Болезни Военный билет Призыв

Нормирование, регулирование, контроль качества воды в водоемах. Нормирование и регулирование качества воды в водоемах

Качество воды в водоеме оценивается на основе результатов химического, бактериологического и биологического анализов. Каждый из этих видов анализа имеет свои достоинства и недостатки, они не заменяют друг друга, и наиболее достоверная оценка получается при сочетании всех трех методов.

Химические исследования позволяют оценить величину и характер загрязнения, его влияние на изменение качества воды. Бактериологический анализ дает возможность определить вероятность нахождения в воде патогенных микроорганизмов. Биологический анализ помогает установить степень загрязнения водоема в целом, в ряде случаев позволяя зафиксировать последствия кратковременного загрязнения водоема, которое не может быть зарегистрировано методами физико-химического и бактериологического исследования.

Биологический анализ воды основан на приуроченности некоторых организмов к воде определенного качества.

В 1909 г. Р. Колквитц и М. Марсон разработали классификацию степени загрязненности водоемов по содержащимся в них видам растений и животных. Эта классификация, получившая название системы сапробности, в дальнейшем была усовершенствована. В нашей стране в наиболее полном виде она была разработана Я. Я. Никитинским и Г. И. Долговым (1927). По их определению, «сапробность-это комплекс физиологических свойств данного организма, обусловливающий его способность развиваться в воде с тем или иным содержанием органических веществ, с той или иной степенью загрязнения».

Поступающие в водоем загрязнения в результате самоочистительной способности водоемов постепенно разбавляются и разрушаются. Деструкция загрязнения происходит постепенно и в связи с этим постепенно восстанавливаются в водоеме условия, которые были в нем до поступления сточных вод. Процесс этот весьма длительный, и зона загрязнения в реке может захватывать десятки и сотни километров. Размер зоны зависит от соотношения объема сточных и речных вод, от концентрации и качества загрязняющих веществ, от скорости течения и других причин.

В зависимости от того, насколько сильно загрязнена вода, водоемы и их отдельные участки подразделяются на следующие зоны:

При загрязнении водоема в нем изменяются физико-химические условия. При этом одни формы гидробионтов погибают, другие получают преимущества для своего развития, и в результате на загрязненном участке происходит смена биоценоза. Многие гидробионты способны развиваться только в воде определенного качества и поэтому приспособлены к определенным зонам загрязнения.

Полисапробная зона (р) характеризуется большим содержанием нестойких органических веществ и продуктов их анаэробного распада, В воде в изобилии присутствуют белковые вещества. БПК составляет десятки миллиграммов на литр. Фотосинтез отсутствует. Кислород может поступать в воду только за счет атмосферной реазрации, и так как он полностью потребляется на окисление в поверхностных слоях, то в воде он практически не обнаруживается. Вода содержит метан и сероводород. Для этой зоны характерно большое количество сапрофитной микрофлоры, представленной сотнями тысяч и даже миллионами клеток в 1 мл. В донных отложениях кислород отсутствует, содержится много детрита, идут восстановительные процессы, железо находится в форме FeS, ил имеет черную окраску и запах сероводорода. В этой зоне в массе развиваются растительные организмы с гетеротрофным типом питания: различные бактерии, в том числе нитчатые бактерии (Sphaerotilus), серные бактерии (Beggiatoa, Thiothris), бактериальные зооглеи (Zoogloea ramigera), из простейших-инфузории, бесцветные жгутиковые (рис. 62).

Альфа-мезосапробная зона (?-m). В этой зоне начинается аэробный распад органических веществ с образованием аммиака, содержится много свободной углекислоты, кислород присутствует в малых количествах. Метан и сероводород отсутствуют. Количество загрязнения, определяемого по БПК, все еще очень велико: десятки миллиграммов на литр. Количество сапрофитных бактерий составляет десятки и сотни тысяч в 1 мл.

В воде и донных отложениях протекают окислительно-восстановительные процессы; железо-в закисной и окисной формах, ил сероватой окраски. В?-m зоне развиваются организмы, облагающие большой выносливостью к недостатку кислорода и большому содержанию углекислоты. Преобладают растительные организмы с гетеротрофным и миксотрофным питанием. Отдельные организмы имеют массовое развитие: бактериальные зооглеи, нитчатые бактерии, грибы, из водорослей-осциллятории, стигеоклониум. Из животных организмов обильны сидячие инфузории (Carchesium), встречаются коловратки (Brachionus), много окрашенных и бесцветных жгутиковых (рис. 63). В илах значительное количество тубифицид и личинок хирономид.

Бета-мезосапробная зона (?-m) отмечается в водоемах, почти свободных от нестойких органических веществ, разложившихся до кисленных продуктов (полная минерализация). Количество сапрофитных бактерий составляет тысячи клеток в 1 мл и резко увеличивается в период отмирания водных растений. Концентрация кислорода и углекислоты сильно колеблется в течение суток; в дневные часы содержание кислорода в воде доходит до пресыщения, а углекислота может полностью исчезать, в ночные часы наблюдается дефицит кислорода в воде. В илах много детрита, интенсивно протекают окислительные процессы, ил желтой окраски. В этой зоне отмечается большое разнообразие животных и растительных организмов. В массе развиваются растительные организмы с автотрофным питанием, наблюдается «цветение» воды в результате развития фитопланктона. В обрастаниях обычны зеленые нитчатки и эпифитные диатомеи; в илах-черви, личинки хирономид, моллюски (рис. 64).

Олигосапробная зона (о) характеризует практически чистые водоемы с незначительным содержанием нестойких органических веществ и небольшим количеством продуктов их минерализации. Содержание кислорода и углекислоты не претерпевает заметных колебаний в дневные и ночные часы суток.

«Цветения» воды, как правило, не наблюдается. В донных отложениях содержится мало детрита, автотрофных микроорганизмов и бентосных животных (червей, личинок хирономид и моллюсков). Показателями большой чистоты воды в этой зоне служат некоторые красные водоросли (Thorea, Batrachospermum) и водные мхи (рис. 65).

Отдельные индикаторные организмы, взятые изолированно, не могут достаточно точно охарактеризовать степень загрязнения вод. Например, при разложении белков в хозяйственно-фекальных стоках накапливается сера, вследствие этого в таких водах могут в изобилии встречаться серобактерии из родов Beggiatoa и Thiothrix. Вместе с тем эти бактерии живут и в воде минеральных серных источников, совершенно не содержащих органических загрязнений. Серобактерии являются индикаторами серы в воде независимо от того, какого происхождения эта сера.

Приведенный пример показывает, что судить о степени загрязнения вод можно лишь по ценозам, характерным для той или иной зоны сапробности, а не по отдельным, пусть даже индикаторным организмам.

