Болезни Военный билет Призыв

Нервный центр: свойства и виды. Конвергенция нервных импульсов Свойства нервных центров конвергенция дивергенция

Если возбуждение распространяется на все большее количество нейронов, то такое явление называется дивергенцией .

Лат. diverqere - направляется в разные стороны - способность одиночного нейрона устанавливать многочисленные синаптические связи с различными нервными клетками. Благодаря процессу дивергенции одна и та же клетка может участвовать в организации различных реакций и контролировать большее число нейронов. В то же время каждый нейрон может обеспечивать широкое перераспределение импульсов, что приводит к иррадиации возбуждения.

Если же наоборот, от нескольким нейронов пути идут к меньшему количеству, такой механизм называется конвергенцией (рис).

Конвергенция означает объединение сигналов множественных входов на одном нейроне. На рисунке схематически изображена конвергенция сигналов, исходящих из одного источника. Это значит, что на одном нейроне заканчиваются многочисленные терминали нервных волокон одиночного тракта. Этот тип конвергенции важен, поскольку нейроны почти никогда не возбуждаются потенциалом действия одной входящей терминали. Но потенциалы действия многих терминалей, конвергирующих на нейроне, обеспечивают достаточную пространственную суммацию, чтобы сдвинуть мембранный потенциал нейрона до порогового уровня, необходимого для его возбуждения.

Возможна также конвергенция сигналов (возбуждающих или тормозящих), исходящих из многих источников. Например, на вставочных нейронах спинного мозга конвергируют сигналы от:

(1) периферических нервных волокон, входящих в спинной мозг;

(2) проприоспинальных волокон, идущих от одного сегмента спинного мозга к другому;

(3) кортикоспинальных волокон из коры большого мозга;

(4) нескольких других длинных нисходящих путей из головного в спинной мозг. Затем сигналы от вставочных нейронов сходятся на мотонейронах спинного мозга, непосредственно управляющих функцией скелетных мышц.

Такая конвергенция позволяет осуществлять суммацию информации из различных источников, а ответная реакция нейрона является результатом интеграции всей этой информации. Конвергенция - один из важных способов, с помощью которых центральная нервная система коррелирует, интегрирует и сортирует различные типы информации.

Иногда в ответ на сигнал, входящий в нервный пул, на выходе одновременно появляются возбуждающий сигнал, идущий в одном направлении, и тормозной сигнал, направляющийся по другому пути. Например, когда в спинном мозге одна группа нейронов посылает возбуждающий сигнал для движения ноги вперед, через другую группу нейронов передается сигнал, тормозящий мышцы, двигающие эту ногу назад, чтобы они не мешали движению вперед. Этот тип контура, называемый контуром с реципрокным торможением , характерен для всех нервных центров, управляющих мышцами-антагонистами.

На рисунке показан механизм развития такого торможения.

Входящее волокно одновременно стимулирует возбуждающий выход пула (нейрон 1) и вставочный тормозной нейрон (нейрон 2), секретирующий медиатор, который тормозит второй выход пула. Этот тип контура важен также для предупреждения гиперактивности во многих частях мозга.

Например, к одному мотонейрону могут подходить нервные окончания от нескольких афферентных нейронов. В таких сетях вышележащие нейроны управляют ниже лежащими.

Иерархические системы обеспечивают очень точную передачу информации.

В результате конвергенции (когда несколько нейронов одного уровня контактируют с меньшим числом нейронов следующего уровня) или дивергенции (когда контакты устанавливаются с большим числом клеток следующего уровня) информация фильтруется и происходит усиление сигналов.

Конвергенция нервных импульсов сенсорно-биологическая - схождение к одному нейрону двух или нескольких возбуждений от сенсорных и биологических раздражителей одновременно (например, звук, голод, свет и жажда). Этот вид конвергенции является одним из механизмов обучения, образования условных рефлексов и афферентного синтеза функциональных систем.

Конвергенция нервных импульсов эфферентно-афферентная - схождение к одному нейрону двух или нескольких афферентных и эфферентных возбуждений одновременно. Эфферентное возбуждение отходит от нейрона, затем через несколько вставочных нейронов возвращается к нейрону и взаимодействует с афферентным возбуждением, приходящим к нейрону в этот момент. Этот вид конвергенции является одним из механизмов акцептора результата действия (предвидение будущего результата), когда афферентное возбуждение сличается с эфферентным.

Но подобно любой цепи, иерархическая система не может быть сильнее своего самого слабого звена. Любая инактивация любого уровня, вызванная ранением, заболеванием, инсультом или опухолью, может вывести из строя всю систему.

Конвергенция и дивергенция, однако, оставляют цепям некоторый шанс уцелеть даже при их серьезном повреждении. Если нейроны одного уровня будут частично уничтожены, сохранившиеся клетки смогут все-таки поддерживать функционирование сети.

Иерархические системы существуют, конечно, не только в сенсорных или двигательных путях. Тот же тип связей характерен для всех сетей, выполняющих какую-то специфическую функцию.

БЕЗВЕРХОВА

Локальные сети .

3. Дивергентные сети с одним входом. В них один нейрон, т.е. вход образует большое количество связей с нейронами многих центров.

В связи с наличием многочисленных связей между нейронами сети в них может возникать иррадиация возбуждения. Это его распространение на все нейроны. В результате иррадиации возбуждение может переходить на другие нервные центры и даже охватывать всю нервную систему.

В нервных сетях большое количество вставочных нейронов, ряд из которых является тормозными. Поэтому в них может возникать несколько типов тормозных процессов:

Нейроны локальных сетей действуют как фильтры, удерживая поток информации в пределах какого-то одного иерархического уровня. Они широко распространены во всех мозговых сетях.

Локальные сети могут оказывать на нейроны-мишени возбуждающее или тормозящее действие. Сочетание этих особенностей с дивергентным или конвергентным типом передачи на данном иерархическом уровне может еще более расширять, сужать или снова фокусировать поток информации.

Все особенности распространения возбуждения в ЦНС объясняются ее нейронным строением: наличием химических синапсов, многократным ветвлением аксонов нейронов, наличием замкнутых нейронных путей. Этими особенностями являются следующие.

1. Иррадиация (дивергенция) возбуждения в ЦНС. Она объясняется ветвлением аксонов нейронов, их способностью устанавливать многочисленные связи с другими нейронами, наличием вставочных нейронов, аксоны которых также ветвятся (рис. 4.4, а).

Иррадиацию возбуждения можно наблюдать в опыте на спинальной лягушке, когда слабое раздражение вызывает сгибание одной конечности, а сильное - энергичные движения всех конечностей и даже туловища. Дивергенция расширяет сферу действия каждого нейрона. Один нейрон, посылая импульсы в кору большого мозга, может участвовать в возбуждении до 5000 нейронов.

Рис. 4.4. Дивергенция афферентных дорсальных корешков на спинальные нейроны, аксоны которых, в свою очередь, ветвятся, образуя многочисленные коллатерали (в), и конвергенция эфферентных путей от различных отделов ЦНС на α-мотонейрон спинного мозга (6)

1. Конвергенция возбуждения (принцип общего конечного пути) - схождение возбуждения различного происхождения по нескольким путям к одному и тому же нейрону или нейронному пулу (принцип шеррингтоновской воронки). Конвергенция возбуждения объясняется наличием многих аксонных коллатералей, вставочных нейронов, а также тем, что афферентных путей в несколько раз больше, чем эфферентных нейронов. На одном нейроне ЦНС может располагаться до 10 000 синапсов. Явление конвергенции возбуждения в ЦНС имеет широкое распространение. Примером может служить конвергенция возбуждения на спинальном мотонейроне. Так, к одному и тому же спинальному мотонейрону подходят первичные афферентные волокна (рис. 4.4, б), а также различные нисходящие пути многих вышележащих центров ствола мозга и других отделов ЦНС. Явление конвергенции весьма важно: оно обеспечивает, например, участие одного мотонейрона в нескольких различных реакциях. Мотонейрон, иннервирующий мышцы глотки, участвует в рефлексах глотания, кашля, сосания, чиханья и дыхания, образуя общий конечный путь для многочисленных рефлекторных дуг. На рис. 4.4, я показаны два афферентных волокна, каждое из которых отдает коллатерали к 4 нейронам таким образом, что 3 нейрона из общего их числа, равного 5, образуют связи с обоими афферентными волокнами. На каждом из этих 3 нейронов конвергируют два афферентных волокна.



