Болезни Военный билет Призыв

Николай Лобачевский: параллельные прямые все-таки пересекаются! Основные понятия геометрии Лобачевского. Некоторые Лобачевский параллельные прямые пересекаются

Геометрия Лобачевского


Введение

Глава I. История возникновения неевклидовой геометрии

Глава II. Геометрия Лобачевского

2.1 Основные понятия

2.2 Непротиворечивость геометрии Лобачевского

2.3 Модели геометрии Лобачевского

2.4 Дефект треугольника и многоугольника

2.5 Абсолютная единица длины в геометрии Лобачевского

2.6 Определение параллельной прямой. Функция П(х)

2.7 Модель Пуанкаре

Практическая часть

1. Сумма углов треугольника

2. Вопрос о существовании подобных фигур

3. Основное свойство параллелизма

4. Свойства функции П(х)

Заключение. Выводы

Приложения

Список использованной литературы


Введение

Данная работа показывает сходство и различия двух геометрий на примере доказательства одного из постулатов Евклида и продолжение этих понятий в геометрии Лобачевского с учетом достижений науки на тот момент.

Любая теория современной науки считается верной, пока не создана следующая. Это своеобразная аксиома развития науки. Этот факт многократно подтверждался.

Физика Ньютона переросла в релятивисткую, а та - в квантовую. Теория флогистона стала химией. Такова судьба всех наук. Участь эта не обошла геометрию. Традиционная геометрия Евклида переросла в геометрии. Лобачевского. Именно этому разделу науки посвящена эта работа.

Цель данной работы: рассмотреть отличие геометрии Лобачевского от геометрии Евклида.

Задачи данной работы: сравнить теоремы геометрии Евклида с аналогичными теоремами геометрии Лобачевского;

посредством решения задач вывести положения геометрии Лобачевского.

Выводы: 1. Геометрия Лобачевского построена на отказе от пятого постулата Евклида.

2. В геометрии Лобачевского:

не существует подобных треугольников, которые не равны;

два треугольника равны, если их углы равны;

сумма углов треугольника не равна 180 0 , а меньше (сумма углов треугольника зависит от его размеров: чем больше площадь, тем сильнее отличается сумма от 180 0 ; и наоборот, чем меньше площадь, тем ближе сумма его углов к 180 0);

через точку вне прямой можно провести более одной прямой, параллельной данной.


Глава 1. История возникновения неевклидовой геометрии

1.1 V постулат Евклида, попытки его доказательства

Евклид – автор первого дошедшего до нас строгого логического построения геометрии. В нем изложение на столько безупречно для своего времени, что в течение двух тысяч лет с момента появления его труда «Начала» оно было единственным руководством для изучающих геометрию.

«Начала» состоят из 13 книг, посвященных геометрии и арифметике в геометрическом изложении.

Каждая книга «Начал» начинается определением понятий, которые встречаются впервые. Вслед за определениями Евклид приводит постулаты и аксиомы, то есть утверждения, принимаемые без доказательства.

V постулат Евклида гласит: и чтобы всякий раз, когда прямая при пересечении с двумя другими прямыми образует с ними односторонние внутренние углы, сумма которых меньше двух прямых, эти прямые пересекались с той стороны, с которой эта сумма меньше двух прямых.

Важнейшим недостатком системы евклидовых аксиом, включая и его постулаты, является ее неполнота, то есть недостаточность их для строго логического построения геометрии, при котором каждое предложение, если оно не фигурирует в списке аксиом, должно быть логически выведено их последних. Поэтому Евклид при доказательстве теорем не всегда основывался на аксиомах, а прибегали в интуиции, к наглядности и «чувственным» восприятиям. Например, понятию «между» он приписывал чисто наглядный характер; он молчаливо предполагал, что прямая, проходящая через внутреннюю точку окружности, непременно должна пересечь ее в двух торчках. При этом он основывался только на наглядности, а не на логике; доказательства этого факта он нигде не дал, и дать не мог, так как у него отсутствовали аксиомы непрерывности. Нет у него и некоторых других аксиом, без которых строго логическое доказательство теорем не возможно.

Но никто не сомневался в истинности постулатов Евклида, что касается и V постулата. Между тем уже в древности именно постулат о параллельных привлек к себе особое внимание ряда геометров, считавших неестественным помещение его среди постулатов. Вероятно, это было связано с относительно меньшей очевидностью и наглядностью V постулата: в неявном виде он предполагает достижимость любых, как угодно далеких частей плоскости, выражая свойство, которое обнаруживается только при бесконечном продолжении прямых.

Сам Евклид и многие ученые пытались доказать постулат о параллельных. Одни старались доказать постулат о параллельных, применяя только другие постулаты и те теоремы, которые можно вывести из последних, не используя сам V постулат. Все такие попытки оказались неудачными. Их общий недостаток в том, что в доказательстве неявно применялось какое-нибудь предположение, равносильное доказываемому постулату. Другие предлагали по-новому определить параллельные прямые или же заменить V постулат каким-либо, по их мнению, более очевидным предложением.

Но многовековые попытки доказательства пятого постулата Евклида привели в конце концов к появлению новой геометрии, отличающейся тем, что в ней V постулат не выполняется. Эта геометрия теперь называется неевклидовой, а в России носит имя Лобачевского, который впервые опубликовал работу с ее изложением.

И одной из предпосылок геометрических открытий Н.И Лобачевского (1792-1856) был как раз его материалистический подход к проблемам познания. Лобачевский он был твердо уверен в объективном и не зависящим от человеческого сознания существовании материального мира и возможности его познания. В речи «О важнейших предметах воспитания» (Казань, 1828) Лобачевский сочувственно приводит слова Ф.Бэкона: «оставьте трудиться напрасно, стараясь извлечь их одного разума всю мудрость; спрашивайте природу, она хранит все истины и на все вопросы ваши будет отвечать вам непременно и удовлетворительно». В своем сочинении «О началах геометрии», являющимся первой публикацией открытой им геометрии, Лобачевский писал: «первые понятия, с которых начинается какая-нибудь наука, должны быть ясны и приведены к самому меньшему числу. Тогда только они могут служить прочным и достаточным основанием учения. Такие понятия приобретаются чувствами; врожденным – не должно верить».

Первые попытки Лобачевского доказать пятый постулат относятся к 1823 году. К 1826 году он пришел к убеждению в том, что V постулат не зависит от остальных аксиом геометрии Евклида и 11(23) февраля 1826 года сделал на заседании факультета казанского университета доклад «Сжатое изложение начал геометрии со строгим доказательством теоремы о параллельных», в котором были изложены начала открытой им «воображаемой геометрии», как он называл систему, позднее получившую название неевклидовой геометрии. Доклад 1826 г. вошел в состав первой публикации Лобачевского по неевклидовой геометрии – статьи «О началах геометрии», напечатанной в журнале Казанского университета «Казанский вестник» в 1829-1830гг. дальнейшему развитию и приложениям открытой им геометрии были посвящены мемуары «Воображаемая геометрия», «применение воображаемой геометрии к некоторым интегралам» и «Новые начала геометрии с полной теорией параллельных», опубликованные в «Ученых записках» соответственно в 1835, 1836 и 1835-1838 гг. Переработанный текст «Воображаемой геометрии» появился во французском переводе в Берлине, там же в 1840г. вышли отдельной книгой на немецком языке «Геометрические исследования по теории параллельных линий» Лобачевского. Наконец, в 1855 и 1856 гг. он издал в Казани на русском и французском языках «Пангеометрию». Высоко оценил «Геометрические исследования» Гаусс, который провел Лобачевского (1842) в члены-корреспонденты Геттингенского ученого общества, бывшего по существу Академией наук ганноверского королевства. Однако в печати с оценкой новой геометрической системы Гаусс не выступил.

