная система (СНС), б) парасимпатическая нервная система (ПСНС).

Отличия в строении и функционировании отделов ВНС:

а.Центры: СНС - расположены компактно, пространственно объединены. ПСНС - резко выраженная очаговость.

б. Ганглии: СНС - близко к позвоночному столбу; формируют пара- и превертебральные цепочки, связаны между собой rami communicantes (т.е. отросток 1-го нейрона в ганглии замыкается на несколько 2-х нейронов - эффект мультипликации ); - ПСНС - рядом с органом-исполнителем или интрамурально, не связаны между собой;

в. Нервные волокна: СНС - преганглионарные волокна короткие, посганглионарные - длинные. ПСНС - преганглионарные волокна - длиные, постганглионарные - короткие.

г. Реакция: СНС - генерализованная (т.к. взаимодействуют центры, на уровне ганглиев - ещё большая генерализация); ПСНС - локальная, регионарная.

Однако, в любом варианте, возбуждение одного первого нейрона вегетативной нервной системы дает гораздо более распространенную реакцию , чем возбуждение одного нейрона соматической нервной системы .

Функции ВНС:

1. Триггерное влияние - явление запуска функции какого-либо органа

2. Корригирующее влияние - (регуляция активности пейсмейкера), Регуляция работы сердца

3. Адаптационно-трофическое влияние (характерно для симпатической нервной системы). Первично изменяется трофика, обмен веществ и уже вторично - функция. Феномен Орбели - Гинецинского - раздражение симпатического нерва иннервирующего сосуды скелетной мышцы снимает утомление со скелетной мышцы даже при продолжающейся стимуляции через соматический нерв.

Влияние отделов вегетативной нервной системы на органы

Большинство внутренних органов имеет двойную иннервацию .

У ряда органов - только симпатическая иннервация (кровеносные сосуды кожи, органов брюшной полости и мышц, скелетная мускулатура, матка, органы чувств и мозговое вещество надпочечников (само - как огромный ганглий СНС)).

Внешне активация симпатической и парасимпатической нервной системы характеризуется антагонистическим воздействием на функцию органа. Однако при рассмотрении внутреннего смысла разнонаправленности этого влияния видно, что это противоборство лишь внешнее. Проявляется в принципе синергизма (взаимо­уси­ле­ние и взаимопомощь).

1. Активация СНС приводит к увеличению функциональной активности организма при борьбе, бегстве.

2. Активация ПСНС наблюдается при отдыхе, восстановлении сил, пищеварении.

Вегетативные рефлексы

1. Висцеро-висцеральные (изменение АД - изменение работы сердца).

2. Висцеро-кутанные (висцеро-дермальные) - при заболевании внутренних органов - изменения чувствительности, парэстезии, изменение потоотделения.

3. Кутано-висцеральные (дермовисцеральные ) - горчичники, банки, массаж, иглорефлексотерапия.

4. Висцеро-соматические - раздражение хеморецепторов каротидного синуса СО 2 стимулирует работу дыхательной мускулатуры(межреберные мышцы).

5.Сомато-висцеральные - физ. работа- изменение деятельности ССС и системы дыхания.

Вегетативные рефлексы, наиболее часто оцениваемых в практической медицине:

1. Болевой рефлекс - активирует СНС (диагностика чувствительности).

2. Рефлекс Гольца - раздражение петель кишечника, брюшины приводит к урежению или остановке сердцебиений (активация ПСНС).

3. Рефлекс Даньини-Ашнера - (глазо-сердечный рефлекс ) - надавливание на глазные яблоки (повышение внутриглазного давления) - урежение сердечных сокращений (тоже при пароксизмальной тахикардии).

4. Рефлекторная дыхательная аритмия (дыхательно-сердечный рефлекс ) - урежение сердцебиений в конце выдоха.

5. Рефлекторная Ортостатическая реакция - повышение ЧСС и АД при переходе из горизонтального в вертикальное положение.

11. Гуморальная регуляция функций…

Гуморальная регуляция осуществляется за счет химических веществ, находящихся в биологических жидкостях (кровь, лимфа, межклеточная жидкость).

Эти вещества называются биологически активными веществами (БАВ), они взаимодействуют с мембранными рецепторам.

Классификация биологически активных веществ (БАВ):

1. Неспецифические метаболиты .

2. Специфические метаболиты :

а) тканевые гормоны (парагормоны);

б) истинные гормоны.

Неспецифические метаболиты - продукты метаболизма, вырабатываемые любой клеткой в процессе жизнедеятельности и обладающие биологической активностью (СО 2 , молочная кислота).

Специфические метаболиты - продукты жизнедеятельности, вырабатываемые определенными специализированными видами клеток, обладающие биологической активностью и специфичностью действия:

а) тканевые гормоны - БАВ, вырабатывающиеся специализированными клетками, оказывают эффект в основном на месте выработки.

б) истинные гормоны – вырабатываются железами внутренней секреции

Участие БАВ на различных уровнях нейро-гуморальной регуляции:

I уровень : местная или локальная регуляция Обеспечивается гуморальными факторами: в основном - неспецифическими метаболитами ив меньшей степени -специфическими метаболитами (тканевыми гормонами).

II уровень регуляции : региональный (органный). тканевыми гормонами.

III уровень - межорганное, межсистемное регулирование. Гуморальная регуляция представлена железами внутренней секреции.

IV уровень. Уровень целостного организма. Нервная и гуморальная регуляция соподчинены на этом уровне поведенческой регуляции.

Регулирующее влияние на любом уровне определяется рядом факторов:

1. количество биологически активного вещества;

2. количество рецепторов;

3. чувствительность рецепторов.