На один мотонейрон может конвергировать множество коллатералей аксонов, до 10 000-20 000, поэтому генерация ПД в каждый момент зависит от общей суммы возбуждающих и тормозящих синаптических влияний.ПД возникают лишь в том случае, если преобладают возбуждающие влияния. Конвергенция может облегчать процесс возникновения возбуждения на общих нейронах в результате пространственной суммации подпороговых ВПСП либо блокировать его вследствие преобладания тормозных влияний (см. раздел 4.8).

3. Циркуляция возбуждения по замкнутым нейронным цепям. Она может продолжаться минуты и даже часы (рис. 4.5).

Рис. 4.5. Циркуляция возбуждения в замкнутых нейронных цепях по Лоренто де-Но (а) и по И.С.Беритову (б). 1,2,3- возбуждающие нейроны

Циркуляция возбуждения - одна из причин явления последействия, которое будет рассмотрено далее (см. раздел 4.7). Считают, что циркуляция возбуждения в замкнутых нейронных цепях - наиболее вероятный механизм феномена кратковременной памяти (см. раздел 6.6). Циркуляция возбуждения возможна в цепи нейронов и в пределах одного нейрона в результате контактов разветвлений его аксона с собственными дендритами и телом.

4. Одностороннее распространение возбуждения в нейронных цепях, рефлекторных дугах. Распространение возбуждения от аксона одного нейрона к телу или дендритам другого нейрона, но не обратно объясняется свойствами химических синапсов, которые проводят возбуждение только в одном направлении (см. раздел 4.3.3).

5. Замедленное распространение возбуждения в ЦНС по сравнению с его распространением по нервному волокну объясняется наличием на путях распространения возбуждения множества химических синапсов. Время проведения возбуждения через синапс затрачивается на выделение медиатора в синаптическую щель, распространение его до постсинаптической мембраны, возникновение ВПСП и, наконец, ПД. Суммарная задержка передачи возбуждения в синапсе достигает примерно 2 мс. Чем больше синапсов в нейрональной цепочке, тем меньше общая скорость распространения по ней возбуждения. По латентному времени рефлекса, точнее по центральному времени рефлекса, можно ориентировочно рассчитать число нейронов той или иной рефлекторной дуги.

6. Распространение возбуждения в ЦНС легко блокируется определенными фармакологическими препаратами, что находит широкое применение в клинической практике. В физиологических условиях ограничения распространения возбуждения по ЦНС связаны с включением нейрофизиологических механизмов торможения нейронов.

Рассмотренные особенности распространения возбуждения дают возможность подойти к пониманию свойств нервных центров.

СВОЙСТВА НЕРВНЫХ ЦЕНТРОВ

Рассматриваемые ниже свойства нервных центров объясняются некоторыми особенностями распространения возбуждения в ЦНС, особыми свойствами химических синапсов и свойствами мембран нервных клеток. Основными свойствами нервных центров являются следующие.

А. Фоновая активность нервных центров (тонус) объясняется следующим:

Спонтанной активностью нейронов ЦНС;

Гуморальным влиянием циркулирующих в крови биологически активных веществ (метаболиты, гормоны, медиаторы и др.), влияющих на возбудимость нейронов;

Афферентной импульсацией от различных рефлексогенных зон;

Суммацией миниатюрных потенциалов, возникающих в результате спонтанного выделения квантов медиатора из аксонов, образующих синапсы на нейронах;

Циркуляцией возбуждения вЦНС.

Значение фоновой активности нервных центров заключается в обеспечении некоторого исходного уровня деятельного состояния центра и эффекторов. Этот уровень может возрастать или снижаться в зависимости от колебаний суммарной активности нейронов нервного центра-регулятора.

Б. Трансформация ритма возбуждения - это изменение числа импульсов, возникающих в нейронах центра на выходе, относительно числа импульсов, поступающих на вход данного центра.

Трансформация ритма возбуждения возможна как в сторону увеличения, так и в сторону уменьшения. Увеличению числа импульсов, возникающих в центре в ответ на афферентную импульсацию, способствуют иррадиация процесса возбуждения (см. раздел 4.6) и последействие. Уменьшение числа импульсов в нервном центре объясняется снижением его возбудимости за счет процессов пре- и постсинаптического торможения, а также избыточным потоком афферентных импульсов. При большом потоке афферентных влияний, когда уже все нейроны центра или нейронного пула возбуждены, дальнейшее увеличение афферентных входов не увеличивает число возбужденных нейронов.

В. Инерционность - сравнительно медленное возникновение возбуждения всего комплекса нейронов центра при поступлении к нему импульсов и медленное исчезновение возбуждения нейронов центра после прекращения входной импульсации. Инерционность центров связана с суммацией возбуждения и последействием.

I. Явление суммации возбуждения в ЦНС открыл И.М.Сеченов (1868) в опыте на лягушке: раздражение конечности лягушки слабыми редкими импульсами не вызывает реакции, а более частые раздражения такими же слабыми импульсами сопровождается ответной реакцией - лягушка совершает прыжок. Различают временную (последовательную) сулилацию и пространственную суммацию (рис. 4.6).

Временна́я суммация. На рис. 4.6 слева показана схема для экспериментального тестирования эффектов, вызываемых в нейроне ритмической стимуляцией аксона. Запись вверху позволяет видеть, что если ВПСП быстро следуют друг за другом, то они суммируются благодаря своему относительно медленному временному ходу (несколько миллисекунд), достигая в конце концов порогового уровня. Временная суммация обусловлена тем, что ВПСП от предыдущего импульса еще продолжается, когда приходит следующий импульс. Поэтому данный вид суммации называют также последовательной суммацией. Она играет важную физиологическую роль, потому что многие нейронные процессы имеют ритмический характер и, таким образом, могут суммироваться, давая начало надпороговому возбуждению в нейронных объединениях нервных центров.

Пространственная суммация (см. рис. 4.6, б). Раздельная стимуляция каждого из двух аксонов вызывает подпороговый ВПСП, тогда как при одновременной стимуляции обоих аксонов возникает ПД, что не может быть обеспечено одиночным ВПСП. Пространственная суммация связана с такой особенностью распространения возбуждения, как конвергенция.

2. Последействие - это продолжение возбуждения нервного центра после прекращения поступления к нему импульсов по афферентным нервным путям. Причинами последействия являются:

Длительное существование ВПСП, если ВПСП полисинаптический и высокоамплитудный; в этом случае при одном ВПСП возникает несколько ПД;

Многократные появления следовой деполяризации, что свойственно нейронам ЦНС; если следовая деполяризация достигает Екр, то возникает ПД;

Циркуляция возбуждения по замкнутым нейронным цепям (см. раздел 4.6).

Первые две причины действуют недолго - десятки или сотни миллисекунд, третья причина - циркуляция возбуждения - может продолжаться минуты и даже часы. Таким образом, особенность распространения возбуждения (его циркуляция) обеспечивает другое явление вЦНС- последействие. Последнее играет важнейшую роль в процессах обучения - кратковременной памяти.

Г. Большая чувствительность ЦНС к изменениям внутренней среды: например, к изменению содержания глюкозы в крови, газового состава крови, температуры, к вводимым с лечебной целью различным фармакологическим препаратам. В первую очередь реагируют синапсы нейронов. Особенно чувствительны нейроны ЦНС к недостатку глюкозы и кислорода. При снижении содержания глюкозы в 2 раза ниже нормы могут возникнуть судороги. Тяжелые последствия для ЦНС вызывает недостаток кислорода в крови. Прекращение кровотока всего на 10 с приводит к очевидным нарушениям функций мозга: человек теряет сознание. Если кровоток прекращается на 8-12 мин, то возникают необратимые нарушения деятельности мозга; погибают многие нейроны, в первую очередь корковые, что ведет к тяжелым последствиям.