1.2 Постулаты параллельности Евклида и Лобачевского

Основным пунктом, откуда начинается разделение геометрии на обычную евклидову (употребительную) и неевклидову (воображаемую геометрию или «пангеометрию») является, как известно, постулат о параллельных линиях.

В основе обычной геометрии лежит предположение, что через точку, не лежащую на данной прямой, можно провести в плоскости, определяемой этой точкой и прямой, не более одной прямой, не пересекающей данную прямую. Тот факт, что через точку, не лежащую на данной прямой, проходит по крайней мере одна прямая, не пересекающая эту прямую, относится к «абсолютной геометрии», т.е. может быть доказан без помощи постулата о параллельных линиях.

Прямая ВВ, проходящая через Р под прямым углом к перпендикуляру РQ, опущенному на АА 1 , не пересекает прямой АА 1 ; эта прямая в евклидовой геометрии называется параллельной к АА 1 .

В противоположность постулату Евклида, Лобачевский принимает в основу построения теории параллельных линий следующую аксиому:

Через точку, не лежащую на данной прямой, можно провести в плоскости, определяемой этой точкой и прямой, более одной прямой, не пересекающей данную прямую.

Отсюда непосредственно вытекает существование бесконечно множества прямых, проходящих через одну и ту же точку и не пересекающих данную прямую. Пусть прямая СС 1 не пересекает АА 1 ; тогда все прямые, проходящие внутри двух вертикальных углов ВРС и В 1 РС 1 , также не пересекаются с прямой АА 1 .


Глава 2. Геометрия Лобачевского.

2.1 Основные понятия

В мемуарах «О началах геометрии» (1829) Лобачевский прежде всего воспроизвел свой доклад 1826г.

Ни в какой. По определению, параллельные прямые не имеют точек пересечения.

Теперь давайте по геометриям и заблуждениям. Всюду будут рассматриваться "плоскости", чтобы это ни значило.

Геометрия Евклида. То, что учили в школе, то, что привычнее и почти точно выполняется в повседневной жизни. Выделю те два факта, что будут существенны потом. Первое: в этой геометрии есть расстояние, между любыми двумя точками существует кратчайшая, и притом только одна (отрезок прямой). Второе: через точку, не лежащую на данной прямой, можно провести прямую, параллельную данной и при том только одну.

Это соответствует какой-то паре аксиом из учебника Погорелова, поэтому мне удобнее будет на это опираться.

Геометрия Лобачевского. С расстоянием в ней все отлично, но нам его сложно представить из-за постоянной отрицательной кривизны (не поняли - не страшно). С параллельностью сложнее. Через точку вне прямой всегда можно провести не просто одну, а бесконечно много параллельных прямых.

Сферическая геометрия. Во-первых, что мы считаем "прямыми". Прямые на сфере - большие круги = круги, высекаемык на сфере плоскостью, проходящей через центр = круги радиуса равного радиусу сферы. Это прямые в том смысле, что это кратчайший путь между не очень далекими (чуть позже станет понятно, какими) точками. Некоторые могли заметить, что если города находятся на одной параллели, то самолет летит не по этой параллели, а по траектории выпуклой на север в северном полушарии. Если порисуете, то заметите, что большой круг, соединяющий две точки проходит северней параллели.

Чем же плохо расстояние на сфере? Возьмем диаметрально противоположные точки на сфере, для них существует бесконечно много кратчайших. Нагляднее: посмотрю на северный и южный полюса. Все мерилианы проходят через них, все они имеют одинаковые длины, любой другой путь будет длиннее.

Параллельных прямых при этом нет совсем, любые две прямые пересекаютсяются в диаметрально противоположных точках.

Проективная плоскость. Самое главное и первое отличие: никакого расстояния нет и быть не может. В принципе, его нельзя ввести, чтобы оно удовлетворяло каким-то естественным условиям (сохранялось при "движениях" плоскости). Таким образом, ни про какие "бесконечно удаленные прямые" сама геометрия не знает, все это придумано людьми, чтобы как-то понять проективную плоскость. Самый "простой" способ: представить привычную нам плоскость (так называемую "аффинную карту") и добавить к ней прямую, которая "бесконечно удалена", причем все прямые, которые были параллельны данной в плоскости, которую представили, пересекутся в какой-то одной точке на этой "бесконечно удаленной" прямой. Такое описание довольно просто: вот я что-то написал в два предложения, и кто-то что-то уже представил. Но оно вводит в заблуждение, никакой выделенной прямой в проективной геометрии нет. Но уже это описание показывает, что параллельных прямых

7 февраля 1832 года Николай Лобачевский представил на суд коллег свой первый труд по неевклидовой геометрии. Этот день стал началом переворота в математике, а работа Лобачевского - первым шагом к теории относительности Эйнштейна. Сегодня "РГ" собрала пятерку самых распространенных заблуждений о теории Лобачевского, бытующих среди далеких от математической науки людей

Миф первый. Геометрия Лобачевского не имеет ничего общего с Евклидовой.

На самом деле геометрия Лобачевского не слишком сильно отличается от привычной нам Евклидовой. Дело в том, что из пяти постулатов Евклида четыре первых Лобачевский оставил без изменения. То есть он согласен с Евклидом в том, что между двумя любыми точками можно провести прямую, что ее всегда можно продолжить до бесконечности, что из любого центра можно провести окружность с любым радиусом, и что все прямые углы равны между собой. Не согласился Лобачевский только с пятым, наиболее сомнительным с его точки зрения постулатом Евклида. Звучит его формулировка чрезвычайно мудрено, но если переводить ее на понятный простому человеку язык, то получается, что, по мнению Евклида, две непараллельные прямые обязательно пересекутся. Лобачевский сумел доказать ложность этого посыла.

Миф второй. В теории Лобачевского параллельные прямые пересекаются

Это не так. На самом деле пятый постулат Лобачевского звучит так: "На плоскости через точку, не лежащую на данной прямой, проходит более чем одна прямая, не пересекающая данную". Иными словами, для одной прямой можно провести как минимум две прямые через одну точку, которые не будут ее пересекать. То есть в этом постулате Лобачевского речи о параллельных прямых вообще не идет! Говорится лишь о существовании нескольких непересекающихся прямых на одной плоскости. Таким образом, предположение о пересечении параллельных прямых родилось из-за банального незнания сути теории великого российского математика.

Миф третий. Геометрия Лобачевского - единственная неевклидова геометрия

Неевклидовы геометрии - это целый пласт теорий в математике, где основой является отличный от Евклидова пятый постулат. Лобачевский, в отличие от Евклида, к примеру, описывает гиперболическое пространство. Существует еще теория, описывающая сферическое пространство - это геометрия Римана. Вот в ней-то как раз параллельные прямые пересекаются. Классический тому пример из школьной программы - меридианы на глобусе. Если посмотреть на лекало глобуса, то окажется, что все меридианы параллельны. Меж тем, стоит нанести лекало на сферу, как мы видим, что все ранее параллельные меридианы сходятся в двух точках - у полюсов. Вместе теории Евклида, Лобачевского и Римана называют "три великих геометрии".

Миф четвертый. Геометрия Лобачевского не применима в реальной жизни

Напротив, современная наука приходит к пониманию, что Евклидова геометрия - лишь частный случай геометрии Лобачевского, и что в реальный мир точнее описывается именно формулами русского ученого. Сильнейшим толчком к дальнейшему развитию геометрии Лобачевского стала теория относительности Альберта Эйнштейна, которая показала, что само пространство нашей Вселенной не является линейным, а представляет собой гиперболическую сферу. Между тем, сам Лобачевский, несмотря на то, что всю жизнь работал над развитием своей теории, называл ее "воображаемой геометрией".