В свою очередь чувствительность зависит:

а) от функционального состояния клетки;

б) от состояния микросреды (рН, концентрация ионов и т.д.);

в) от длительности воздействия возмущающего фактора.

Местная регуляция (1 уровень регуляции)

Средой является тканевая жидкость. Основные факторы:

1. Креаторные связи.

2. Неспецифические метаболиты .

Креаторные связи - обмен между клетками макромолекулами, несущими информацию о клеточных процессах, позволяющую клеткам ткани функционировать содружественно. Это один из наиболее эволюционно старых способов регуляции.

Кейлоны - вещества, обеспечивающие креаторные связи. Представлены простыми белками или гликопротеидами, влияющими на деление клеток и синтез ДНК. Нарушение креаторных связей может лежать в основе ряда заболеваний (опухолевый рост) а также процесса старения.

Неспецифические метаболиты - СО 2 , молочная кислота - действуют в месте образования на соседние группы клеток.

Региональная (органная) регуляция (2 уровень регуляции)

Неспецифические метаболиты,

«Есть вся Украина, и каждый депутат может себя занять».

Эту и следующую рабочие недели народные депутаты, согласно календарному плану работы Верховной Рады, трудятся в комитетах и на округах. Так, в сессионном зале, где они собирались в последний раз 17 ноября, парламентарии снова встретятся 5 декабря.

О том, эффективно ли такое разделение работы парламента, FaceNews поинтересовался у политических экспертов.

Эксперт Украинского института анализа и менеджмента политики Николай Спиридонов

Эти перерывы совершенно нелогичны по той причине, что с избирателями, как правило, работают только мажоритарщики, причем далеко не все. Лично я знаю несколько мажоритарщиков, которые регулярно работают с избирателями, «греют» округа, проводят увеселительные мероприятия, прием избирателей. Но общее число мажоритарщиков, которые регулярно занимаются своими округами, это, может, 20%-25%. Соответственно, от общего количества депутатов этот перерыв реально нужен 40-50 парламентариям, вряд ли большему количеству.

Что касается работы в комитетах, то, может быть, иногда, раз в пару месяцев, отдельная неделя для работы там должна быть. Однако в комитетах можно работать на неполных днях, соответственно, в среду, пятницу, понедельник. Комитеты – это чуть более обосновано, чем мажоритарные округа, но эти перерывы очень часто неоправданны. Например, сейчас двухнедельный перерыв.

Фактически депутаты очень часто все-таки совмещают политику с бизнесом, поэтому некоторым из них нужны эти перерывы для ведения своего бизнеса. Некоторым из них очень нравится отдыхать, соответственно, им нужны эти перерывы, чтобы больше времени проводить на курортах. Некоторым просто лень работать, но реального оправдания этим перерывам в работе Рады нет.

Как это реформировать? Нужно просто подчинить их общеукраинскому графику: пять дней в неделю нужно работать. Нужно, чтобы они жили по тем же законам, что и вся Украина.

Глава Комитета избирателей Украины Алексей Кошель

Прежде всего, есть логика в формировании календарного плана работы парламента, когда чередуется работа в комитетах с работой в сессионном зале, чтобы можно было не только голосовать, но и принимать участие в обсуждении законопроектов, внесении правок и так далее. Это не менее важная составляющая работы Верховной Рады, чем работа в сессионном зале.

Однако, если мы сравним парламент этого созыва с предыдущими, видим, что у Верховных Рад предыдущих составов было больше дней-сессионных заседаний.

Мне кажется, при планировании работы парламента стоит увеличить количество сессионных дней за счет работы с избирателями, потому что именно эти недели показывают самую низкую эффективность. То есть работа с избирателями для большей половины парламента – это запланированные выходные или запланированный отпуск.

Политический аналитик Ярослав Макитра

Работа парламентария не состоит только из пленарных заседаний, поэтому логично, когда есть перерывы на работу в комитетах, округах. Есть вся Украина, и каждый депутат может себя занять посещением регионов. Поэтому в такой практике нет ничего плохого, возможно, двухнедельные перерывы – это не настолько плохо.

Проблема в том, чтобы реально эти двухнедельные перерывы были работой на округах и в комитетах. Если это работа в комитетах, то нужно смотреть по посещениям этих депутатов, внесению их правок, законодательных инициатив. Когда мы проанализируем, увидим, что большое количество депутатов не посещают комитеты. То же самое касается работы в округах. Это тоже можно регламентировать в виде определенной отчетности, была бы политическая воля руководства парламента.

Однако мы видим, что и в заседаниях Верховной Рады принимают участие 120-150 депутатов при регистрации 300-340. Так что, тут комплексная проблема, которая заключается не в графике работы, он более-менее адекватен. Если бы депутаты действительно работали в комитетах и на округах, изучали законопроекты, им не так много времени нужно было бы для пленарной работы, чтобы принимать те или иные законопроекты.

В стенах парламента уже идет дискуссия, обмен мыслями, а не изучение документа. Должно было бы так быть. На практике, к сожалению, очень часто в стенах кто-то пытается изучить, кто-то вообще не изучает, а нажимает кнопочки по каким-то политическим мотивам или руководствуясь собственными представлениями, которые могут не соответствовать действительности. В этом наибольшая проблема – не в графике, а в качестве работы парламента в принципе.

Политолог Александр Палий

Совсем неэффективно такое разделение работы парламента, потому что работа в округах – это что-то мифическое, фактически отдых, парламентские каникулы.

Кроме того, у нас есть проблема, что депутаты постоянно регистрируют законодательный спам, неподготовленные и некачественные законопроекты в огромном количестве. Много законов – это показатель неэффективности. У здорового государства должно быть небольшое количество законов, а каждое изменение должно обосновываться со всех сторон, быть взвешенным.