Д. Утомляемость нервных центров продемонстрировал Н.Е.Введенский в опыте на препарате лягушки при многократном рефлекторном вызове сокращения икроножной мышцы с помощью раздражения большеберцового (п . tibialis) и малоберцового (п . peroneus) нервов. В этом случае ритмическое раздражение одного нерва вызывает ритмическое сокращение мышцы, приводящее к ослаблению силы ее сокращения вплоть до полного отсутствия сокращения. Переключение раздражения на другой нерв сразу же вызывает сокращение той же мышцы, что свидетельствует о локализации утомления не в мышце, а в центральной части рефлекторной дуги (рис. 4.7).

При этом развиваетсяпостсинаптическая депрессия (привыкание, габитуация) - ослабление реакции центра на раздражения (афферентные импульсы), выражающееся в снижении постсинаптических потенциалов во время длительного раздражения или после него. Это ослабление объясняется расходованием медиатора, накоплением метаболитов, закислением среды при длительном проведении возбуждения по одним и тем же нейронным цепям.

Е. Пластичность нервных центров - способность нервных элементов к перестройке функциональных свойств. Основные проявления этого свойства следующие: посттетаническая потенциация и депрессия, доминанта, образование временных связей, а в патологических случаях - частичная компенсация нарушенных функций.

1. Посттетаническая потенциация (синаптическое облегчение) - это улучшение проведения в синапсах после короткого раздражения афферентных путей. Кратковременная активация увеличивает амплитуду постсинаптических потенциалов. Облегчение наблюдается и во время раздражения (вначале); в этом случае феномен называют тетанической потенциацией. Степень выраженности облегчения возрастает с увеличением частоты импульсов; облегчение максимально, когда импульсы поступают с интервалом в несколько миллисекунд.

Рис. 4.7. Схема опыта Н.Е.Введенского, иллюстрирующего локализацию утомления в рефлекторной дуге.

Конвергенция нервных импульсов

Лат. converqere - сближать, сходиться - схождение к одному нейрону двух или нескольких возбуждений от сенсорных раздражителей (например звук, свет). Различают несколько видов конвергенции.

Конвергенция нервных импульсов сенсорно-биологическая - схождение к одному нейрону двух или нескольких возбуждений от сенсорных и биологических раздражителейодновременно (например, звук, голод, свет и жажда). Этот вид конвергенции является одним из механизмов обучения, образования условных рефлексов и афферентного синтеза функциональных систем.

Конвергенция нервных импульсов мультибиологическая - схождение к одному нейрону двух или нескольких возбуждений от биологических раздражителей например голод и боль, жажда и половое возбуждение).

Конвергенция нервных импульсов эфферентно-афферентная - схождение к одному нейрону двух или нескольких афферентных и эфферентных возбуждений одновременно. Эфферентное возбуждение отходит от нейрона, затем через несколько вставочных нейронов возвращается к нейрону и взаимодействует с афферентным возбуждением, приходящим к нейрону в этот момент. Этот вид конвергенции является одним из механизмов акцептора результата действия (предвидение будущего результата), когда афферентное возбуждение сличается с эфферентным.

Дивергенция возбуждения

Лат. diverqere - направляется в разные стороны - способность одиночного нейрона устанавливать многочисленные синаптические связи с различными нервными клетками. Благодаря процессу дивергенции одна и та же клетка может участвовать в организации различных реакций и контролировать большее число нейронов. В то же время каждый нейрон может обеспечивать широкое перераспределение импульсов, что приводит к иррадиации возбуждения.

Облегчение, проторение пути, банунг

Нем. bachnunq - проторение пути. После каждого, даже самого слабого раздражения, в нервном центре повышается возбудимость. При явлении суммации, когда в ЦНС идут два потока импульсов разделенных небольшим интервалом времени, то они вызывают значительно больший эффект, чем можно было ожидать в результате простого суммирования. Один поток импульсов как бы "проторяет путь” другому.

Окклюзия

Лат. occlusum - закрывать, замыкать - взаимодействие двух потоков импульсов между собой. Впервые явление окклюзии было описано Ч. Шеррингтоном. Сущность его заключается во взаимном угнетении рефлекторных реакций, при котором суммарный результат оказывается значительно меньше, чем сумма взаимодействующих реакций. Согласно Ч.Шеррингтону, явление окклюзии объясняется перекрытием синаптических полей, образуемых афферентными звеньями взаимодействующих рефлексов. Поэтому при одновременном поступлении двух афферентных влияний возбуждающий постсинаптический потенциал вызывается каждым из них отчасти в одних и тех же мотонейронах спинного мозга.

Обмен веществ в нервных центрах

В нервных клетках, в противоположность нервному волокну, отмечается высокий уровень обмена веществ и чем больше дифференцирована нервная клетка, тем выше уровень обмена веществ. Если нервные клетки испытывают недостаток кислорода (например, при прекращении притока к ним крови), то через короткий срок они теряютспособность возбуждаться и погибают. При деятельности нервных центров их обмен веществ возрастает. При рефлекторном возбуждении спинного мозга потребление кислорода увеличивается в 3-4 раза против уровня покоя. При этом также увеличивается потребление сахара, образование СО2. В нервных клетках или в окончаниях аксонов идет синтез медиаторов и ряда биологически активных нейропептидов, нейрогормонов и других веществ.

Утомляемость нервных центров - постепенное снижение и полное прекращение ответа при продолжительном раздражении афферентных нервных волокон. Утомление нервных центров вызывается прежде всего нарушением проведения возбуждения в межнейронных синапсах. Тот факт, что утомление сначала возникает в синапсе доказывается простым опытом. В то время, как раздражение афферентного нервного волокна спинальной лягушки не вызывает сокращения мышцы, стимуляция эфферентного волокна приводит к мышечной реакции.

В настоящее время считают, что утомление синапса обусловлено резким снижением запаса медиатора в пресинаптической мембране (истощение), уменьшением чувствительности постсинаптической мембраны (десенсетизация) и уменьшением энергетических ресурсов нейрона. Не все рефлекторные реакции одинаково быстро приводят к развитию утомления. Некоторые рефлексы могут в течение длительного времени протекать без развития утомления. К таким рефлексам относятся проприорецептивные тонические рефлексы.

Тонус

Греч. tonos - натяжение, напряжение - состояние незначительного постоянного возбуждения, в котором обычно находятся все центры, имеющие рефлекторный характер. Тонус двигательных центров поддерживается непрерывным потоком импульсов от проприорецепторов, заложенных в мышцах. Слабое возбуждение от центров по центробежным волокнам передается мышцам, которые всегда находятся в несколько сокращенном состоянии (тонусе). Перерезка афферентных или эфферентных волокон приводитк потере мышечного тонуса.

Пластичность нервных центров - способность нервных элементов к перестройке функциональных свойств под влиянием длительных внешних воздействий или при очаговых повреждениях нервной ткани. Посттравматическая пластичность выполняет компенсаторную функцию. В экспериментах Флуранса (1827), П.К. Анохина (1935) доказано, что пластичностью обладают все нервные клетки, но наиболее сложные формы пластичности проявляются в корковых клетках. И.П.Павлов считал кору больших полушарий высшим регулятором пластических перестроек нервной деятельности. В настоящее время под пластичностью понимают изменение эффективности или направленности связей между нервными клетками.

Доминанта

Лат. dominantis - господствующий - временно господствующая рефлекторная система, обуславливающая интегральный характер функционирования нервных центров в какой-либо период времени и определяющая целесообразное поведение животного в конкретный, данный период времени. Доминантный нервный центр притягивает к себе возбуждение из других нервных центров и одновременно подавляет их деятельность, что приводит к блокаде реакций этих центров на те стимулы, которые ранее активировали их. Типичные черты доминанты проявляются в обнимательном рефлексе у самцов лягушек весной. Любое раздражение, например нанесение на лапку кислоты, приводит в таком состоянии к усилению обнимательного рефлекса.