Миф пятый. Лобачевский первым создал неевклидову геометрию

Это не совсем так. Параллельно с ним и независимо от него к подобным выводам пришли венгерский математик Янош Бойяи и знаменитый немецкий ученый Карл Фридрих Гаусс. Однако труды Яноша не были замечены широкой публикой, а Карл Гаусс и вовсе предпочел не издаваться. Поэтому именно наш ученый считается первопроходцем в этой теории. Однако существует несколько парадоксальная точка зрения, что первым неевклидову геометрию придумал сам Евклид. Дело в том, что он самокритично считал свой пятый постулат не очевидным, поэтому большую часть из своих теорем он доказал, не прибегая к нему.

История создания геометрии Лобачевского одновременно является историей попыток доказать пятый постулат Евклида. Этот постулат представляет собой одну из аксиом, положенных Евклидом в основу изложения геометрии (см. Евклид и его «Начала»). Пятый постулат – последнее и самое сложное из предложений, включенных Евклидом в его аксиоматику геометрии. Напомним формулировку пятого постулата: если две прямые пересекаются третьей так, что по какую-либо сторону от нее сумма внутренних углов меньше двух прямых углов, то по эту же сторону исходные прямые пересекаются. Например, если на рис. 1 угол – прямой, а угол чуть меньше прямого, то прямые и непременно пересекаются, причем справа от прямой . Многие теоремы Евклида (например, «в равнобедренном треугольнике углы при основании равны») выражают гораздо более простые факты, чем пятый постулат. К тому же проверить на эксперименте пятый постулат довольно сложно. Достаточно сказать, что если на рис. 1 расстояние считать равным 1 м, а угол отличается от прямого на одну угловую секунду, то можно подсчитать, что прямые и пересекаются на расстоянии свыше 200 км от прямой .

Многие математики, жившие после Евклида, пытались доказать, что эта аксиома (пятый постулат) – лишняя, т.е. она может быть доказана как теорема на основании остальных аксиом. Так, в V в. математик Прокл (первый комментатор трудов Евклида) предпринял такую попытку. Однако в своем доказательстве Прокл незаметно для себя использовал следующее утверждение: два перпендикуляра к одной прямой на всем своем протяжении находятся на ограниченном расстоянии друг от друга (т.е. две прямые, перпендикулярные третьей, не могут неограниченно удаляться друг от друга, как линии на рис. 2). Но при всей кажущейся наглядной «очевидности» это утверждение при строгом аксиоматическом изложении геометрии требует обоснования. В действительности использованное Проклом утверждение является эквивалентом пятого постулата; иначе говоря, если его добавить к остальным аксиомам Евклида в качестве еще одной новой аксиомы, то пятый постулат можно доказать (что и сделал Прокл), а если принять пятый постулат, то можно доказать сформулированное Проклом утверждение.

Критический анализ дальнейших попыток доказать пятый постулат выявил большое число аналогичных «очевидных» утверждений, которыми можно заменить пятый постулат в аксиоматике Евклида. Вот несколько примеров таких эквивалентов пятого постулата.

1) Через точку внутри угла, меньшего, чем развернутый, всегда можно провести прямую, пересекающую его стороны, т.е. прямые линии на плоскости не могут располагаться так, как показано на рис. 3. 2) Существуют два подобных треугольника, не равных между собой. 3) Три точки, расположенные по одну сторону прямой на равном расстоянии от нее (рис. 4), лежат на одной прямой. 4) Для всякого треугольника существует описанная окружность.

Постепенно «доказательства» становятся все изощреннее, в них все глубже прячутся малозаметные эквиваленты пятого постулата. Допустив, что пятый постулат неверен, математики пытались прийти к логическому противоречию. Они приходили к утверждениям, чудовищно противоречащим нашей геометрической интуиции, но логического противоречия не получалось. А может быть, мы вообще никогда не придем на таком пути к противоречию? Не может ли быть так, что, заменив пятый постулат Евклида его отрицанием (при сохранении остальных аксиом Евклида), мы придем к новой, неевклидовой геометрии, которая во многом не согласуется с нашими привычными наглядными представлениями, но тем не менее не содержит никаких логических противоречий? Эту простую, но очень дерзкую мысль математики не могли выстрадать в течение двух тысячелетий после появления «Начал» Евклида.

Первым, кто допустил возможность существования неевклидовой геометрии, в которой пятый постулат заменяется его отрицанием, был К. Ф. Гаусс. То, что Гаусс владел идеями неевклидовой геометрии, было обнаружено лишь после смерти ученого, когда стали изучать его архивы. Гениальный Гаусс, к мнениям которою все прислушивались, не рискнул опубликовать свои результаты по неевклидовой геометрии, опасаясь быть непонятым и втянутым в полемику.

XIX в. принес решение загадки пятого постулата. К этому открытию независимо от Гаусса пришел и наш соотечественник – профессор Казанского университета Н. И. Лобачевский. Как и его предшественники, Лобачевский вначале пытался выводить различные следствия из отрицания пятого постулата, надеясь, что рано или поздно он придет к противоречию. Однако он доказал много десятков теорем, не обнаруживая логических противоречий. И тогда Лобачевскому пришла в голову догадка о непротиворечивости геометрии, в которой пятый постулат заменен его отрицанием. Лобачевский назвал эту геометрию воображаемой. Свои исследования Лобачевский изложил в ряде сочинений, начиная с 1829 г. Но математический мир не принял идеи Лобачевского. Ученые не были подготовлены к мысли о том, что может существовать геометрия, отличная от евклидовой. И лишь Гаусс выразил свое отношение к научному подвигу русского ученого: он добился избрания в 1842 г. Н. И. Лобачевского членом-корреспондентом Геттингенского королевского научного общества. Это единственная научная почесть, выпавшая на долю Лобачевского при жизни. Он умер, так и не добившись признания своих идей.

Рассказывая о геометрии Лобачевского, нельзя не отметить еще одного ученою, который вместе с Гауссом и Лобачевским делит заслугу открытия неевклидовой геометрии. Им был венгерский математик Я. Бойяи (1802-1860). Его отец, известный математик Ф. Бойяи, всю жизнь работавший над теорией параллельных, считал, что решение этой проблемы выше сил человеческих, и хотел оградить сына от неудач и разочарований. В одном из писем он писал ему: «Я прошел весь беспросветный мрак этой ночи и всякий светоч, всякую радость жизни в ней похоронил... она может лишить тебя всего твоего времени, здоровья, покоя, всего счастья твоей жизни...» Но Янош не внял предостережениям отца. Вскоре молодой ученый независимо от Гаусса и Лобачевского пришел к тем же идеям. В приложении к книге своего отца, вышедшей в 1832 г., Я. Бойяи дал самостоятельное изложение неевклидовой геометрии.

В геометрии Лобачевского (или геометрии Лобачевского Бойяи, как ее иногда называют) сохраняются все теоремы, которые в евклидовой геометрии можно доказать без использования пятого постулата (или аксиомы параллельности одного из эквивалентов пятого постулата, - включенной в наши дни в школьные учебники). Например: вертикальные углы равны; углы при основании равнобедренного треугольника равны; из данной точки можно опустить на данную прямую только один перпендикуляр; сохраняются также признаки равенства треугольников и др. Однако теоремы, при доказательстве которых применяется аксиома параллельности, видоизменяются. Теорема о сумме углов треугольника – первая теорема школьного курса, при доказательстве которой используется аксиома параллельности. Здесь нас ожидает первый «сюрприз»: в геометрии Лобачевского сумма углов любого треугольника меньше 180°.

Если два угла одного треугольника соответственно равны двум углам другого треугольника, то в евклидовой геометрии равны и третьи углы (такие треугольники подобны). В геометрии Лобачевского не существует подобных треугольников. Более того, в геометрии Лобачевского имеет место четвертый признак равенства треугольников: если углы одного треугольника соответственно равны углам другого треугольника, то эти треугольники равны.

Разность между 180° и суммой углов треугольника в геометрии Лобачевского положительна; она называется дефектом этого треугольника. Оказывается, что в этой геометрии площадь треугольника замечательным образом связана с его дефектом: , где и означают площадь и дефект треугольника, а число зависит от выбора единиц измерения площадей и углов.