В настоящее время многие авторы предлагают более дробное деление зон сапробности, выделяя 5, 6 и более подзон. Так, Либманн (1962) предусматривает 4 основных класса чистоты водоема (с. 194) и три промежуточных. Основные классы обозначаются цифрами от I (самый чистый, соответствующий олигосапробной зоне) до IV (соответствующего полисапробной зоне). Промежуточные-двумя цифрами: I-II, II-III, III-IV. А. А. Былинкина, С. М. Драчев и А. И. Ицкова предложили подразделять водоемы по степени загрязненности на 6 групп: очень чистые, чистые, умеренно загрязненные, загрязненные, грязные и очень грязные. Каждой из этих градаций соответствует определенное значение количества загрязнения.

Очень чистые водоемы практически не несут следов воздействия человека. В СССР к таким водоемам могут быть отнесены многие озера и реки Сибири, а на европейской территории-Ладожское и Онежское озера, Рыбинское водохранилище, некоторые северные реки. В этих водоемах насыщение воды кислородом достигает 95 %, ВПК не превышает 1 мг/л, а взвешенные вещества-3 мг/л. Вода в очень чистых водоемах пригодна для всех видов водопользования.

Водоемы, относимые к категории чистых, по химическим показателям почти не отличаются от очень чистых, но следы деятельности человека проявляются прежде всего в увеличении количества сапрофитной микрофлоры в воде. Воды водоемов второй группы также пригодны для всех видов водопользования. Для их обеззараживания достаточно хлорирования.

Умеренно загрязненные воды характеризуются повышенным содержанием органических веществ, ионов хлора и аммония. Они несут в себе признаки загрязнения поверхностным стоком и бытовыми водами. Умеренно загрязненные воды после соответствующей очистки пригодны для хозяйственно-питьевого использования, для разведения некоторых видов рыб и для прочих видов водопользования.

К категории загрязненных отнесены реки и озера, природные свойства которых значительно изменены в результате поступления в них сточных вод. В зимний период при образовании ледяного покрова на загрязненных участках водоема могут создаваться анаэробные условия. Загрязненные воды непригодны для питьевого, хозяйственно-бытового и культурно-бытового назначения, а также для рыбоводства. Они могут быть использованы, да и то с ограничениями, в некоторых производственных процессах, для орошения и судоходства. В странах Западной Европы при остром дефиците воды загрязненные воды используют для хозяйственно-питьевого назначения, применяя при этом сложные способы очистки,

В грязных и очень грязных водоемах природные свойства воды сильно изменены. В летний период пода этих водоемов издает неприятные запахи. Повышенное содержание агрессивной углекислоты и сернистых соединений в воде грязных водоемов оказывает вредное воздействие на обшивку судом и портовые сооружения, вследствие чего эти водоемы ограниченно пригодны для судоходства. Для орошения воды грязных водоемов могут быть использованы с ограничениями, не под все культуры.

В табл. 3 приведены некоторые химические показатели степени загрязненности водоемов.

При оценке степени загрязненности принимаются во внимание также органолептические показатели, такие, как цвет, запах, мутность и т. д. Например, запах может свидетельствовать о присутствии в воде ряда нежелательных примесей прежде, чем они станут доступны химическому анализу. По этой причине многие токсичные вещества ограничиваются для спуска в водоем не по показателю вредности, а по запаху. К таким веществам относятся фенол, дихлорэтан, крезолы и другие химические соединения. Присутствие нефти в воде также лимитируется органолептическими показателями: по запаху и визуально, по образованию на поверхности воды пленок и пятен. В связи с тем, что сточные воды в большой степени несут в себе загрязнения, характерные для производственных сточных вод, и в том числе токсичные вещества, В. И. Жадин (1964) предложил характеризовать загрязненность водоемов не только по степени сапробности, но и по степени токсобности, понимая под этим термином способность гидробионтов существовать в водах, содержащих то или иное количество ядовитых веществ. По аналогии с зонами сапробности он предложил обозначить зоны токсобности, как политоксобную, мезотоксобную и олиготоксобную.

Охрана водоёмов от загрязнений осуществляется в соответствии с «Санитарными правилами и нормами охраны поверхностных вод от загрязнения» (1988 г.). Правила включают в себя общие требования к водопользователям в части сброса сточных вод в водоёмы. Правилами установлены две категории водоёмов: 1 – водоёмы питьевого и культурно-бытового назначения; 2 – водоёмы рыбохозяйственного назначения. Состав и свойства воды водных объектов первого типа должны соответствовать нормам в створах, расположенных в водотоках на расстоянии не менее одного километра выше ближайшего по течению пункта водопользования, а в непроточных водоёмах – в радиусе не менее одного километра от пункта водопользования. Состав и свойства воды в водоёмах II типа должны соответствовать нормам в месте выпуска сточных вод при рассеивающем выпуске (при наличии течений), а при отсутствии рассеивающего выпуска – не далее чем в 500 м от места выпуска.

Правилами установлены нормируемые значения для следующих параметров воды водоёмов: содержание плавающих примесей и взвешенных частиц, запах, привкус, окраска и температура воды, значение рН, состав и концентрация минеральных примесей и растворённого в воде кислорода, биологическая потребность воды в кислороде, состав и предельно допустимая концентрация (ПДК) ядовитых и вредных веществ и болезнетворных бактерий. Под предельно допустимой концентрацией понимается концентрация вредного (ядовитого) вещества в воде водоёма, которая при ежедневном воздействии в течение длительного времени на организм человека не вызывает каких-либо патологических изменений и заболеваний, в том числе у последующих поколений, обнаруживаемых современными методами исследований и диагностики, а также не нарушает биологического оптимума в водоёме.

Вредные и ядовитые вещества разнообразны по своему составу, в связи с чем их нормируют по принципу лимитирующего показателя вредности (ЛПВ), под которым понимают наиболее вероятное неблагоприятное воздействие данного вещества. Для водоёмов первого типа используют три типа ЛПВ: санитарно-токсикологический, общесанитарный и органолептический, для водоёмов второго типа – ещё два вида: токсикологический и рыбохозяйственный.

Санитарное состояние водоёма отвечает требованиям норм при выполнении неравенства

для каждой из трёх (для водоёмов второго типа – для каждой из пяти) групп вредных веществ, ПДК которых установлены соответственно по санитарно-токсикологическому ЛПВ, общесанитарному ЛПВ, органолептическому ЛПВ, а для рыбохозяйственных водоёмов – ещё и по токсикологическому ЛПВ и рыбохозяйственному ЛПВ. Здесь n – число вредных веществ в водоёме, относящихся, положим, к «санитарно-токсикологической» группе вредных веществ; C i – концентрация i-го вещества из данной группы вредных веществ; m – номер группы вредных веществ, например, m = 1 – для «санитарно-токсикологической» группы вредных веществ, m = 2 – для «общесанитарной» группы вредных веществ и т.д. – всего пять групп. При этом должны учитываться фоновые концентрации C ф вредных веществ, содержащихся в воде водоёма до сброса сточных вод. При преобладании одного вредного вещества с концентрацией С в группе вредных веществ данного ЛПВ должно выполняться требование:

, (2.2)

Установлены ПДК для более 400 вредных основных веществ в водоёмах питьевого и культурно-бытового назначения, а также более 100 вредных основных веществ в водоёмах рыбохозяйственного назначения. В таблице 2.4 приведены ПДК некоторых веществ в воде водоёмов.