Характерные черты доминанты: повышенная возбудимость, стойкость, способность к суммированию и инертность возбуждения, т.е. способность продолжать реакцию, когда первоначальный стимул уже миновал. Учение о доминанте разработано А.А.Ухтомским (1923). Доминанта является общим рабочим принципом центральной нервной системы..

Общий план строения и функций нервной системы

Строение нервных клеток . Как уже говорилось, основная часть нервной клетки – сома или тело, в которой находится ядро, протоплазма и различные органеллы. От тела отходят отростки: дендриты, которые собирают информацию от других клеток, и аксон, который передает ее другим клеткам. Аксон заканчивается синапсами, которые образуют контакт с последующими клетками. В синапс включают пресинапс, синаптическую щель, постсинапс. В зависимости от места окончания различают аксосоматические контакты, аксодендритические, аксоаксональные и дендро-дендритические.

^ . Назначение нервной системы – сбор и обработка информации об изменениях внешней и внутренней среды организма и организация адекватных реакций на эти изменения с целью адаптации, поддержания гомеостаза, развития и воспроизведения живого существа. Весь клеточный состав нервной системы делится на три части: рецепторные нейроны – собирают информацию, вставочные нейроны –передают ее, и эффекторные нейроны – активируют соответствующие исполнительные органы. На всех этапах восприятия, обработки и использования информации происходит ее кодирование и декодирование.

^ Конвергенция и дивергенция возбуждений в нервной системе . Один из основных принципов строения нервной системы – это сочетание последовательного и параллельного проведения возбуждения. На каждой клетке имеется от нескольких единиц до нескольких тысяч контактов других клеток (конвергенция влияний). В свою очередь, аксоны клеток по своему ходу отдают коллатерали на другие клетки. В сферу их действия включаются от нескольких до нескольких тысяч других клеток (дивергенция влияний). Конвергенция и дивергенция влияний обеспечивает возможность взаимодействия возбуждений, идущих из самых различных источников.

^ Взаимодействие «модально-специфической» и «модально-неспеци-фической» информации . Другой принцип работы нервной системы определяется двойственностью ее функций. С одной стороны, при восприятии разного рода раздражителей и организации на них адекватного поведения необходимо сохранить специфику сведений о модальности действующего стимула. С другой стороны, каждое изменение во внешней или внутренней среде требует реакции со стороны исполнительных органов. Причем любое изменение среды должно иметь возможность вызвать активацию любого исполнительного органа. Эта проблема решается благодаря тому, что пути передачи информации о модальности действующего раздражителя строго специфичны. Эти пути и мозговые структуры, обрабатывающие информацию определенной модальности (свет, звук, запах, мышечно-суставная чувствительность и т. д.) называются проекционными. Для них характерна передача «из точки в точку», по принципу экранного строения с точным сохранением топологии, локализации соответствующих проекций.

Для того, чтобы обеспечить вторую функцию – связь любого изменения внешней и внутренней среды с любым исполнительным органом в нервной системе, как уже говорилось, существует возможность переключения, встречи возбуждений разного рода. Для этого служат разного рода скопления нервных клеток. Это, прежде всего, образования ретикулярной формации. Ретикулярная формация - это структура, элементы которой закладываются в центральной части спинного мозга, поднимаются в продолговатый, средний мозг и в таламус. Другие образования – это ассоциативные ядра и области коры и третьи – это клетки, передающие информацию на эффекторы. Во всех этих образованиях информация о модальности стимула исчезает. Передается информация о новизне, интенсивности и биологической значимости раздражителя и, соответственно, о необходимости включения тех или иных двигательных программ, работы желез и т.д. Таким образом, взаимодействие нервных путей, передающих модально-специфическую и модально-неспецифическую информацию, дает возможность реализовать любые формы поведения при сохранении стабильности восприятия окружающего мира, а также сигналов из внутренней среды организма, схемы тела, чувства позы и т. д.

При нарушении нормальных условий взаимодействия этих путей возникает патология в работе нервной системы и психики.

Надежность . В процессе передачи и обработки информации необходимо обеспечить надежность в работе нервной системы. Эта проблема решается, прежде всего, как уже говорилось, за счет дублирования путей передачи одной и той же информации. От всех проводящих путей по ходу их вверх или вниз в соседние структуры отходят коллатерали – отростки. Это и обеспечивает дублирование и дополнительные связи систем между собой.

Надежность обеспечивается также за счет того, что многие и восходящие и нисходящие проводящие пути имеют перекрест. Часть из них идет прямо, а другая часть переходит на другую сторону билатерально устроенных частей нервной системы.

Повышается надежность и за счет того, что вследствие особенностей свойств отдельных нейронов и архитектуры соединений между ними достигается возникновение длительного времени следовой активации в ответ даже на очень короткие изменения среды, особенно, если эти изменения биологически значимы. С одной стороны, следовые процессы возникают за счет длительного удерживания нейроном состояния повышенной активности, а также состояния повышенной возбудимости. С другой стороны, наличие в нервной системе обратных связей внутри отдельных структур и двусторонних связей между структурами возникает реверберация возбуждений. Эти же свойства нервной системы лежат в основе возникновения застойных очагов возбуждения в условиях разного рода патологии.

^ Развитие нервной системы

Нервная система развивается из эктодермы, внешнего листка зародыша. Здесь вначале образуется утолщенная пластинка, которая сворачивается в трубку в направлении от поверхности кпереди. Внутри трубки – полое пространство, из которого потом произойдут канал спинного мозга и внутримозговые желудочки, заполненные внутримозговой жидкостью – ликвором. Нервные клетки внутри этой трубки перемещаются, образуют группы, у них развиваются отростки двух типов – дендриты, которые собирают информацию от других клеток и аксоны, которые передают информацию другим клеткам.

За счет такого перемещения нервных клеток передняя часть трубки утолщается. Здесь образуется три утолщения: прозенцефалон - передний мозг, мезенцефалон - средний мозг и ромбенцефалон - задний мозг. Передний мозг затем делится на теленцефалон - конечный мозг и на диенцефалон - промежуточный мозг, а ромбенцефалон на задний мозг и продолговатый мозг. Продолговатый мозг переходит в спинной мозг. Часть мозга от продолговатого до промежуточного составляет ствол мозга.

Составные части всех отделов нервной системы: скопления нервных клеток и соединения их отростков, проводящие пути, а также нейроглия, число клеток которой на порядок выше, чем число нервных клеток. Нейроглия играет роль опоры, питания, изоляции нервных клеток и т. д. Предполагают также, что она имеет прямое отношение к памяти.

^ Составные части отделов мозга

1. Теленцефалон – конечный мозг включает в себя следующие образования.

Большие полушария головного мозга – неопаллиум – новая кора (серое веществе – нервные клетки) и ее проводящие пути, интер (внутри) корковые и интра (вне) корковые, восходящие и нисходящие. Новая кора имеет шесть слоев клеток: первый - плексиморфный, состоит в основном из волокон и небольших клеток, второй – наружный слой зернистых клеток, третий – слой малых пирамид, четвертый – внутренний слой зернистых клеток, пятый слой – большие пирамиды, шестой – полиморфные клетки. Сенсорные – афферентные влияния подходят, в основном, к четвертому слою. Пирамиды – эфферентные клетки. От больших пирамид прецентральной извилины отходит пирамидный путь. У приматов значительная часть его волокон заканчивается непосредственно на мотонейронах, у более низкоорганизованных животных между пирамидными клетками и мотонейронами имеются вставочные нейроны. Пирамидный путь реализует произвольные движения. Внутри больших полушарий находятся латеральные желудочки мозга (первый и второй желудочки). Большие полушария делят на несколько основных долей: лобная, теменная, височная, затылочная. В затылочной коре находятся высшие отделы анализатора зрения, в височной – слуха, в теменной (постцентральная извилина) - поверхностной (кожной) и глубокой (мышечно-суставной) чувствительности. В прецентральной извилине расположен отдел коры, осуществляющий реализацию и регуляцию высших моторных функций.