Пусть теперь – некоторый острый угол (рис. 5). В геометрии Лобачевского можно выбрать такую точку на стороне , что перпендикуляр к стороне не пересекается с другой стороной угла. Этот факт как раз подтверждает, что не выполняется пятый постулат: сумма углов и меньше развернутого угла, но прямые и не пересекаются. Если начать приближать точку к , то найдется такая «критическая» точка , что перпендикуляр к стороне все еще не пересекается со стороной , но для любой точки , лежащей между и , соответствующий перпендикуляр пересекается со стороной . Прямые и все более приближаются друг к другу, но общих точек не имеют. На рис. 6 эти прямые изображены отдельно; именно такие неограниченно приближающиеся друг к другу прямые Лобачевский называет в своей геометрии параллельными. А два перпендикуляра к одной прямой (которые неограниченно удаляются друг от друга, как на рис. 2) Лобачевский называет расходящимися прямыми. Оказывается, что этим и ограничиваются все возможности расположения двух прямых на плоскости Лобачевского: две несовпадающие прямые либо пересекаются в одной точке, либо параллельны (рис. 6), либо являются расходящимися (в этом случае они имеют единственный общий перпендикуляр, рис. 2).

На рис. 7 перпендикуляр к стороне угла не пересекается со стороной , а прямые симметричны прямым относительно . Далее, , так что – перпендикуляр к отрезку в его середине и аналогично – перпендикуляр к отрезку в его середине. Эти перпендикуляры не пересекаются, и потому не существует точки, одинаково удаленной от точек , т.е. треугольник не имеет описанной окружности.

На рис. 8 изображен интересный вариант расположения трех прямых на плоскости Лобачевского: каждые две из них параллельны (только в разных направлениях). А на рис. 9 все прямые параллельны друг другу в одном направлении (пучок параллельных прямых). Красная линия на рис. 9 «перпендикулярна» всем проведенным прямым (т.е. касательная к этой линии в любой ее точке перпендикулярна прямой, проходящей через ). Эта линия называется предельной окружностью, или орициклом. Прямые рассмотренного пучка являются как бы ее «радиусами», а «центр» предельной окружности лежит в бесконечности, поскольку «радиусы» параллельны. В то же время предельная окружность не является прямой линией, она «искривлена». И другие свойства, которыми в евклидовой геометрии обладает прямая, в геометрии Лобачевского оказываются присущими другим линиям. Например, множество точек, находящихся по одну сторону от данной прямой на данном расстоянии от нее, в геометрии Лобачевского представляет собой кривую линию (она называется эквидистантой).

НИКОЛАЙ ИВАНОВИЧ ЛОБАЧЕВСКИЙ
(1792-1856)

С 14 лет жизнь Н.И.Лобачевского была связана с Казанским университетом. Его студенческие годы приходились на благополучный период в истории университета. Было у кого учиться математике; среди профессоров выделялся М.Ф. Бартельс, сотоварищ первых шагов в математике К. Ф. Гаусса.

С 1814 г. Лобачевский преподает в университете: читает лекции по математике, физике, астрономии, заведует обсерваторией, возглавляет библиотеку. В течение нескольких лет он избирался деканом физико-математического факультета.

С 1827 г. начинается 19-летний период его непрерывного ректорства. Все надо было начинать заново: заниматься строительством, привлекать новых профессоров, менять студенческий режим. На это уходило почти все время.

Еще в первых числах февраля 1826 г. он передал в университет рукопись «Сжатое изложение начал геометрии со строгим доказательством теоремы о параллельных», 11 февраля он выступил с докладом на заседании Совета университета. Собственно, речь шла не о доказательстве пятого постулата Евклида, а о построении геометрии, в которой имеет место его отрицание, т.е. о доказательстве его невыводимости из остальных аксиом. Вероятно, никто из присутствовавших не мог уследить за ходом мысли Лобачевского. Созданная комиссия из членов Совета несколько лет не давала заключения.

В 1830 г. в «Казанском вестнике» выходит работа «О началах геометрии», представляющая собой извлечение из доклада на Совете. Чтобы разобраться в ситуации, решили воспользоваться помощью столицы: в 1832 г. статью послали в Петербург. И здесь никто ничего не понял, работа была квалифицирована как бессмысленная. Не следует слишком сурово судить русских ученых: нигде в мире математики еще не были готовы воспринять идеи неевклидовой геометрии.

Ничто не могло поколебать уверенность Лобачевского в своей правоте. В течение 30 лет он продолжает развивать свою геометрию, пытается делать изложение более доступным, публикует работы по-французски и по-немецки.

Немецкую версию изложения прочитал Гаусс и, разумеется, понял автора с полуслова. Он прочитал его работы на русском языке и оценил их в письмах к ученикам, но публичной поддержки новой геометрии Гаусс не оказал.

Н. И. Лобачевский дослужился до высоких чинов, он был награжден большим числом орденов, пользовался уважением окружающих, но о его геометрии предпочитали не говорить, даже в те дни, когда Казань прощалась с ним. Прошло еще не менее двадцати лет, прежде чем геометрия Лобачевского завоевала права гражданства в математике.

Мы кратко коснулись только некоторых фактов геометрии Лобачевского, не упоминая многих других очень интересных и содержательных теорем (например, длина окружности и площадь круга радиуса здесь растут в зависимости от по показательному закону). Возникает убежденность, что эта теория, богатая очень интересными и содержательными фактами, в самом деле непротиворечива. Но эта убежденность (которая была у всех трех творцов неевклидовой геометрии) не заменяет доказательства непротиворечивости.

Чтобы получить такое доказательство, надо было построить модель. И Лобачевский это хорошо понимал и пытался ее найти.

Но сам Лобачевский этого уже не смог сделать. Построение такой модели (т.е. доказательство непротиворечивости геометрии Лобачевского) выпало на долю математиков следующего поколения.

В 1868 г. итальянский математик Э. Бельтрами исследовал вогнутую поверхность, называемую псевдосферой (рис. 10), и доказал, что на этой поверхности действует геометрия Лобачевского! Если на этой поверхности нарисовать кратчайшие линии («геодезические») и измерять по этим линиям расстояния, составлять из дуг этих линий треугольники и т.д., то оказывается, что в точности реализуются все формулы геометрии Лобачевского (в частности, сумма углов любого треугольника меньше 180°). Правда, на псевдосфере реализуется не вся плоскость Лобачевского, а лишь ее ограниченный кусок, но все же этим была пробита первая брешь в глухой стене непризнания Лобачевского. А через два года немецкий математик Ф. Клейн (1849-1925) предлагает другую модель плоскости Лобачевского.

Клейн берет некоторый круг и рассматривает такие проективные преобразования плоскости (см. Проективная геометрия), которые отображают круг на себя. «Плоскостью» Клейн называет внутренность круга , а указанные проективные преобразования считает «движениями» этой «плоскости». Далее, каждую хорду круга (без концов, поскольку берутся только внутренние точки круга) Клейн считает «прямой». Поскольку «движения» представляют собой проективные преобразования, «прямые» переходят при этих «движениях» в «прямые». Теперь в этой «плоскости» можно рассматривать отрезки, треугольники и т.д. Две фигуры называются «равными», если одна из них может быть переведена в другую некоторым «движением». Тем самым введены все понятия, упоминаемые в аксиомах геометрии, и можно производить проверку выполнения аксиом в этой модели. Например, очевидно, что через любые две точки проходит единственная «прямая» (рис. 11). Можно проследить также, что через точку , не принадлежащую «прямой» , проходит бесконечно много «прямых», не пересекающих . Дальнейшая проверка показывает, что в модели Клейна выполняются и все остальные аксиомы геометрии Лобачевского. В частности, для любой «прямой» (т.е. хорды круга ) и любой точки этой «прямой» существует «движение», переводящее ее в другую заданную прямую с отмеченной на ней точкой . Это и позволяет проверить выполнение всех аксиом геометрии Лобачевского.