Для самих сточных вод ПДК не нормируются, а определяются предельно допустимые количества сброса вредных примесей, ПДС. Поэтому минимально необходимая степень очистки сточных вод перед сбросом их в водоём определяется состоянием водоёма, а именно - фоновыми концентрациями вредных веществ в водоёме, расходом воды водоёма и др., то есть способностью водоёма к разбавлению вредных примесей.

Запрещено сбрасывать в водоёмы сточные воды, если существует возможность использовать более рациональную технологию, безводные процессы и системы повторного и оборотного водоснабжения – повторное или постоянное (многократное) использование одной и той же воды в технологическом процессе; если стоки содержат ценные отходы, которые возможно утилизировать; если стоки содержат сырьё, реагенты и продукцию производства в количествах, превышающих технологические потери; если сточные воды содержат вещества, для которых не установлены ПДК.

Режим сброса может быть единовременным, периодическим, непрерывным с переменным расходом, случайным. При этом необходимо учитывать, что расход воды в водоёме (дебет реки) изменяется и по сезонам, и по годам. В любом случае должны удовлетворяться требования условия (2.2).

Большое значение имеет метод сброса сточных вод. При сосредоточенных выпусках смешение стоков с водой водоёма минимально, и загрязнённая струя может иметь большое протяжение в водоёме. Наиболее эффективно применение рассеивающих выпусков в глубине (на дне) водоёма в виде перфорированных труб.

В соответствии с изложенным одной из задач регулирования качества вод в водоёмах является задача определения допустимого состава сточных вод, то есть того максимального содержания вредного вещества (веществ) в стоках, которое после сброса ещё не даст превышения концентрации вредного вещества в водах водоёма над ПДК данного вредного вещества.

Таблица 2.4 - Предельно допустимые концентрации некоторых вредных

веществ в водоёмах

Вещество

Санитарно-

токсикологический

Токсикологический

Органолептический

Рыбохозяйственный

Бензин, керосин

Санитарно-

токсикологический

Токсикологический

Органолептический

Общесанитарный

Санитарно-

токсикологический

Органолептический

Уравнение баланса растворённой примеси при сбросе её в водоток (реку) с учётом начального разбавления в створе выпуска имеет вид :

Здесь С сm , С р.с, С ф – концентрации примеси в сточных водах до выпуска в водоём, в расчётном створе и фоновая концентрация примеси соответственно, мг/кг;

n o и n р.с – кратность разбавления сточных вод в створе выпуска (начальное разбавление) и в расчётном створе, соответственно.

Начальное разбавление сточных вод в створе их выпуска

где Q o = LHV – часть расхода водостока, протекающая над рассеивающим выпуском, имеющим, положим, вид перфорированной трубы, уложенной на дно, м 3 /с; q – расход сточных вод, м 3 /с; L – длина рассеивающего выпуска (перфорированной трубы), м; H, V – средние глубина и скорость потока над выпуском, м и м/с.

После подстановки (2.4) в (2.3) получим, что

(2.5)

При LHV >> q

(2.6)

По ходу водостока струя сточной воды расширяется (за счёт диффузии, турбулентной и молекулярной), вследствие чего в струе происходит перемешивание сточной воды с водой водотока, возрастание кратности разбавления вредной примеси и постоянное уменьшение её концентрации в струе сточной, точнее, теперь уже перемешанной воды. В конечном счете, створ (сечение) струи расширится до створа водотока. В этом месте водотока (где створ загрязнённой струи совпал со створом водотока) достигается максимально возможное для данного водотока разбавление вредной примеси. В зависимости от величин кратности начального разбавления, ширины, скорости, извилистости и других характеристик водотока концентрация вредной примеси (С р.с) может достигнуть значения её ПДК в разных створах загрязнённой струи. Чем раньше это произойдёт, тем меньший участок (объём) водотока будет загрязнён вредной примесью выше нормы (выше ПДК). Понятно, что самый подходящий вариант – когда условие (2.2) обеспечивается уже в самом месте выпуска и, таким образом, размеры загрязнённого участка водотока будут сведены к нулю. Напомним, что этот вариант соответствует условию выпуска стоков в водоток второго типа. Нормативное разбавление до ПДК в створе выпуска требуется и для водотоков первого типа, если выпуск осуществляется в черте населённого пункта. Этот вариант можно обеспечить, увеличивая длину перфорированной трубы выпуска. В пределе, перегородив весь водосток трубой выпуска и включив таким образом в процесс разбавления стоков весь расход водотока, учитывая, что для створа выпуска n р.с = 1, а также положив в (2.5) , получим:

, (2.7)

где В и Н – эффективные ширина и глубина водотока; соответственно – расход воды водотока.

Уравнение (2.7) означает, что при максимальном использовании разбавительной способности водотока (расхода водотока) максимально возможную концентрацию вредного вещества в сбрасываемых сточных водах можно допустить равной . Если для целей разбавления стоков возможно использование только части расхода воды водотока, например, 0,2Q, то требования к очистке стоков от данного вредного вещества повышаются, и максимально допустимая концентрация вредности в стоках должна быть уменьшена при этом в 5 раз: . При этом величина qC cm , равная в первом случае ПДК , а во втором ПДК должна рассматриваться как предельно допустимый сброс (ПДС) данной вредности в водоток, г/с. При превышении данных величин ПДС (Q ПДК и 0,2Q ПДК, г/с) концентрация вредного вещества в водах водотока превысит ПДК. В первом случае (ПДС = Q ПДК) турбулентная (и молекулярная) диффузия уже не уменьшит концентрацию вредности по ходу водотока, так как створ начального разбавления совпадает со створом всего водотока – струе загрязнённой воды некуда диффундировать. Во втором случае по ходу водотока будут иметь место разбавление стоков и уменьшение концентрации вредности в воде водоёма, и на некотором расстоянии S от выпуска концентрация вредного вещества может уменьшиться до ПДК и ниже. Но и в этом случае определённый участок водотока окажется загрязнённым выше нормы, то есть выше ПДК.