В состав конечного мозга входит старая кора : гиппокампальные структуры (гиппокамп, зубчатая извилина и свод). Гиппокамп еще называют обонятельным мозгом, т. к. сюда подходят окончания от структур, передающих активацию обонятельных рецепторов. Но у гиппокампа имеется много иных функций. Гиппокамп и лобная доля новой коры – главные информационные структуры головного мозга высших животных и человека. Древняя кора - расположена под полушариями головного мозга - это ядра и проводящие пути прозрачной перегородки. Волокна от ядер прозрачной перегородки идут к гиппокампу по своду или через зубчатую извилину. Во внутренней толще больших полушарий расположены базальные ядра, Они включают стриопаллидарный комплекс (бледный шар, хвостатое ядро, скорлупа, ограда, нуклеус аккумбенс – прилежащее ядро). Основная функция стриопаллидарного комплекса – реализация двигательных программ. К базальным ядрам относят и миндалевидное тело – амигдала (кроме других функций, имеет непосредственное отношение к реализации эмоций).

Билатеральные части переднего мозга соединены между собой проводящими путями – комиссурами (корпус каллозум – мозолистое тело, передняя и задняя комиссуры).

Часть мозга между теленцефалоном и спинным мозгом называется стволом мозга . Ствол мозга включает промежуточный мозг (основные части: таламус и гипоталамус), (промежуточный мозг не все авторы включают в состав ствола мозга), средний мозг (четверохолмие, центральное серое вещество, ядра черепных нервов и проходящие волокна), задний мозг (варолиев мост и мозжечок) и продолговатый мозг. В центральной части ствола мозга расположены: третий желудочек, сильвиев водопровод и четвертый желудочек.

К варолиеву мосту, который лежит между средним и продолговатым мозгом, под острым углом сходятся ножки мозга, которые образованы проводящими путями переднего мозга. Расходясь кпереди, они образуют продырявленное пространство (субстанция перфората), сквозь которое проходят мозговые сосуды, обеспечивающие кровью глубинные структуры мозга. Ножки мозга представляют собой нисходящие пути от коры к переднему рогу спинного мозга, к двигательным ядрам черепно-мозговых нервов и к мозжечку. Ножки мозга условно можно разделить на три части: наружную, среднюю и внутреннюю. Снаружи проходят волокна затылочно-височно-мостового пути, медиально проходят лобно-мостовые пути, которые затем направляются к мозжечку, образуя корково-мосто-мозжечковые пути. В средней части ножек мозга проходят волокна корковоспинномозгового пути и корково-ядерного путей таким образом, что волокна, иннервирующие мышцы лица, расположены медиально, мышцы верхних конечностей посередине, а мышцы нижних конечностей – латерально.

Промежуточный мозг включает следующие образования.

^ Зрительный бугор – таламус, расположен по обе стороны третьего желудочка, кзади округлен (подушка), кпереди заострен (передний бугорок). Полоски белого вещества - проводящих путей делят таламус на отдельные ядра, число их - до 150 ядер, основные: передние, вентролатеральные, медиальные и внутрипластинчатые - интраламинарные. Забугорье – метаталамус включает медиальное (слух) и латеральное (зрение) коленчатые тела.

^ Таламус и метаталамус являются важнейшими афферентными центрами, коллектором восходящих афферентных импульсаций, несущих информацию об изменениях состояния рецепторов поверхностной (рецепторы от кожи) и глубокой чувствительности (рецепторы мышц и суставов). Здесь находятся также ядра клеток, которые анализируют импульсацию от органов зрения, слуха, вкуса.

^ Надбугорье – эпиталамус . К нему относятся поводок и шишковидное тело (корпус пинеалис). Шишковидное тело соединено с мозгом двумя пластинками белого вещества. Верхняя пластинка переходит в поводки, связанные между собой спайкой поводков, нижняя пластинка направлена вниз к задней комиссуре мозга. Шишковидное тело относится к эндокринной системе, находится в тесных взаимоотношениях с передней долей гипофиза (см. ниже), с надпочечниками, принимает участие в развитии половых признаков.

^ Подбугорье – гипоталамус . В нижней части гипоталамуса располагаются серый бугор и воронка (инфундибулум). Воронка заканчивается нижним придатком мозга – гипофизом. Гипофиз – одна из важнейших эндокринных желез.

Гипоталамус составляют 32 пары высодифференцированных ядер. Их делят на три группы: передняя, средняя и задняя.
Передний отдел: паравентрикулярные, супрахиазмальные, латеральные и медиальные части супраоптических ядер.
Средний отдел: задние отделы супраоптических ядер, ядра центрального серого вещества III желудочка, передняя часть мамиллоинфундибулярных ядер, паллидоинфундибулярные и интерфорникальное ядра.

Задний отдел гипоталамуса состоит из мамиллоинфундибулярных ядер (задняя часть), субталамического ядра (люисово тело), мамиллярного тела.
Каждая группа ядер реализует регуляцию той или иной функции. Передние отделы гипоталамуса имеют отношение преимущественно к интеграции функций парасимпатической нервной системы. Задние отделы осуществляют интеграцию функций симпатической нервной системы. Нейроны средней группы ядер обеспечивают регуляцию деятельности желез внутренней секреции, обмен веществ.

В подбугорье различают также субталамическую область, которая включает: субталамическое ядро, неопределенную зону, поля Форелля (Н1 и Н2) и некоторые другие образования. Субталамическая область является частью экстрапирамидной системы, принимающей участие в организации движений.

Гипоталамус – важнейший центр регуляции вегетативных функций. Он связан вегетативными волокнами со следующими образованиями: гипофиз, эпифиз, серое вещество в окружности III желудочка и сильвиева водопровода (который соединяет Ш и IV желудочки), вегетативные ядра продолговатого мозга, ретикулярная формация ствола мозга, клетки боковых рогов спинного мозга. Ядра гипоталамуса имеют также многочисленные связи между собой, с ядрами зрительного бугра, со стриопаллидарной системой, с миндалевидным ядром, с обонятельным мозгом и т. д.

Средний мозг расположен вокруг сильвиева водопровода, который соединяет третий и четвертый желудочки головного мозга. Он включает четверохолмие – это крыша среднего мозга (тегментум), и основание – ножки мозга, которые, как уже говорилось, подходят к варолиеву мосту, лежащему между средним и продолговатым мозгом. В четверохолмии находятся волокна и ядра, которые относятся к анализаторам зрения и слуха. Верхние холмики соединены нервными проводниками с наружными коленчатыми телами – зрение, нижние холмики соединены тяжами белого вещества с внутренними коленчатыми телами - первичные слуховые центры.

От ядер четверохолмия начинаются волокна тегменто-спинального (покрышечно-спинномозгового) пути, которые участвуют в реализации старт-рефлексов (вздрагивание на неожиданный стимул). В средней части расположены ядра среднего мозга. На границе ножек мозга с покрышкой - четверохолмием расположено ядро черного вещества (субстанция нигра) (лежит в виде пластинки на проводящих путях) - основа дофаминергической нейромедиаторной системы. Между четверохолмием и черным веществом находятся красное ядро, ядра нервов: –глазодвигательного (III пара - нервус окуломоторис) - на уровне верхних холмиков и блокового (IV пара - нервус трохлеарис, тоже управляет движениями глаз) – на уровне нижних холмиков, задние продольные пучки, обеспечивают, в основном,содружественноые движения глаз. В оральном отделе среднего мозга, кпереди от верхних холмиков находятся ядра этих задних продольных пучков. В латеральном отделе среднего мозга проходит медиальная петля (передает к новой коре информацию от кожи, мышц, суставов). Медиальная петля – это мощный ствол афферентных волокон, который составляют два пути: бульботаламический, несущий импульсы глубокой чувствительности от тонкого и клиновидного ядер продолговатого мозга (ядра Голля (мышцы и суставы ног)и Бурдаха (мышцы и суставы верхних конечностей)) в зрительный бугор, и спиноталамический, являющийся проводником поверхностной (кожной) чувствительности.