Еще одна модель геометрии Лобачевского была предложена французским математиком А. Пуанкаре (1854-1912). Он также рассматривает внутренность некоторого круга ; «прямыми» он считает дуги окружностей, которые в точках пересечения с границей круга касаются радиусов (рис. 12). Не говоря подробно о «движениях» в модели Пуанкаре (ими будут круговые преобразования, в частности инверсии относительно «прямых», переводящие круг в себя), ограничимся указанием рис. 13, показывающего, что в этой модели евклидова аксиома параллельности места не имеет. Интересно, что в этой модели окружность (евклидова), расположенная внутри круга , оказывается «окружностью» и в смысле геометрии Лобачевского; окружность, касающаяся границы. Тогда свет будет (в соответствии с принципом Ферма о минимальности времени движения по световой траектории) распространяться как раз по «прямым» рассмотренной модели. Свет не может за конечное время дойти до границы (поскольку там его скорость убывает до нуля), и потому этот мир будет восприниматься его «жителями» бесконечным, причем по своей метрике и свойствам совпадающим с плоскостью Лобачевского.

Впоследствии были предложены и другие модели геометрии Лобачевского. Этими моделями была окончательно установлена непротиворечивость геометрии Лобачевского. Тем самым было показано, что геометрия Евклида не является единственно возможной. Это оказало большое прогрессивное воздействие на все дальнейшее развитие геометрии и математики в целом.

А в XX в. было обнаружено, что геометрия Лобачевского не только имеет важное значение для абстрактной математики, как одна из возможных геометрий, но и непосредственно связана с приложениями математики к физике. Оказалось, что взаимосвязь пространства и времени, открытая в работах X. Лоренца, А. Пуанкаре, А. Эйнштейна, Г. Минковского и описываемая в рамках специальной теории относительности, имеет непосредственное отношение к геометрии Лобачевского. Например, в расчетах современных синхрофазотронов используются формулы геометрии Лобачевского.

LV 1 . (Аксиома параллельности Лобачевского). В любой плоскости существует прямая а 0 и точка А 0 , не принадлежащая этой прямой, такие, что через эту точку проходит по крайней мере две прямые, не пересекающие а 0 .

Множество точек, прямых и плоскостей, удовлетворяющих аксиомам принадлежности, порядка, конгруэнтности, непрерывности и аксиоме параллельности Лобачевского будем называть трехмерным пространством Лобачевского и обозначать через Л 3 . Большинство геометрических свойств фигур будут рассматриваться нами на плоскости пространства Л 3 , т.е. на плоскости Лобачевского. Обратим внимание на то, что формальное логическое отрицание аксиомы V 1 , аксиомы параллельности евклидовой геометрии, имеет именно ту формулировку, которую мы привели в качестве аксиомы LV 1 . На плоскости существует, по крайней мере, одна точка и одна прямая, для которых не выполнено утверждение аксиомы параллельности евклидовой геометрии. Докажем теорему, из которой следует, что утверждение аксиомы параллельности Лобачевского справедливо для любой точки и любой прямой плоскости Лобачевского.

Теорема 13.1. Пусть а – произвольная прямая, А – точка, не лежащая на этой прямой. Тогда в плоскости, определяемой точкой А и прямой а, существует по крайней мере две прямые, проходящие через А и не пересекающие прямую а.

Доказательство. Доказательство проведем методом «от противного», при этом воспользуемся теоремой 11.1 (см. § 11). Пусть в пространстве Лобачевского существует такая точка А и прямая а, что в плоскости, определяемой этой точкой и прямой, через точку А проходит единственная прямая, не пересекающая а. Опустим и точки А перпендикуляр АВ на прямую а и в точке А восставим перпендикуляр h к прямой АВ (рис. 50). Как следует из теоремы 4.2 (см § 4) прямые h и а не пересекаются. Прямая h, в силу предположения, - единственная прямая, проходящая через А и не пересекающая а. Выберем на прямой а произвольную точку С. Отложим от луча АС в полуплоскости с границей АВ, не содержащей точку В, угол САМ, равный АСВ. Тогда, как следует из той же теоремы 4.2, прямая АМ не пересекает а. Из нашего предположения следует, что она совпадает с h. Поэтому точка М принадлежит прямой h. Треугольник АВС – прямоугольный, . Вычислим сумму углов треугольника АВС: . Из теоремы 11.1 следует, что выполнено условие аксиомы параллельности евклидовой геометрии. Поэтому в рассматриваемой плоскости не может существовать таких точки А 0 и прямой а 0 , что через эту точку проходит по крайней мере две прямые, не пересекающие а 0 . Мы пришли к противоречию с условием аксиомы параллельности Лобачевского. Теорема доказана.

Следует заметить, что в дальнейшем мы будем пользоваться утверждением именно теоремы 13.1, по сути, заменяя им утверждение аксиомы параллельности Лобачевского. Кстати, во многих учебниках именно это утверждение принято в качестве аксиомы параллельности геометрии Лобачевского.

Из теоремы 13.1 легко получить следующее следствие.

Следствие 13.2. В плоскости Лобачевского через точку, не лежащую на данной прямой, проходит бесконечно много прямых, не пересекающих данную.

Действительно, пусть а данная прямая, а А – точка, ей не принадлежащая, h 1 и h 2 – прямые, проходящие через А и не пересекающие а (рис. 51). Очевидно, что все прямые, которые проходят через точку А и лежат в одном из углов, образованных h 1 и h 2 (см. рис. 51), не пересекают прямую а.

В главе 2 мы доказали ряд утверждений, эквивалентных аксиоме параллельности евклидовой геометрии. Их логические отрицания характеризуют свойства фигур на плоскости Лобачевского.

Во первых, на плоскости Лобачевского справедливо логическое отрицание пятого постулата Евклида. В параграфе 9 нами был сформулирован сам постулат и доказана теорема о его эквивалентности аксиоме параллельности евклидовой геометрии (см. теорему 9.1). Его же логическое отрицание имеет вид:

Утверждение 13.3. На плоскости Лобачевского существуют две непересекающиеся прямые, которые при пересечении с третьей прямой образуют внутренние односторонние углы, сумма которых меньше двух прямых углов.

В § 12 нами было сформулировано предложение Посидония: на плоскости существуют по крайней мере три коллинеарные точки, расположенные в одной полуплоскости от данной прямой и равноудаленные от нее. Также мы доказали теорему 12.6: предложение Посидония эквивалентно утверждению аксиомы параллельности евклидовой геометрии. Таким образом, на плоскости Лобачевского действует отрицание этого утверждения.

Утверждение 13.4. Множество точек, равноудаленных от прямой на плоскости Лобачевского и расположенных в одной полуплоскости относительно ее, в свою очередь не лежат на одной прямой.

На плоскости Лобачевского множество точек, равноудаленных от прямой и принадлежащей одной полуплоскости относительно этой прямой, образуют кривую линию, так называемую эквидистанту. Ее свойства будут рассмотрены нами позже.

Рассмотрим теперь предложение Лежандра: пДоказанная нами теорема 11.6 (см. § 11) утверждает, что Отсюда следует, на плоскости Лобачевского справедливо логическое отрицание этого предложения.

Утверждение 13.5. На стороне любого острого угла существует такая точка, что перпендикуляр к ней, восставленный в этой точке, не пересекает вторую сторону угла.

Отметим свойства треугольников и четырехугольников плоскости Лобачевского, которые непосредственно следуют из результатов параграфов 9 и 11. Прежде всего, теорема 11.1. утверждает, что предположение о существовании треугольника, сумма углов которого совпадает с суммой двух прямых углов, равносильно аксиоме параллельности евклидовой плоскости. Отсюда и из первой теоремы Лежандра (см. теорему 10.1, § 10) следует следующее утверждение

Утверждение 13.6. На плоскости Лобачевского сумма углов любого треугольника меньше 2d.