В общем случае расстояние от створа выпуска до расчётного створа, то есть до створа с заданной величиной кратности разбавления, n р.с или – что фактически то`же – с заданной концентрацией вредной примеси, например, равной её ПДК будет равно

, (2.8)

где А = 0,9…2,0 – коэффициент пропорциональности, зависящий от категории русла и среднегодового расхода воды водотока; В – ширина водотока, м; х – ширина части русла, в которой не производится выпуск (труба не перекрывает всю ширину русла), м; j - коэффициент извилистости русла: отношение расстояния между створами по фарватеру к расстоянию по прямой; Re д = V H / D – диффузионный критерий Рейнольдса.

Расширение загрязнённой струи по ходу водотока происходит, в основном, за счёт турбулентной диффузии, её коэффициент

где g – ускорение свободного падения, м 2 /с; М – функция коэффициента Шези для воды. М=22,3 ; С ш – коэффициент Шези, С ш =40…44 .

После потенцирования (2.8) получается значение n р.с в явном виде

. (2.10)

Подставив выражение для n р.с в (2.6) и полагая С р.с = ПДК, получаем:

]. (2.11)

Уравнение (2.11) означает: если при начальном разбавлении, определяемом величинами L, H, V, и при известных характеристиках водотока j, А, В, х, Re д, С ф необходимо, чтобы на расстоянии S от выпуска стоков концентрация вредного вещества была на уровне ПДК и меньше, то концентрация вредного вещества в стоках перед сбросом не должна быть больше величины C cm , вычисляемой по (2.11). Перемножив обе части (2.11) на величину q, приходим к тому же условию, но уже через предельно-допустимый сброс C cm q = ПДС:

. (2.12)

Из общего решения (2.12) следует тот же результат, который получен выше на основе простых соображений. В самом деле, положим, что решается задача: каким может быть максимальный (предельно допустимый) сброс сточной воды в водоток, чтобы уже в месте выпуска (S=0) концентрация вредного вещества была равна ПДК, а для начального разбавления используется только пятая часть расхода водотока (дебета реки), то есть LHV = 0,2 Q.

Поскольку при S = 0 n р.с = 1, из (2.12) получаем:

ПДС = 0,2 ПДК

На изложенных принципах, в целом, основывается регулирование качества воды в водотоках при сбросе в них взвешенных, органических веществ, а также вод, нагретых в системах охлаждения предприятий .

Условия смешения сточных вод с водой озёр и водохранилищ значительно отличаются от условий их смешения в водотоках – реках и каналах. В частности, полное перемешивание стоков и вод водоёма достигается на существенно больших расстояниях от места выпуска, чем в водотоках. Методы расчёта разбавления стоков в водохранилищах и озёрах приведены в .

Предыдущая

Смесь хозяйственно-бытовых и производственных сточных вод по физическому состоянию является нестойкой полидисперсной системой. Примеси (загрязнения) сточных вод по своим размерам колеблются от грубых до высокодисперсных.

В бытовых сточных водах грубодисперсные примеси и взвешенные частицы (размером более 10 -4 мм) составляют 35-40%, колло-иднорастворенные (размером 10 -4 мм) - 10-25%, растворимые (размером менее 10 -6 мм) составляют 40-55% от общего количества загрязнений.

На одного жителя, который пользуется канализацией, приходится 60-80 г взвешенных частиц в сутки (в сухом эквиваленте). При очистке сточных вод вначале извлекают грубо-дисперсные, а затем коллоиднорастворенные и растворенные примеси.

По своему составу примеси хозяйственно-бытовых стоков делят на три группы: минеральные, органические и биологические .

К минеральным примесям относят: песок, частицы шлака, глины, соли, щелочи, кислоты, минеральные масла и другие органические вещества. Количество минеральных примесей составляет около 30-40% от общего количества загрязнений.

К органическим примесям относят загрязнения растительного и животного происхождения.

В загрязнениях растительного происхождения основным элементом является углерод, а в загрязнениях животного происхождения - азот. Органические загрязнения образуются в результате жизнедеятельности человека. Количество органических примесей составляет 60-70% от общего количества загрязнений хозяйственно-бытовых сточных вод. Количество органических загрязнений пропорционально числу жителей и составляет 7-8 г азота, 8-9 г хлоридов, 1,5-1,8 фосфора, 3 г калия и других веществ на одного жителя в сутки.

Наибольшие трудности при очистке сточных вод вызывают органические примеси. Находясь в сточных водах, они быстро загнивают и отравляют грунт, воду и воздух. Поэтому сточные воды необходимо быстро вывести за пределы населенных пунктов и минерализовать органические вещества, которые уже теряют свои вредные качества.

К биологическим примесям относятся микробная флора и фауна: бактерии, вирусы, водоросли, дрожжевые и плесневые грибки и т.п. Несмотря на то, что размеры и вес микроорганизмов очень малы, зато если сложить вместе все бактерии, то суммарный объем микроорганизмов в сточных водах составит приблизительно 1 м3 на 1000 м3 стоков. Живительной средой для микроорганизмов являются органические вещества, находящиеся в сточных водах.

Среди микроорганизмов есть патогенные (заразные) бактерии: возбудители брюшного тифа, холеры, дизентерии и других желудочно-кишечных заболеваний. Поэтому большинство сточных вод является потенциально опасными. В каждом конкретном случае для определения степени опасности сточных вод делают анализ качественного и количественного загрязнения того или иного вида.

Минерализацию органических веществ осуществляют их окислением . Процесс окисления органических веществ, который осуществляется в присутствии воздуха, называется аэробным. В том случае, когда на окисление органических веществ расходуется кислород не из воздуха, а из различных соединений, процесс минерализации называют анаэробным.

При анаэробном процессе окисления, который протекает очень медленно, выделяются различные газы с плохим запахом и развивается большое число анаэробных бактерий. Таким образом, все основные виды очистки сточных вод основаны на минерализации органических веществ в анаэробных условиях.

Для того чтобы не загрязнять источники хозяйственно-питьевой воды, места купания и отбора промышленных вод, сточные воды очищают. При этом частично процесс очищения может происходить уже в самом водоеме, вблизи места выпуска стоков, если это не мешает использованию воды для водоснабжения.

Необходимая степень очистки сточных вод перед сбрасыванием их в водоемы определяется специальным расчетом и согласовывается с местными органами санитарного и рыбного надзора. Для расчета степени очистки стоков необходимо знать концентрацию и количество сточных вод, мощность и категорию водоема и содержание кислорода в его воде. По условиям сбрасывания сточных вод водоемы делят на три категории в зависимости от характера их использования.

Первая категория включает участки водоема, которые используются для централизованного водоснабжения, а также те, которые находятся в границах второго пояса зоны санитарной охраны водопроводов или граничат с государственными рыбными заповедниками.

Вторая категория включает участки водоема, которые используются для неорганизованного хозяйственно-питьевого водоснабжения и водоснабжения предприятий пищевой промышленности, а также участки с местами массового нереста промышленных видов рыб.