В окружности водопровода среднего мозга находится мощный слой ретикулярной формации. Красное ядро и черное вещество, расположенные в среднем мозге, относят к стриопаллидарной системе, которая включает также корпус стриатум: скорлупа и бледный шар (базальные ядра конечного мозга).

Мост головного мозга (варолиев мост) лежит между средним и продолговатым мозгом. Вентральная часть моста – толстый белый вал, который образуют поперечные волокна. Дорзальная поверхность моста – дно четвертого желудочка – ромбовидная ямка. В каудальной части моста находятся ядра черепно-мозговых нервов: с V по VIII пары (тройничный, отводящий, лицевой и преддверно-улитковый). На поперечном срезе моста границу между его дорсальной и центральной частями образует трапециевидное тело, которое относят к системе слухового анализатора.

В вентральной части моста находятся продольные волокна пирамидного пути, рассеянного здесь на множество мелких пучков между собственными ядрами моста, с которыми он имеет коллатеральные связи.

От собственных ядер моста берут начало поперечные волокна к мозжечку, которые составляют его средние ножки и относятся к корково-мостомозжечковому пути. Поэтому существует прямая зависимость между развитием коры больших полушарий, вентральной части моста и мозжечка. В связи с этим мост наиболее развит у человека.

В дорсальной части моста находятся чувствительные пути: в латеральных отделах – спиноталамический путь, более медиально – медиальная петля, содержащая бульботаламический путь. В оральной части моста спиноталамический путь и бульботаламический сливаются в один плотный ствол – в медиальную петлю, идущую дорсолатерально в мосту и в среднем мозге.

^ Продолговатый мозг
Верхний отдел продолговатого мозга граничит с мостом, внизу переходит без особой границы в спинной мозг. Оральный отдел продолговатого мозга открывается в полость IV желудочка, образуя задний угол ромбовидной ямки. Кнаружи от краев этой ямки находятся веревчатые тела – нижние ножки мозжечка.

В вентральном отделе продолговатого мозга проходят нисходящие волокна двигательного – пирамидного тракта: корковоспинномозговой путь – стволы пирамид. Перекрест пирамидного тракта или верхний отдел шейного отдела спинного мозга условно считают нижней границей продолговатого мозга.

На дорсальной поверхности продолговатого мозга различимы задние канатики, в которых проходят восходящие волокна глубокой чувствительности - пучки Голля и Бурдаха (тонкий и клиновидный).

В центральной части продолговатого мозга (поперечный срез) располагаются волокна перекреста медиальной петли, несущие импульсы глубокой чувствительности от ядер Голля и Бурдаха к зрительному бугру, к таламусу.

Вентролатеральные отделы продолговатого мозга занимают нижние оливы, Соответственно им на поверхности продолговатого мозга проявляется продольный валик. Оливы отделяются от пирамид боковой передней бороздой. Нижние оливы относятся к двигательной системе. Дорсальнее нижних олив проходят чувствительные пути спиномозжечкового тракта, а также чувствительный спиноталамический путь.

В дорсальном отделе продолговатого мозга располагаются ядра каудальной группы черепных нервов: XI и XII пары (добавочный и подъязычный нервы).

В дорсальной части продолговатого мозга расположен мощный слой ретикулярной формации.

^ Ромбовидная ямка . В области ромбовидной ямки лежат ядра III –XII пар нервов, проекция которых на дно четвертого желудочка имеет большое значение в диагностике поражения ствола мозга. (I и II пары: n. olfactorius - обонятельный и n. opticus – зрительный, их ядра лежат выше - в конечном и промежуточном мозге)

^ Перечень ядер, лежащих в ромбовидной ямке .

Оральный отдел продолговатого мозга открывается в полость IV желудочка, образуя задний угол ромбовидной ямки. Кнаружи от краев этой ямки находятся веревчатые тела – нижние ножки мозжечка.

Верхний угол ромбовидной ямки: ядра III пары (n. oculomotoris - глазодвигательный), IV (n. trochlearis - блоковый)

Наружные углы – ядра вестибулярных и слуховых нервов – VIII пара (преддверно-улитковые нервы)
Кнутри от них – чувствительное ядро тройничного нерва – V пара
Еще более кнутри – ядро одиночного пути (вкусовое ядро - n. solitarius) которое относится к системе IX и X нервов – языкоглоточного и блуждающего нервов.
В нижнем углу расположены ядра XII пары нервов – (подъязычные нервы), латерально к нему расположено дорсальное ядро блуждающего нерва (X пара). Парамедианно кпереди от ядра XII нерва расположено двигательное ядро IX и X нервов и верхнее и нижнее слюноотделительные ядра парасимпатической нервной системы.

В верхней части срединного возвышения располагается бугорок лицевого нерва (VII пара), образованный волокнами внутреннего колена лицевого нерва, огибающими ядро отводящего нерва (VI пара – n. abducens).
XI пара – добавочный нерв, обеспечивает движение некоторых мышц шеи

Л. О. Бадалян (Детская неврология): Чувствительность кожи лица, слизистых оболочек глаза,ротовой полости, носоглотки, гортани, а также иннервация мимических мышц, мышц глазного яблока, мягкого неба, глотки, голосовых связок, языка обеспечивается черепными нервами. В отличие от смешанных спинномозговых нервов, содержащих и чувствительные и двигательные волокна, 12 пар черепных нервов делятся на 6 чисто двигательных (III – глазодвигательный, IV – блоковый, VI – отводящий, VII – лицевой (барабанная струна – часть лицевого нерва, несет импульсацию от органа вкуса к ядру одиночного пути), XI – добавочный, XII –подъязычный), 3 смешанных (V – тройничный, IX – языкоглоточный, X – блуждающий), 3 пары относятся к органам чувств (I – обонятельный, II –зрительный, VIII – преддверно-улитковый). В то же время по своему происхождению, строению и функциям черепные нервы существенно не отличаются от спинномозговых.

Мозжечок расположен в задней черепной ямке под мостом мозга и продолговатым мозгом. Сверху он отделен от затылочных долей больших полушарий мозжечковым наметом. В мозжечке различают два полушария и червь, которые покрыты тонким слоем серого вещества – корой мозжечка.
Мозжечок крепится к мозгу тремя ножками: передние подходят к промежуточному мозгу, средние – к среднему, задние – к продолговатому.
Древний мозжечок – маленькая долька – клочок, лежащая на основании полушария у средней ножки мозжечка, и связанная с клочком часть червя – узелок. Старый мозжечок – червь, новый мозжечок – полушария.

Восходящие пути мозжечка:
Нижние ножки – задний спинно-мозжечковый путь, вестибуломозжечковый путь –от вестибулярного ядра Бехтерева, бульбомозжечковый путь – от ядер Голля и Бурдаха (глубокая чувствительность), ретикуло-мозжечковый путь, оливомозжечковый путь – от нижней оливы.

В нижней ножке проходят эфферентные пути, направляющиеся к переднему рогу спинного мозга, мозжечково-ретикулоспинномозговой, мозжечково- вестибулоспинномозговой (через латеральное вестибулярное ядро Дейтерса) и мозжечково-оливоспинномозговой путь.
В наиболее мощных средних ножках мозжечка проходят мостомозжечковые волокна – часть корково-мосто-мозжечковых путей, идущих от верхней лобной извилины и нижних отделов затылочной и височной долей через мост к коре мозжечка.

В верхних ножках мозжечка проходят афферентный путь от спинного мозга (передний спиномозжечковый путь) и нисходящий мозжечково-руброспинномозговой путь. Этот путь идет от зубчатого ядра полушария мозжечка через красное ядро к переднему рогу спинного мозга.