Отсюда непосредственно вытекает, что сумма углов любого выпуклого четырехугольника меньше 4d, а сумма углов любого выпуклого n – угольника меньше 2(n-1)d.

Так как на евклидовой плоскости углы, прилежащие к верхнему основанию четырехугольника Саккери равны прямым углам, что в соответствии с теоремой 12.3 (см. § 12) равносильно аксиоме параллельности евклидовой геометрии, то можно сделать следующий вывод.

Утверждение 13.7. Углы, прилегающие к верхнему основанию четырехугольника Саккери – острые.

Нам осталось рассмотреть еще два свойства треугольников на плоскости Лобачевского. Первое из них связано с предложением Валлиса: на плоскости существует хотя бы одна пара треугольников с соответственно равными углами, но не равными сторонами. В параграфе 11 мы доказали, что это предложение эквивалентно аксиоме параллельности евклидовой геометрии (см. теорему 11.5). Логическое отрицание этого утверждения приводит нас к следующему выводу: на плоскости Лобачевского не существует треугольников с равными углами, но не равными сторонами. Таким образом, справедливо следующее предложение.

Утверждение 13.8. (четвертый признак равенства треугольников на плоскости Лобачевского). Любые два треугольника на плоскости Лобачевского, имеющие соответственно равные углы, равны между собой.

Рассмотрим теперь следующий вопрос. Вокруг любого ли треугольника на плоскости Лобачевского можно описать окружность? Ответ на него дает теорема 9.4 (см. § 9). В соответствии с этой теоремой, если вокруг любого треугольника на плоскости можно описать окружность, то на плоскости выполнено условие аксиомы параллельности евклидовой геометрии. Поэтому логическое отрицание утверждения этой теоремы приводит нас к следующему предложению.

Утверждение 13.9. На плоскости Лобачевского существует треугольник, вокруг которого нельзя описать окружность.

Легко построить пример такого треугольника. Выберем некоторую прямую а и точку А, которая ей не принадлежит. Опустим из точки А перпендикуляр h на прямую а. В силу аксиомы параллельности Лобачевского существует прямая b, проходящая через А и не перпендикулярная h, которая не пересекает а (рис. 52). Как известно, если вокруг треугольника описана окружность, то ее центр лежит в точке пересечения серединных перпендикуляров сторон треугольника. Поэтому нам достаточно привести пример такого треугольника, серединные перпендикуляры которого не пересекаются. Выберем точку М на прямой h, так как показано на рисунке 52. Симметрично отобразим ее относительно прямых а и b, получим точки N и P. Так как прямая b не перпендикулярна h, то точка Р не принадлежит h. Поэтому точки M, N и P составляют вершины треугольника. Прямые а и b служат по построению его серединными перпендикулярами. Они же, как было сказано выше, не пересекаются. Треугольник MNP – искомый.

Легко построить пример треугольника плоскости Лобачевского, вокруг которого можно описать окружность. Для этого достаточно взять две пересекающиеся прямые, выбрать точку, которая им не принадлежит, и отразить ее относительно этих прямых. Проведите подробное построение самостоятельно.

Определение 14.1. Пусть даны две направленные прямые и . Они называются параллельными, если выполнены условия:

1. прямые а и b не пересекаются;

2. для произвольных точек А и В прямых а и b любой внутренний луч h угла АВB 2 пересекает прямую а (рис. 52).

Обозначать параллельные прямые будем так же, как принято в школьном курсе геометрии: a || b. Заметим, что этому определению удовлетворяют параллельные прямые на евклидовой плоскости.

Теорема 14.3. Пусть на плоскости Лобачевского дана направленная прямая и точка В, которая ей не принадлежит. Тогда через данную точку проходит единственная направленная прямая такая, что прямая а параллельна прямой b.

Доказательство. Опустим из точки В перпендикуляр ВА на прямую а и из точки В восставим перпендикуляр р к прямой ВА (рис. 56 а). Прямая р, как уже неоднократно отмечалось, не пересекает данную прямую а. Выберем на ней произвольную точку С, разобьем точки отрезка АС на два класса и . Первому классу будут принадлежать такие точки S этого отрезка, для которых луч BS пересекает луч АА 2 , а второму классу принадлежат такие точки T, для которых луч ВТ не пересекает луч АА 2 . Покажем, что такое разбиение на классы производит дедекиндово сечение отрезка АС. В соответствии с теоремой 4.3 (см. § 4) нам следует проверить, что:

2. и классы и содержат точки, отличные от А и С;

3. любая точка класса , отличная от А, лежит между точкой А и любой точкой класса .

Первое условие очевидно, все точки отрезка принадлежат одному или другому классу, при этом сами классы, исходя из их определения, не имеют общих точек.

Второе условие также легко проверить. Очевидно, что и . Класс содержит точки, отличные от А, для проверки этого утверждения достаточно выбрать какую либо точку луча АА 2 и соединить ее с точкой В. Этот луч пересечет отрезок ВС в точке первого класса. Класс также содержит точки, отличные от С, иначе мы придем к противоречию с аксиомой параллельности Лобачевского.

Докажем третье условие. Пусть существует такая точка S первого класса, отличная от А, и такая точка Т второго класса, что точка Т лежит между А и S (см. рис 56 а). Так как , то луч BS пересекает луч АА 2 в некоторой точке R. Рассмотрим луч ВТ. Он пересекает сторону AS треугольника ASR в точке Т. В соответствии с аксиомой Паша этот луч должен пересечь либо сторону AR, либо сторону SR этого треугольника. Предположим, что луч ВТ пересекает сторону SR в некоторой точке О. Тогда через точки В и О проходит две различные прямые ВТ и BR, что противоречит аксиоме аксиоматики Гильберта. Таким образом, луч ВТ пересекает сторону AR, откуда следует, что точка Т не принадлежит классу К 2 . Полученное противоречие приводит к утверждению, точка S лежит между А и Т. Условие теоремы 4.3 проверено полностью.

В соответствии с заключением теоремы 4.3 о дедекиндовом сечении на отрезке АС существует такая точка , для которой любая точка, лежащая между А и принадлежит классу , а любая точка, лежащая между и С - принадлежит классу . Покажем, что направленная прямая параллельна прямой . По сути, нам осталось доказать, что не пересекает прямую а, так как в силу выбора точек класса К 1 любой внутренний луч угла пересекает . Предположим, что прямая пересекает прямую а в некоторой точке Н (рис 56 б). Выберем произвольную точку Р на луче НА 2 и рассмотрим луч ВР. Тогда он пересекает отрезок М 0 С в некоторой точке Q (докажите это утверждение самостоятельно). Но внутренние точки отрезка М 0 С принадлежат второму классу, луч ВР не может иметь общих точек с прямой а. Таким образом, наше предположение о пересечении прямых ВМ 0 и а неверно.

Легко проверить, что прямая единственная направленная прямая, проходящая через точку В и параллельная . Действительно, пусть через точку В проходит еще одна направленная прямая , которая, как и , параллельна . При этом будем считать, что М 1 – точка отрезка АС. Тогда, исходя из определения класса К 2 , . Поэтому, луч ВМ 0 является внутренним лучом угла , следовательно, в силу определения 14.1 пересекает прямую . Мы пришли к противоречию с доказанным выше утверждением. Теорема 14.3 доказана полностью.

Рассмотрим точку В и направленную прямую , которая ее не содержит. В соответствии с доказанной теоремой 14.3 через точку В проходит направленная прямая , параллельная а. Опустим из точки В перпендикуляр BH на прямую а (рис. 57). Легко видеть, что угол HBB 2 – острый . Действительно, если предположить, что этот угол прямой, то из определения 14.1 следует, что любая прямая, проходящая через точку В пересекает прямую а, что противоречит теореме 13.1, т.е. аксиоме LV 1 параллельности Лобачевского (см. § 13). Легко видеть, что предположение о том, что этот угол тупой, также приводит к противоречию теперь уже с определением 14.1 и теоремой 4.2 (см. §4), так как внутренний луч угла HBB 2 , перпендикулярный ВН не пересекает луч АА 2 . Таким образом, справедливо следующее утверждение.