Третья категория включает в себя участки водоема в границах населенных пунктов, которые используются для массового купания или имеют архитектурно-декоративное значение или используются для организованного рыбного хозяйства. Водоемы третьей категории не используются для питьевого водоснабжения.

В соответствии с вышесказанным, к каждой категории водоемов предъявляются соответствующие условия. После смешивания сточных вод с водой водоема, смешанная вода должна иметь в своем составе не менее 4 мг/л растворенного кислорода(летом). Активная реакция в смешанной воде не должна быть по рН ниже 6,5 и выше 8,5, а содержание взвешенных частиц не должно повышаться более чем на 0,25 мг/л для водоемов первой категории, 0,75 мг/л для водоемов второй категории и 1,5 мг/л для водоемов третьей категории.

Категории прудов и их отличительные особенности

Головные пруды предназначены для накопления воды с последующей подачей ее в систему производственных прудов. Место расположения головного пруда выбирается с таким расчетом, чтобы горизонт воды в нем был выше горизонта всех производственных прудов. Это позволяет обеспечить самотечное водоснабжение прудов. Размеры головных прудов определяются в зависимости от размеров производственных прудов.

Нерестовые пруды предназначены для размножения рыбы и должны отвечать оптимальным условиям для нереста, развития икры и содержания личинок. Водоснабжение прудов обязательно независимое. Пруды должны быстро спускаться. Нерестовые пруды не следует использовать для других целей, чтобы не привести к вымоканию и исчезновению на дне луговой растительности, а также из соображений профилактики заболеваний.

Мальковые пруды предназначены для подращивания личинок, пересаживаемых из нерестовых прудов или поступающих из инкубационного цеха. Для лучшего развития кормовой базы ложе мальковых прудов рекомендуется распахивать и вносить органические удобрения.

Выростные пруды служат для выращивания сеголетков. Личинки, пересаженные из нерестовых или мальковых прудов, содержатся в выростных прудах до конца вегетационного периода, затем молодь пересаживают в зимовальные пруды. Водоснабжение выростных прудов должно быть независимым, с устройством на водоподающей системе гравийных и песчаных фильтров, а также установкой на водоподаче рыбосороуловителей.

Зимовальные пруды предназначены для зимнего содержания рыбы. Они располагаются вблизи от источника водоснабжения, что позволяет уменьшить возможность охлаждения воды в период поступления ее в пруды и прекращения водоснабжения зимовальных прудов. Для создания оптимальных условий зимовки рыбы необходимо выдерживать оптимальные глубины из расчета не менее 1 м непромерзающего слоя воды, проточность порядка 15 л/с на га. Вода источников водоснабжения должна иметь высокое содержание кислорода, низкую окисляемость, отсутствие загрязнения.

Таблица 3

Характеристика основных категорий прудов рыбоводного хозяйства
(Привезенцев, Власов, 2004)

Показатели Категории прудов
нерестовые мальковые выростные зимовальные нагульные маточные преднерестовые пруды-садки карантинные
1. Размер пруда, га 0,05-0,1 0,5-1,0 10-15 0,5-1,0 50-100 1-2 0,001-0,002 0,05-0,1 0,1-0,5
2. Глубина, м:
у водоспуска 1-1,2 1,2-1,5 1,2-1,5 1-1,2 3-4 1,2-1,5 1-1,2 1,5 1,5
средняя 0,5 0,5-0,8 1,0-1,2 1,5-2,5 1,3-1,5 1,2-1,5 0,9-1 1,3 1,0
3. Сроки наполнения, сут.:
Желательные 0,2 10-15 0,3-0,5 15-20 0,5 0,002 0,2 0,3
Допустимые 0,3 0,003 0,3 0,5
4. Сроки спуска, сут.:
Желательные 0,1 0,3-0,5 3-5 0,5-1,0 5-10 0,3 0,001 0,2 0,2
Допустимые 0,2 0,8 0,5 0,002 0,3 0,3
5. Проточность на 1 га площади, л/с 0,5-1 1-1,5 0,5-1 0,5-1

Нагульные пруды предназначены для выращивания товарной рыбы. Это наиболее крупные в хозяйстве пруды, рыбопродуктивность которых зависит от их размеров. На небольших рыбоводных прудах, где легче осуществить комплекс различных интенсификационных мероприятий, получают более высокий выход рыбной продукции. Большие глубины неблагоприятны для питания и роста карпа, что связано с более низкими температурами воды и меньшим содержанием кислорода в придонных слоях. Для обеспечения лучшей эксплуатации пруды должны быть хорошо спланированы, чтобы при спуске полностью осушаться.

Маточные пруды предназначены для летнего и зимнего содержания производителей и ремонтного молодняка. Размеры и количество прудов зависят от численности производителей.

Карантинные пруды предназначены для временного содержания больной рыбы или производителей, завозимых из других хозяйств. Их делают обязательно проточными, но у вытока воду (если в пруду сидит больная рыба) обеззараживают хлорированием. Располагаются такие пруды в конце хозяйства на удалении от остальных категорий прудов хозяйства.

Пруды-садки используются осенью для хранения живой рыбы, а весной – для временной передержки годовиков до их реализации. Садки используются также весной для содержания производителей до посадки их на нерест и ремонтного материала до посадки в маточные пруды.

Преднерестовые пруды предназначены для содержания производителей до высадки на естественный нерест в нерестовые пруды и для выдерживания после гипофизарных инъекций. Пруды должны находиться в непосредственной близости от инкубационного цеха, иметь хорошую проточность и при необходимости быстро спускаться.

В хозяйстве, ведущемся с трехлетним оборотом, имеется дополнительно еще одна категория прудов – выростные пруды второго порядка , не отличающихся по устройству от нагульных прудов при двухлетнем обороте.

Таблица 4

Примерное соотношение отдельных категорий прудов, (%)

Процентное соотношение площадей прудов отдельных категорий зависит от типа, системы, оборота, мощности хозяйства, принятой технологии разведения и выращивания рыбы, степени интенсификации, рыбоводно-технологических нормативов. Площади маточных и карантинных прудов устанавливаются в зависимости от процентного соотношения прудов основных категорий.

Соотношение прудов основных категорий, приведенное в таблице 4, является примерным и изменяется в зависимости от особенностей технологии, уровня интенсификации отдельного прудового хозяйства.

Вопросы для самоконтроля:

1. В чем отличия полносистемных и неполносистемных прудовых хозяйств?

2. Что такое оборот?

3. Назовите основные категории прудов полносистемных хозяйств с 2-х летним и с 3-х летним оборотами выращивания товарной рыбы.

3. Перечислите основные преимущества и недостатки одно-, двух- и трехлетнего оборота.