Спинной мозг – цилиндрический стволик, расположенный в позвоночном канале. Длина спинного мозга взрослого человека – 42 – 46 см.
В спинном мозге имеется 31 – 32 сегмента.: 8 шейных, 12 грудных, 5 поясничных, 5 крестцовых и 1 – 2 копчиковых. По длиннику спинного мозга имеются два утолщения: шейное (C5 – Th1)и поясничное (L 1-2 и S 1-2), соответственно для обеспечения работы верхних и нижних конечностей. Внизу – мозговой конус, концевая нить, до копчиковых позвонков.
На уровне каждого сегмента от спинного мозга отходит две пары передних и задних корешков. Задние корешки на небольшом расстоянии от выхода имеют утолщение - спинальный узел, имеющий чувствительные клетки. На каждой стороне передний и задний корешки соединяются в один стволик – спинномозговой канатик. Корешки спинного мозга имеют строго сегментарное распределение. Смешанный спинномозговой нерв далее делится на четыре ветви. Передняя ветвь иннервирует кожу и мышцы конечностей и передней поверхности тела. Задняя ветвь иннервирует заднюю поверхность туловища. Оболочечная (менингеальная) ветвь иннервирует оболочки спинного мозга. Соединительная ветвь направляется к симпатическим узлам.

Передние ветви нескольких сегментов объединяются, образуя сплетения, из которых выходят периферические нервы. Как правило, периферические нервы смешанные, т. е. имеют в своем составе чувствительные, двигательные и вегетативные волокна.

Имеются сплетения: шейное, плечевое, поясничное, крестцовое, копчиковое.
Центр спинного мозга занимает серое вещество – тела нервных клеток (их расположение напоминает бабочку), боковые, передние и задние отделы – белое вещество – восходящие и нисходящие волокна – отростки нервных клеток.

Крылья бабочки образуют передние, боковые и задние рога спинного мозга. В задние рога через задние корешки в спинной мозг входят волокна от спинномозговых узлов, скоплений нервных клеток, воспринимающих информацию от интероцепторов, рецепторов состояния внутренних органов, от экстероцепторов – рецепторов состояния поверхности кожи и от проприоцепторов – рецепторов состояния скелетной мускулатуры.

В передних рогах лежат мотонейроны и другие клетки, передающие возбуждение к исполнительным органам. Волокна этих клеток образуют передние корешки спинного мозга, которые выходят из передних рогов спинного мозга.
В боковых рогах спинного мозга расположены преимущественно вегетативные симпатические или парасимпатические нейроны, иннервирующие внутренние органы.

В боковых рогах спинного мозга на уровне сегментов С8-L3 располагаются эфферентные нейроны симпатической нервной системы. На уровне С8-Th1 находится симпатический цилиоспинальный центр. На уровне крестцовых сегментов S2-S4 находится спинальный парасимпатический центр регуляции функций тазовых органов.

Белое вещество спинного мозга условно делят на три столба: задний, передний и боковой. В передней части бабочки правая и левая половины серого вещества соединяются: срединное промежуточное вещество, в центре находится центральный спинномозговой канал.

Задние канатики – восходящие проводники глубокой чувствительности. Медиально расположены проводники глубокой чувствительности от нижних конечностей (тонкий пучок Голля), латерально – от верхних конечностей – (клиновидный пучок Бурдаха) В задних канатиках проходят также проводники тактильной чувствительности.
В боковых канатиках спинного мозга располагаются восходящие и нисходящие проводники
Восходящие пути: вдоль латерального края спинномозгового столба идут волокна спиномозжечкового пути_ переднего (Говерса) и заднего (Флексига).

Кнутри от пути Говерса проходят восходящие пути поверхностной чувствительности (латеральный спиноталамический путь) В боковых канатиках проходит также восходящий спинопокрышечный путь, несущий проприоцептивную информацию к буграм четверохолмия.
В боковых канатиках идут и нисходящие пути: это волокна пирамидного пути (латеральный корково-спинномозговой путь) –задние отделы боковых канатиков, у средней части заднего рога. Кпереди от пирамидного пути проходит красноядерно-спинномозговой путь (экстрапирамидная система управления движением), а также ретикулоспиномозговой путь.

Все нисходящие пути заканчиваются у клеток переднего рога.
Передние канатики спинного мозга составлены преимущественно нисходящими путями от передней центральной извилины, стволовых и подкорковых образований к передним рогам спинного мозга: передний неперекрещенный пирамидный путь, вестибулоспинальный путь, оливоспиномозговой путь и покрышечноспиномозговой путь.

^ Вегетативная нервная система

Вегетативная нервная система – это совокупность ядер и путей, регулирующих внутреннюю среду организма: процессы обмена веществ, деятельность внутренних органов, гладкой мускулатуры, желез внутренней секреции и т. д.
Между вегетативной и соматической системами существует тесная связь. Все двигательные реакции получают вегетативно-трофическое обеспечение.
Анатомически выделяются специализированные вегетативные центры и узлы.

^ Основной принцип работы вегетативной системы – рефлекторный . Афферентное звено вегетативного рефлекса начинается от разнообразных рецепторов, которые расположены во всех органах. От интерорецепторов по вегетативным волокнам или по смешанным периферическим нервам импульсы достигают первичных сегментарных центров (спинальных или стволовых). От них по эфферентным каналам проводятся регулирующие влияния к соответствующим органам.

В отличие от соматического спинального мотонейрона вегетативные сегментарные эфферентные пути двухнейронны: волокна от клеток боковых рогов прерываются в узлах, лежащих вне спинного мозга, а уже постганглионарный нейрон достигает органа.
Центры вегетативной нервной системы расположены в боковых рогах спинного мозга, в стволе, высшие центры – в коре головного мозга.

Вегетативная нервная система условно делится на симпатическую (сегменты C8-L3) и парасимпатическую (ядра находятся в среднем и в продолговатом мозгу, а также в крестцовых отделах спинного мозга). Парасимпатическая система – более древняя. В ее функции входит стабилизация внутренней среды. Симпатическая – более молодая. В ее функции входит преимущественно адаптация внутренней среды к изменяющимся внешним условиям. Однако любой орган находится под влиянием той и другой системы.
Ядра парасимпатической системы: в среднем мозге: парасимпатическое ядро Якубовича и центральное хвостовое ядро. От них отходят волокна в составе глазодвигательного нерва к ресничатому ганглию.В продолговатом мозгу – бульбарный отдел.: секреторные и слюноотделительные ядра, верхнее и нижнее, иннервирующие слезную и слюноотделительную железу. В задней части - ядро блуждающего нерва, который иннервирует все внутренние органы, гладкую мускулатуру сердца, легких, кишечника, отдает волокна к железам внутренней скреции.

^ Основные принципы строения нервной системы
Назначение нервной системы – сбор и обработка информации об изменениях внешней и внутренней среды организма и организация адекватных реакций на эти изменения с целью 1)поддержания гомеостазиса, 2)адаптации к изменениям внешней и внутренней среды, 3)развития и воспроизведения живого существа.
Весь клеточный состав нервной системы делится на три части: рецепторные нейроны – собирают информацию, вставочные нейроны –обрабатывают и передают ее, и эффекторные нейроны – активируют соответствующие исполнительные органы.
Нервная система делится на центральную (головной и спинной мозг) и периферическую (разного рода рецепторы и вегетативная нервная система (симпатическая и парасимпатическая).
Особенность всех рецепторных клеток – их тела находятся в специальных органах чувств (глаз, ухо, вестибулярный аппарат, нос), либо в чувствительных клетках, расположенных в разных частях тела и в чувствительных ганглиях (кожа, мышцы, сухожилия, суставы, внутренние органы), т. е. вне черепной коробки и позвоночного столба. Внутри черепной коробки и позвоночного столба находятся вторые и последующие нейроны.
Все вставочные нейроны расположены в пределах головного и спинного мозга.