Теорема 14.4. Пусть направленная прямая параллельна направленной прямой . Если из точки В прямой опустить перпендикуляр ВН на прямую , то угол HBB 2 – острый.

Из этой теоремы с очевидностью вытекает следующее следствие.

Следствие. Если существует общий перпендикуляр направленных прямых и , то прямая не параллельна прямой .

Введем понятие параллельности для ненаправленных прямых. Будем считать, что две ненаправленные прямые параллельны, если на них можно выбрать направления так, чтобы они удовлетворяли определению 14.1. Как известно, прямая имеет два направления. Поэтому, из теоремы 14.3 следует, что через точку В, не принадлежащей прямой а проходит две ненаправленные прямые, параллельные данной прямой. Очевидно, они симметричны относительно перпендикуляра, опущенного из точки В на прямую а. Эти две прямые и являются теми самыми пограничными прямыми, разделяющими пучок прямых, проходящих через точку В и пересекающих а, от пучка прямых, проходящих через В и не пересекающих прямую а (рис. 57).

Теорема 15.2. (Свойство симметричности параллельных прямых на плоскости Лобачевского). Пусть направленная прямая параллельна направленной прямой . Тогда направленная прямая параллельна прямой .

Свойство симметричности понятия параллельности прямых на плоскости Лобачевского позволяет нам не указывать порядок направленных параллельных прямых, т.е. не уточнять, какая прямая является первой, а какая второй. Очевидно, что свойство симметричности понятия параллельности прямых имеет место и на евклидовой плоскости. Оно непосредственно следует из определения параллельных прямых в евклидовой геометрии. В евклидовой геометрии выполняется также свойство транзитивности для параллельных прямых. Если прямая а параллельна прямой b, а прямая b параллельна прямой с. то прямые а и с также параллельны между собой. Аналогичное свойство справедливо и для направленных прямых на плоскости Лобачевского.

Теорема 15.3. (Свойство транзитивности параллельных прямых на плоскости Лобачевского). Пусть даны три различные направленные прямые , . Если и , то .

Рассмотрим направленную прямую , параллельную направленной прямой . Пересечем их прямой . Точки А и В соответственно точки пересечения прямых , и , (рис. 60). Справедлива следующая теорема.

Теорема 15.4. Угол больше угла .

Теорема 15.5. Внешний угол вырожденного треугольника больше внутреннего угла, не смежного с ним.

Доказательство непосредственно следует из теоремы 15.4. Проведите его самостоятельно.

Рассмотрим произвольный отрезок АВ. Через точку А проведем прямую а, перпендикулярную к АВ, а через точку В прямую b, параллельную а (рис. 63). Как следует из теоремы 14.4 (см. § 14) прямая bне перпендикулярна прямой АВ.

Определение 16.1. Острый угол, образованный прямыми АВ и b называется углом параллельности отрезка АВ.

Ясно, что каждому отрезку соответствует некоторый угол параллельности. Справедлива следующая теорема.

Теорема 16.2. Равным отрезкам соответствуют равные углы параллельности.

Доказательство. Пусть даны два равных отрезкаАВ и А¢В¢. Проведем через точки А и А¢ направленные прямые и , перпендикулярные соответственно АВ и А¢В¢, а через точки В и В¢ направленные прямые и , параллельные соответственно и (рис. 64). Тогда и соответственно углы параллельности отрезков АВ и А¢В¢. Предположим, что

Отложим от луча ВА в полуплоскости ВАА 2 угол a 2 , (см. рис. 64). В силу неравенства (1), луч l – внутренний луч угла АВВ 2 . Так как ½½ , то l пересекает луч АА 2 в некоторой точке Р. Отложим на луче А¢А 2 ¢ от точки А¢ отрезок А¢Р¢, равный АР. Рассмотрим треугольники АВР и А¢В¢Р¢. Они прямоугольные, по условию теоремы имеют равные катеты АВ и А¢В¢, по построению равны между собой вторая пара катетов АР и А¢Р¢. Таким образом, прямоугольный треугольник АВР равен треугольнику А¢В¢Р¢. Поэтому . С другой стороны, луч В¢Р¢, пересекает луч А¢А 2 ¢, а направленная прямая В 1 ¢В 2 ¢ параллельна прямой А 1 ¢А 2 ¢. Следовательно луч В¢Р¢- внутренний луч угла А¢В¢В 2 ¢, . Полученное противоречие опровергает наше предположение, неравенство (1) – ложно. Аналогично доказывается, что угол не может быть меньше угла . Теорема доказана.

Рассмотрим теперь, как связаны между собой углы параллельности неравных отрезков.

Теорема 16.3. Пусть отрезок АВ больше отрезка А¢В¢, а углы и соответственно их углы параллельности. Тогда .

Доказательство. Доказательство этой теоремы непосредственно следует из теоремы 15.5 (см. § 15) о внешнем угле вырожденного треугольника. Рассмотри отрезок АВ. Проведем через точку А направленную прямую , перпендикулярную АВ, а через точку В направленную прямую , параллельную (рис. 65). Отложим на луче АВ отрезок АР, равный А¢В¢. Так как , то Р – внутренняя точка отрезка АВ. Проведем через Р направленную прямую С 1 С 2 , так же параллельную . Угол служит углом параллельности отрезка А¢В¢, а угол - углом параллельности отрезка АВ. С другой стороны, из теоремы 15.2 о симметричности понятия параллельности прямых (см. § 15) следует, что прямая С 1 С 2 параллельна прямой . Поэтому треугольник РВС 2 А 2 – вырожденный, - внешний, а - его внутренний углы. Из теоремы 15.5 следует истинность доказываемого утверждения.

Легко доказать обратное утверждение.

Теорема 16.4. Пусть и углы параллельности отрезков АВ и А¢В¢. Тогда, если , то АВ > А¢В¢.

Доказательство. Предположим противное, . Тогда из теорем 16.2 и 16.3 следует, что , что противоречит условию теоремы.

И так мы доказали, что каждому отрезку соответствует свой угол параллельности, причем большему отрезку соответствует меньший угол параллельности. Рассмотрим утверждение, в котором доказывается, что для любого острого угла существует отрезок, для которого этот угол является углом параллельности. Тем самым будет установлено взаимно однозначное соответствие между отрезками и острыми углами на плоскости Лобачевского.

Теорема 16.5. Для любого острого угла существует отрезок, для которого этот угол является углом параллельности.

Доказательство. Пусть дан острый угол АВС (рис. 66). Будем считать, что все рассматриваемые в дальнейшем точки на лучах ВА и ВС лежат между точками В и А и В и С. Назовем луч допустимым, если его начало принадлежит стороне угла ВА, он перпендикулярен прямой ВА и расположен в той же полуплоскости относительно прямой ВА, что и сторона ВС данного угла. Обратимся к предложению Лежандра: перпендикуляр, проведенный к стороне острого угла в любой точке этой стороны, пересекает вторую сторону угла. Нами была доказана теорема 11.6 (см. § 11), в которой утверждается, что предложение Лежандра эквивалентно аксиоме параллельности евклидовой геометрии. Отсюда мы сделали вывод, что на плоскости Лобачевского справедливо логическое отрицание этого утверждения, а именно, на стороне любого острого угла существует такая точка, что перпендикуляр к ней, восставленный в этой точке, не пересекает вторую сторону угла (см. § 13). Таким образом, существует такой допустимый луч m с началом в точке М, который не пересекает сторону ВС данного угла (см. рис. 66).