4. Обозначьте назначение и отличительные особенности каждой категории прудов в полносистемном и неполносистемном карповом хозяйстве.


Практическое занятие №6
«Требования, предъявляемые к качеству воды, используемой в рыбоводных целях»

Цель работы: Изучить требования, предъявляемые к качеству воды в рыбоводных прудах.

Задание: 1. Ознакомиться с требованиями к качеству воды в рыбоводных прудах.

2. Записать в рабочую тетрадь основные параметры, характеризующие качеств воды.

3. Отметить показатели предельно допустимых концентраций вредных веществ в воде рыбоводных прудов.

Качество воды, используемой в технологическом процессе, должно обеспечивать оптимальный режим выращивания рыбы, не только исключающий возникновение заморных явлений, но способствующий получению максимальной рыбопродуктивности.

Основными показателями, характеризующими качество воды, используемой в рыбоводных целях являются:

Температура;

Прозрачность и цветность;

Водородный показатель (рН);

Органические вещества;

Биогенные элементы;

Солевой состав;

Микробиологические показатели.

Температура воды: вода характеризуется низкой теплопроводностью, из-за которой возникает эффект слоистости (летом у поверхности вода теплая, у дна – холодная, в зимний период – у поверхности вода более холодная, чем у дна). В зависимости от отношения к температуре воды рыбы делятся на тепловодных (так, для карпа оптимальной является температура 23-28ºС) и холодноводных (оптимальная температура воды для форели – 14-18ºС).

Прозрачность и цветность : отмечено, что чем ближе цвет воды к голубому, тем она более прозрачна, чем желтее цвет воды, тем ниже ее прозрачность. Чем менее прозрачна вода, тем лучше развит в ней зоопланктон.

Водородный показатель (рН) : наиболее благоприятно для рыб нейтральное значение рН. При значительных сдвигах рН в кислую или щелочную сторону снижается интенсивность дыхания рыбы. Допустимые значения рН зависят от вида рыбы. Так, щука переносит колебания рН в пределах 4,8-8,0, форель – 4,5-9,5, карп – 4,3-10,8 ед.

Газовый состав : с повышением температуры воды и увеличением ее минерализации растворимость газов ухудшается. При снижении уровня растворенного в воде кислорода ухудшается потребление рыбой кормов. Наибольшее значение для рыбы имеют кислород и углекислый газ. Оптимальное содержание растворенного кислорода для карпа 5 мг/л, для форели – 9-11 мг/л, содержание углекислого газа – 10-20 мг/л.

Органическое вещество : присутствует в воде в растворенном и взвешенном виде, пополняется за счет фотосинтеза фитопланктона, хемосинтеза некоторых видов бактерий. Поступает в водоемы с атмосферными осадками и промышленными стоками.

Биогенные элементы : к ним относятся фосфаты, нитраты, микроэлементы, обеспечивающие развитие фито- и зоопланктона. От уровня их развития зависит продуктивность водоемов.

Соленость : суммарное значение количества растворенных в воде солей. По данному показателю различают 3 группы водоемов: пресные – содержание солей до 1мг/л, солоноватые – 1-15 мг/л, соленые – 15-40 мг/л.

В рыбоводных хозяйствах качество воды оценивают также по показателю общей жесткости . Чем выше жесткость, тем выше осмотическое давление, к которому чувствительна рыба.

Общие требования и нормы качества воды, поступающей в рыбоводные хозяйства, зависят от категории прудов и типа хозяйств. Основные нормы, характеризующие качество воды, показаны в таблицах 5,6 и 7.

ЛЕКЦИЯ 10. Нормирование, регулирование, контроль качества воды в водоемах

10.1 Нормирование и регулирование качества воды в водоёмах

Охрана водоёмов от загрязнений осуществляется в соответствии с «Санитарными правилами и нормами охраны поверхностных вод от загрязнения» (1988 г.). Правила включают в себя общие требования к водопользователям в части сброса сточных вод в водоёмы. Правилами установлены две категории водоёмов: 1 – водоёмы питьевого и культурнобытового назначения; 2 – водоёмы рыбохозяйственного назначения. Состав и свойства воды водных объектов первого типа должны соответствовать нормам в створах, расположенных в водотоках на расстоянии не менее одного километра выше ближайшего по течению пункта водопользования, а в непроточных водоёмах – в радиусе не менее одного километра от пункта водопользования. Состав и свойства воды в водоёмах II типа должны соответствовать нормам в месте выпуска сточных вод при рассеивающем выпуске (при наличии течений), а при отсутствии рассеивающего выпуска – не далее чем в 500 м от места выпуска.

Правилами установлены нормируемые значения для следующих параметров воды водоёмов: содержание плавающих примесей и взвешенных частиц, запах, привкус, окраска и температура воды, значение рН, состав и концентрация минеральных примесей и растворённого в воде кислорода, биологическая потребность воды в кислороде, состав и предельно допустимая концентрация (ПДК) ядовитых и вредных веществ и болезнетворных бактерий. Под предельно допустимой концентрацией понимается концентрация вредного (ядовитого) вещества в воде водоёма, которая при ежедневном воздействии в течение длительного времени на организм человека не вызывает каких-либо патологических изменений и заболеваний, в том числе у последующих поколений, обнаруживаемых современными методами исследований и диагностики, а также не нарушает биологического оптимума в водоёме.

Вредные и ядовитые вещества разнообразны по своему составу, в связи с чем их нормируют по принципу лимитирующего показателя вредности (ЛПВ), под которым понимают наиболее вероятное неблагоприятное воздействие данного вещества. Для водоёмов первого типа используют три типа ЛПВ: санитарно-токсикологический, общесанитарный и органолеп-тический, для водоёмов второго типа – ещё два вида: токсикологический и рыбохозяйственный.

Санитарное состояние водоёма отвечает требованиям норм при выполнении неравенства

C i n ∑ i=1 ПДК i m

для каждой из трёх (для водоёмов второго типа – для каждой из пяти) групп вредных веществ, ПДК которых установлены соответственно по санитарно-токсикологическому ЛПВ, общесанитарному ЛПВ, органолеп-тическому ЛПВ, а для рыбохозяйственных водоёмов – ещё и по токсикологическому ЛПВ и рыбохозяйственному ЛПВ. Здесь n – число вредных веществ в водоёме, относящихся, положим, к «санитарно-токсикологической» группе вредных веществ; C i – концентрация i-го вещества из данной группы вредных веществ; m – номер группы вредных веществ, например, m = 1 – для «санитарно-токсикологической» группы вредных веществ, m = 2 – для «общесанитарной» группы вредных веществ и т.д. – всего пять групп. При этом должны учитываться фоновые концентрации C ф вредных веществ, содержащихся в воде водоёма до сброса сточных вод. При преобладании одного вредного вещества с концентрацией С в группе вредных веществ данного ЛПВ должно выполняться требование:

C + C ф ≤ ПДК, (10.2)

Установлены ПДК для более 640 вредных основных веществ в водоёмах питьевого и культурно-бытового назначения, а также более 150 вредных основных веществ в водоёмах рыбохозяйственного назначения. В таблице 10.1 приведены ПДК некоторых веществ в воде водоёмов.

Для самих сточных вод ПДК не нормируются, а определяются предельно допустимые количества сброса вредных примесей, ПДС. Поэтому минимально необходимая степень очистки сточных вод перед сбросом их в водоём определяется состоянием водоёма, а именно – фоновыми концентрациями вредных веществ в водоёме, расходом воды водоёма и др., то есть способностью водоёма к разбавлению вредных примесей.

Запрещено сбрасывать в водоёмы сточные воды, если существует возможность использовать более рациональную технологию, безводные процессы и системы повторного и оборотного водоснабжения – повторное или постоянное (многократное) использование одной и той же воды в технологическом процессе; если стоки содержат ценные отходы, которые возможно утилизировать; если стоки содержат сырьё, реагенты и продукцию производства в количествах, превышающих технологические потери; если сточные воды содержат вещества, для которых не установлены ПДК.

Режим сброса может быть единовременным, периодическим, непре-рывным с переменным расходом, случайным. При этом необходимо учитывать, что расход воды в водоёме (дебет реки) изменяется и по сезонам, и по годам. В любом случае должны удовлетворяться требования условия (10.2).

Таблица 10.1

Предельно допустимые концентрации некоторых вредных веществ в водо-

ёмах

ПДК, г/м 3 0,500 0,001 0,050 0,005 0,010 0,010 0,050 0,000 ПДК, г/м 3 0,500 0,001 0,100 0,010 1,000 1,000 0,100 0,100 Вещество Бензол Фенолы Бензин, керосин Сd 2+ Cu 2+ Zn 2+ Цианиды Cr 6 + ЛПВ Токсикологический Рыбохозяйственный То же Токсикологический То же - « - - « - -

Санитарно-

токсикологический

Органолептический

Санитарно-

токсикологический

Органолептический

Общесанитарный

Санитарно-

токсикологический

Органолептический

Большое значение имеет метод сброса сточных вод. При сосредоточенных выпусках смешение стоков с водой водоёма минимально, и загрязнённая струя может иметь большое протяжение в водоёме. Наиболее эффективно применение рассеивающих выпусков в глубине (на дне) водоёма в виде перфорированных труб.

В соответствии с изложенным одной из задач регулирования качества вод в водоёмах является задача определения допустимого состава сточных вод, то есть того максимального содержания вредного вещества (веществ) в стоках, которое после сброса ещё не даст превышения концентрации вредного вещества в водах водоёма над ПДК данного вредного вещества.

Уравнение баланса растворённой примеси при сбросе её в водоток (реку) с учётом начального разбавления в створе выпуска имеет вид :

C ст = n o (10.3)

Здесь С сm , С р.с, С ф – концентрации примеси в сточных водах до выпуска в водоём, в расчётном створе и фоновая концентрация примеси соответственно, мг/кг; n o и n р.с – кратность разбавления сточных вод в створе выпуска (начальное разбавление) и в расчётном створе, соответственно.

Начальное разбавление сточных вод в створе их выпуска

где Q o = LHV – часть расхода водостока, протекающая над рассеивающим выпуском, имеющим, положим, вид перфорированной трубы, уложенной на дно, м 3 /с; q – расход сточных вод, м 3 /с; L – длина рассеивающего выпуска (перфорированной трубы), м; H, V – средние глубина и скорость потока над выпуском, м и м/с.

После подстановки (10.4) в (10.3) получим, что

При LHV >> q

По ходу водостока струя сточной воды расширяется (за счёт диффузии, турбулентной и молекулярной), вследствие чего в струе происходит перемешивание сточной воды с водой водотока, возрастание кратности разбавления вредной примеси и постоянное уменьшение её концентрации в струе сточной, точнее, теперь уже перемешанной воды. В конечном счете, створ (сечение) струи расширится до створа водотока. В этом месте водотока (где створ загрязнённой струи совпал со створом водотока) достигается максимально возможное для данного водотока разбавление вредной примеси. В зависимости от величин кратности начального разбавления, ширины, скорости, извилистости и других характеристик водотока концентрация вредной примеси (С р.с) может достигнуть значения её ПДК в разных створах загрязнённой струи. Чем раньше это произойдёт, тем меньший участок (объём) водотока будет загрязнён вредной примесью выше нормы (выше ПДК). Понятно, что самый подходящий вариант – когда условие (10.2) обеспечивается уже в самом месте выпуска и, таким образом, размеры загрязнённого участка водотока будут сведены к нулю. Напомним, что этот вариант соответствует условию выпуска стоков в водоток второго типа. Нормативное разбавление до ПДК в створе выпуска требуется и для водотоков первого типа, если выпуск осуществляется в черте населённого пункта. Этот вариант можно обеспечить, увеличивая длину перфорированной трубы выпуска. В пределе, перегородив весь водосток трубой выпуска и включив таким образом в процесс разбавления стоков весь расход водотока, учитывая, что для створа выпуска n р.с = 1, а также положив в (10.5) C = ПДК, получим:

где В и Н – эффективные ширина и глубина водотока; соответственно Q = BHV – расход воды водотока.

Уравнение (10.7) означает, что при максимальном использовании разбавительной способности водотока (расхода водотока) максимально возможную концентрацию вредного вещества в сбрасываемых сточных водах можно допустить равной


Если для целей разбавления стоков возможно использование только части расхода воды водотока, например, 0,2Q, то требования к очистке стоков от данного вредного вещества повышаются, и максимально допустимая концентрация вредности в стоках должна быть уменьшена при этом в 5 раз: При этом величина qC cm , равная в первом случае


а во втором должна рассматриваться как предельно

допустимый сброс (ПДС) данной вредности в водоток, г/с. При превышении данных величин ПДС (Q ПДК и 0,2Q ПДК, г/с) концентрация вредного вещества в водах водотока превысит ПДК. В первом случае (ПДС = Q ПДК) турбулентная (и молекулярная) диффузия уже не уменьшит концентрацию вредности по ходу водотока, так как створ начального разбавления совпадает со створом всего водотока – струе загрязнённой воды некуда диффундировать. Во втором случае по ходу водотока будут иметь место разбавление стоков и уменьшение концентрации вредности в воде водоёма, и на некотором расстоянии S от выпуска концентрация вредного вещества может уменьшиться до ПДК и ниже. Но и в этом случае определённый участок водотока окажется загрязнённым выше нормы, то есть выше ПДК.