Разобьем точки отрезка ВМ на два класса. Классу будут принадлежать те точки этого отрезка, для которых допустимые лучи с началами в этих точках пересекают сторону ВС данного угла, а классу принадлежат те точки отрезка ВС, для которых допустимые лучи с началами в этих точках сторону ВС не пересекают. Покажем, что такое разбиение отрезка ВМ образует дедекиндово сечение (см. теорему 4.3, § 4). Для этого следует проверить, что

5. и классы и содержат точки, отличные от В и М;

6. любая точка класса , отличная от В, лежит между точкой В и любой точкой класса .

Первое условие с очевидностью выполняется. Любая точка отрезка ВМ принадлежит либо классу К 1 , либо классу К 2 . При этом точка, в силу определения этих классов, не может принадлежать двум классам одновременно. Очевидно, можно считать, что , точка М принадлежит К 2 , так как допустимый луч с началом в точке М не пересекает ВС. Класс К 1 содержит по крайней мере одну точку, отличную от В. Для ее построения достаточно выбрать произвольную точку P на стороне ВС и опустить из нее перпендикуляр PQ на луч ВА. Если предположить, что точка Q лежит между точками М и А, то тогда точки Р и Q лежат в различных полуплоскостях относительно прямой, содержащей луч m (см. рис. 66). Поэтому отрезок РQ пересекает луч m в некоторой точке R. Мы получим, что из точки R на прямую ВА опущено два перпендикуляра, что противоречит теореме 4.2 (см. § 4). Таким образом, точка Q принадлежит отрезку ВМ, класс К 1 содержит точки, отличные от В. Легко объяснить, почему на луче ВА существует отрезок, содержащий по крайней мере одну точку, принадлежащую классу К 2 и отличную от его конца. Действительно, если класс К 2 рассматриваемого отрезка ВМ содержит единственную точку М, то тогда выберем произвольную точку М¢ между М и А. Рассмотрим допустимый луч m¢ с началом в точке М¢. Он не пересекает луч m, иначе из точки опущены два перпендикуляра на прямую АВ, поэтому m¢ не пересекает луч ВС. Отрезок ВМ¢ искомый, и все дальнейшие рассуждения следует проводить для отрезка ВМ¢.

Проверим справедливость третьего условия теоремы 4.3. Предположим, что существуют такие точки и , что точка Р лежит между точкой U и М (рис. 67). Проведем допустимые лучи u и p с началами в точках U и P. Так как , то луч р пересекает сторону ВС данного угла в некоторой точке Q. Прямая, содержащая луч u, пересекает сторону ВР треугольника ВРQ, поэтому согласно аксиоме аксиоматике Гильберта (аксиома Паша, см. § 3) она пересекает либо сторону ВQ, либо сторону PQ этого треугольника. Но, , поэтому луч u не пересекает сторону ВQ, следовательно, лучи р и u пересекаются в некоторой точке R. Мы снова пришли к противоречию, так как построили точку, из которой опущены два перпендикуляра на прямую АВ. Условие теоремы 4.3 выполнено полностью.

М. Отсюда следует, что . Мы получили противоречие, так как построили точку класса К 1 , расположенную между точками и М. Нам осталось показать, что любой внутренний луч угла пересекает луч ВС. Рассмотрим произвольный внутренний луч h этого угла. Выберем на нем произвольную точку К, принадлежащую углу , и опустим из нее перпендикуляр на прямую ВА (рис. 69). Основание S этого перпендикуляра, очевидно, принадлежит отрезку ВМ 0 , т.е. классу К 1 (докажите этот факт самостоятельно). Отсюда следует, что перпендикуляр KS пересекает сторону ВС данного угла в некоторой точке Т (см. рис. 69). Луч h пересек сторону ST треугольника BST в точке К, согласно аксиоме (аксиоме Паша), он должен пересечь либо сторону BS, либо сторону ВТ этого треугольника. Ясно, что h не пересекает отрезок BS, иначе через две точки, и эту точку пересечения, проходят две прямые, h и ВА. Таким образом, h пересекает сторону ВТ, т.е. луч ВА. Теорема доказана полностью.

И так, мы установили, что каждому отрезку в геометрии Лобачевского можно поставить в соответствие острый угол – его угол параллельности. Будем считать, что нами введена мера углов и отрезков, отметим, что мера отрезков будет введена нами позже, в § . Ведем следующее определение.

Определение 16.6. Если под х понимается длина отрезка, а под j - величина угла, то зависимостьj = P(х), ставящая в соответствие длине отрезка величину его угла параллельности, называется функцией Лобачевского.

Ясно, что . Используя свойства угла параллельности отрезка, доказанные выше (см. теоремы 16.3 и 16.4), можно сделать следующий вывод: функция Лобачевского является монотонно убывающей. Николаем Ивановичем Лобачевским была получена следующая замечательная формула:

,

где k – некоторое положительное число. Оно имеет важное значение в геометрии пространства Лобачевского, и носит название его радиуса кривизны. Два пространства Лобачевского, имеющие один и тот же радиус кривизны, изометричны. Из приведенной формулы, как нетрудно видеть, также следует, что j = P(х) монотонно убывающая непрерывная функция, значения которой принадлежат интервалу .

На евклидовой плоскости зафиксируем окружность w с центром в некоторой точке O и радиусом, равным единице, которую будем называть абсолютом . Множество всех точек круга, ограниченного окружностью w, обозначим через W¢, а множество всех внутренних точек этого круга - через W. Таким образом, . Точки множества W будем называть L‑точками Множество W всех L-точек составляет L-плоскость , на которой мы и будем строить модель Кэли-Кляйна плоскости Лобачевского. Будем называть L‑прямыми произвольные хорды окружности w. Будем считать, что L-точка X принадлежит L‑прямой x тогда и только тогда, когда точка X как точка евклидовой плоскости принадлежит хорде x абсолюта.

L‑плоскости имеет место аксиома параллельности Лобачевского: через L‑точку B, не лежащую на L‑прямой a проходят по крайней мере две L‑прямые b и c, не имеющие общих точек с L‑прямой a. На рисунке 94 приведена иллюстрация этого утверждения. Легко также понять, что из себя представляют параллельные направленные прямые L-плоскости. Рассмотрим рисунок 95. L-прямая b проходит через точку пересечения L-прямой a с абсолютом. Поэтому направленная L-прямая А 1 А 2 параллельна направленной L-прямой В 1 А 2 . Действительно, эти прямые не пересекаются, и, если выбрать произвольные L-точки А и В, принадлежащие соответственно этим прямым, то любой внутренний луч h угла А 2 ВА пересекает прямую а. Таким образом, две L-прямые параллельны, если они имеют общую точку пересечения с абсолютом. Ясно, что выполняется свойство симметричности и транзитивности понятия параллельности L-прямых. В параграфе 15 свойство симметричности нами было доказано, свойство же транзитивности иллюстрируется на рисунке 95. Прямая А 1 А 2 параллельна прямой В 1 А 2 , они пересекают абсолют в точке А 2 . Прямые В 1 А 2 и С 1 А 2 также параллельны, они также пересекают абсолют в той же точке А 2 . Поэтому прямые А 1 А 2 и С 1 А 2 параллельны между собой.

Таким образом, определенные выше основные понятия удовлетворяют требованиям аксиом I 1 -I 3 , II, III, IV групп аксиоматики Гильберта и аксиоме параллельности Лобачевского, следовательно являются моделью плоскости Лобачевского. Нами доказана содержательная непротиворечивость планиметрии Лобачевского. Сформулируем это утверждение как следующую теорему.

Теорема 1. Геометрия Лобачевского содержательно непротиворечива.

Мы построили модель плоскости Лобачевского, с построением же пространственной модели, аналогичной рассмотренной на плоскости, можно познакомиться в пособии .

Из теоремы 1 следует важнейший вывод. Аксиома параллельности не является следствием аксиом I – IV аксиоматики Гильберта. Так как пятый постулат Евклида равносилен аксиоме параллельности евклидовой геометрии, то этот постулат также не зависит от остальных аксиом Гильберта.