В общем случае расстояние от створа выпуска до расчётного створа, то есть до створа с заданной величиной кратности разбавления, n р.с или – что фактически то же – с заданной концентрацией вредной примеси, например, равной её ПДК будет равно


где А = 0,9…2,0 – коэффициент пропорциональности, зависящий от категории русла и среднегодового расхода воды водотока; В – ширина водотока, м; х – ширина части русла, в которой не производится выпуск (труба не перекрывает всю ширину русла), м; ф - коэффициент извилистости русла: отношение расстояния между створами по фарватеру к расстоянию по прямой; Re = V H / D – диффузионный критерий Рейнольдса.

Расширение загрязнённой струи по ходу водотока происходит, в основном, за счёт турбулентной диффузии, её коэффициент

где g – ускорение свободного падения, м 2 /с; М – функция коэффициента Шези для воды. М=22,3 м 0,5 /с; С ш – коэффициент Шези, С ш = 40…44 м 0,5 /с.

После потенцирования (10.8) получается значение n р.с в явном виде


Подставив выражение для n р.с. в (10.6) и полагая С р.с. =ПДК, получаем:


Уравнение (10.11) означает: если при начальном разбавлении, определяемом величинами L, H, V, и при известных характеристиках водотока j, А, В, х, R ∂ , С ф необходимо, чтобы на расстоянии S от выпуска стоков концентрация вредного вещества была на уровне ПДК и меньше, то концентрация вредного вещества в стоках перед сбросом не должна быть больше величины C cm , вычисляемой по (10.11). Перемножив обе части (10.11) на величину q, приходим к тому же условию, но уже через предельно-допустимый сброс C cm q = ПДС:

Из общего решения (10.12) следует тот же результат, который получен выше на основе простых соображений. В самом деле, положим, что решается задача: каким может быть максимальный (предельно допустимый) сброс сточной воды в водоток, чтобы уже в месте выпуска (S=0) концентрация вредного вещества была равна ПДК, а для начального разбавления используется только пятая часть расхода водотока (дебета реки), то есть LHV = 0,2 Q.

Поскольку при S = 0 n р.с = 1, из (10.12) получаем:

ПДС = 0,2 ПДК.

На изложенных принципах, в целом, основывается регулирование качества воды в водотоках при сбросе в них взвешенных, органических веществ, а также вод, нагретых в системах охлаждения предприятий.

Условия смешения сточных вод с водой озёр и водохранилищ значительно отличаются от условий их смешения в водотоках – реках и каналах. В частности, полное перемешивание стоков и вод водоёма достигается на существенно больших расстояниях от места выпуска, чем в водотоках. Методы расчёта разбавления стоков в водохранилищах и озёрах приведены в монографии Н.Н. Лапшева Расчеты выпусков сточных вод. – М.: Стройиздат, 1977. – 223с.

10.2 Методы и приборы контроля качества воды в водоёмах

Контроль качества воды водоёмов осуществляется периодическим отбором и анализом проб воды из поверхностных водоёмов: не реже одного раза в месяц. Количество проб и места их отбора определяют в соответствии с гидрологическими и санитарными характеристиками водоёма. При этом обязателен отбор проб непосредственно в месте водозабора и на расстоянии 1 км выше по течению для рек и каналов; для озёр и водохранилищ – на расстоянии 1 км от водозабора в двух диаметрально расположенных точках. Наряду с анализом проб воды в лабораториях используют автоматические станции контроля качества воды, которые могут одновременно измерять до 10 и более показателей качества воды. Так, отечественные передвижные автоматические станции контроля качества воды измеряют концентрацию растворённого в воде кислорода (до 0,025 кг/м 3), электропроводность воды (от 10-4 до 10-2 Ом/см), водородный показатель рН (от 4 до 10), температуру (от 0 до 40°С), уровень воды (от 0 до 12м). Содержание взвешенных веществ (от 0 до 2 кг/м 3). В таблице 10.2 приведены качественные характеристики некоторых отечественных типовых систем для контроля качества поверхностных и сточных вод.

На очистных сооружениях предприятий осуществляют контроль состава исходных и очищенных сточных вод, а также контроль эффективности работы очистных сооружений. Контроль, как правило, осуществляется один раз в 10 дней.

Пробы сточной воды отбираются в чистую посуду из боросиликатного стекла или полиэтилена. Анализ проводится не позже, чем через 12 часов после отбора пробы. Для сточных вод измеряются органолептические показатели, рН, содержание взвешенных веществ, химическое потребление кислорода (ХПК), количество растворённого в воде кислорода, биохимическое потребление кислорода (БПК), концентрации вредных веществ, для которых существуют нормируемые значения ПДК.

Таблица 10.2

Качественные характеристики некоторых отечественных типовых систем для контроля качества поверхностных и сточных вод

При определении грубодисперсных примесей в стоках измеряется массовая концентрация механических примесей и фракционный состав частиц. Для этого применяют специальные фильтроэлементы и измерение массы «сухого» осадка. Также периодически определяются скорости всплывания (осаждения) механических примесей, что актуально при отладке очистных сооружений.

Величина ХПК характеризует содержание в воде восстановителей, реагирующих с сильными окислителями, и выражается количеством кислорода, необходимым для окисления всех содержащихся в воде восстановителей. Окисление пробы сточной воды производится раствором бихромата калия в серной кислоте. Собственно измерение ХПК осуществляется либо арбитражными методами, производимыми с большой точностью за длительный период времени, и ускоренными методами применяемыми для ежедневных анализов с целью контроля работы очистных сооружений или состояния воды в водоёме при стабильных расходе и составе вод.

Концентрацию растворённого кислорода измеряют после очистки сточных вод перед их сбросом в водоём. Это необходимо для оценки коррозионных свойств стоков и для определения БПК. Чаще всего используется йодометрический метод Винклера для обнаружения растворённого кислорода с концентрациями больше 0,0002 кг/м 3 , меньшие концентрации измеряются колориметрическими методами, основанными на изменении интенсивности цвета соединений, образовавшихся в результате реакции между специальными красителями и сточной водой. Для автоматического измерения концентрации растворённого кислорода используют приборы ЭГ – 152 – 003 с пределами измерений 0 ... 0,1 кг/м 3 , «Оксиметр» с пределами измерения 0 ...0,01 и 0,01 ... 0,02 кг/м 3 .

БПК – количество кислорода (в миллиграммах), необходимое для окисления в аэробных условиях, в результате происходящих в воде биологических процессов органических веществ, содержащихся в 1л сточной воды, определяется по результатам анализа изменения количества растворённого кислорода с течением времени при 20°С. Чаще всего используют пятисуточное биохимическое потребление кислорода – БПК 5 .

Измерение концентрации вредных веществ, для которых установлены ПДК, проводят на различных ступенях очистки, в том числе перед выпуском воды в водоём.