Отличия расположения нейронов, связанных с исполнительными органами: мотонейроны, связанные с мышцами, расположены внутри позвоночного столба, в спинном мозге. Нейроны симпатической нервной системы, непосредственно связанные с работой внутренних органов, расположены в симпатических ганглиях, расположенных вдоль позвоночного столба (к этим ганглиям подходят нейроны, расположенные в боковых отделах спинного мозга). Эффекторные нейроны парасимпатической системы расположены в иннервируемых ими органах.
Краткое перечисление структур головного мозга, их взаимосвязей и функций.

Как уже говорилось, особенность функционирования мозговых структур заключается во взаимодействии сенсорных проекционных систем,(восприятие света, звука, мышечно-суставное чувство), работающих по экранному принципу: передача из точки в точку (анализаторы, по И. П. Павлову) ассоциативных образований, реализующих связи между этими системами и эффекторными клетками (мотонейроны, нейроны, управляющие работой желез внешней и внутренней секреции и т. д.). Развитие нервной системы в эволюционном плане происходило в виде надстройки все новых образований, управляющих все более сложными функциями организма, в увеличении количества нервных клеток и связей между ними.
Мозг делят на несколько основных частей: спинной мозг, продолговатый мозг, задний мозг (в него входят мост и мозжечок) средний мозг (четверохолмия и лежащие под ними ядра и проводящие пути), межуточный мозг (таламус, гипоталамус и проводящие пути, проходящие через них), конечный мозг - теленцефалон. Теленцефалон составляют: древняя кора (прозрачная перегородка), старая кора (гиппокамп), новая кора (полушария большого мозга) и ближайшая подкорка (базальные ядра: стриопаллидарная система –бледный шар, прилежащее ядро, хвостатое ядро, скорлупа, ограда и миндалевидное тело).
Необходимо подчеркнуть, что любая, даже самая простая форма целенаправленной деятельности осуществляется всем мозгом в целом. Однако каждая мозговая структура имеет и свою основную функцию.

Перечень анализаторов.

Зрение. Сетчатка состоит из пяти слоев клеток: рецепторы света (палочки реализуют восприятие черно-белого света, колбочки – цветного) передают информацию биполярным клеткам, горизонтальные клетки, управляют связями между рецепторами и биполярными клетками, биполярнуе клетки связывают рецепторы света с ганглиозными клетками. Амакриновые клетки регулируют связи между биполярами и ганглиозными клетками. От ганглиозных клеток сетчатки идут зрительные нервы, далее перекрест – хиазма, зрительные тракты, верхние бугорки четверохолмия среднего мозга, наружные коленчатые тела – в составе таламуса (межуточный мозг), далее - зрительная лучистость, поле 17, или V1 (V от слова visual – зрительный) Это первичное зрительное поле (фиссура калькарина – шпорная борозда) расположено на внутренней части затылочной доли новой коры больших полушарий. Вокруг первичного поля расположены вторичные зрительны поля – ассоциативные. Есть также прямые пути от сетчатки в гипоталамус для регуляции состояния организма в зависимости от сезонных изменений освещенности.

Слух: рецепторы внутреннего уха – отростки волосковых клеткок расположены на базилярной мембране улитки, тела этих клеток - в спиральном ганглии – лежит на дне улитке. Аксоны этих клеток разветвляются и идут к двум ядрам –верхнее и нижнее кохлеарные ядра, и к трапециевидному телу – лежат в области моста (задний мозг). Далее латеральная петля, верхние бугорки четверохолмия (средний мозг) и внутренние коленчатые тела (межуточный мозг). От коленчатых тел идет лучистость в височные доли больших полушарий.

Равновесие: рецепторы вестибулярного аппарата во внутреннем ухе – волосковые клетки расположены в мешочках (макула и утрикула) и полукружных каналах внутреннего уха. Тела рецепторных клеток образуют гассеров узел – лежит в улитке. Аксоны клеток гассерова узла идут в четыре ядра в области моста (в ромбовидной ямке), от этих ядер далее связи вестибулярного аппарата со спинным мозгом, с мозжечком, с новой корой.

Обоняние: Рецепторы расположены в полости носа. От полости носа волокна (филаменты) идут к обонятельной луковице. Далее обонятельный тракт, обонятельный треугольник, обонятельный бугорок, обонятельный мозг в гиппокампе, новая кора.

Вкус: Рецепторы в языке, три пути (барабанная струна - часть лицевого нерва, тройничный и блуждающий нервы) идут к ядру одиночного (солитарного) тракта в продолговатом мозгу, от него путь к таламусу и далее к новой коре.

Мышечно-суставная чувствительность: рецепторы в мышцах, в сухожилиях и в суставах, тела их клеток лежат в чувствительных спинномозговых ганглиях, далее в задней части спинного мозга волокна этих клеток образуют пучки Голля (нижние конечности и нижняя часть туловища) и Бурдаха (верхние конечности и верхняя часть туловища), которые подходят к ядрам Голля и Бурдаха в продолговатом мозгу, долее - медиальная петля, чувствительные ядра в таламусе, постцентральная извилина в теменной доле больших полушарий.

Тактильная чувствительность: Рецепторы в коже головы, конечностей и туловища, чувствительные спинномозговые ганглии и чувствительные ядра черепных нервов (тройничный нерв), клетки задних рогов спинного мозга, передне-боковой пучок в спинном мозге, медиальная петля, ядра таламуса, постцентральная извилина в теменной доле коры.

Боль: рецепторы в коже, пути те же, как и у тактильной чувствительности.

Висцеральная чувствительность: рецепторы внутренних органов, чувствительные ганглии, спинной мозг, таламус, новая кора. Чувствительность плохо локализуется, т. к. в коре мало представлена.

Нервные проводники всех видов чувствительности по ходу своего проведения отдают коллатерали в другие структуры мозга: в ретикулярную формацию продолговатого мозга, среднего мозга, таламуса, а также к гипоталамусу, к прозрачной перегородке, к гиппокампу и к ассоциативным полям новой коры. Здесь происходит дивергенция и конвергенция разного рода влияний на нервную систему.

^ Организация исполнительных программ . Исполнительные программы условно можно разделить на те, которые регулируют состояние гомеостазиса, роста и развития организма, и на те, которые организуют разного рода движения и взаимодействие с внешней средой.

В реализации программ первого рода большую роль играет взаимодействие гипоталамуса, эпифиза (шишковидная железа, лежит над таламусом), гипофиза (центральная железа внутренней секреции, управляется ядрами гипоталамуса), ретикулярной формации и вегетативной нервной системы, симпатической и парасимпатической.

Движения организуют такие структуры как: прецентральная извилина больших полушарий новой коры – моторная кора, (от нее идет пирамидный путь, который организует произвольные движения), премоторная кора, лобная доля, базальные ядра (теленцефалон), красное ядро (средний мозг), нижняя олива (продолговатый мозг), мозжечок и передние рога спинного мозга. Все эти структуры связаны между собой двусторонними связями.

Специфическая функция живого организма, которая отличает его от любой искусственной его имитации - это способность огорчаться и радоваться, т. е. испытывать состояния удовольствия, страха, и других положительных и отрицательных эмоций. Показано, что к реализации этих состояний непосредственное отношение имеет лимбическая система. Сюда относят: гиппокамп, гипоталамус, миндалину и определенные участки новой коры (поясная извилина, парагиппокампальная извилина, грушевидная извилина, энторинальная кора и др.). Они, наряду с новой корой, определяют также переход головного мозга от бодрствования ко сну и торможение реакций, осуществление которых неадекватно текущей ситуации. Это торможение может быть как безусловным (внешним, по терминологии И. П. Павлова), так и выработанным, возникающим в результате обучения – внутренним торможением. В лимбической системе обнаружены центры удовольствия и наказания.

Следует отметить также, что в центральной нервной системе имеются специфические тормозные системы, локальные и общемозговые

– способность нейрона устанавливать многочисленные синаптические связи с различными нервными клетками. Например: центральное окончание аксона первичного афферентного нейрона образует синапсы на многих мотонейронах, что обеспечивает иррадиацию возбуждения

Конвергенция

– схождение различных путей проведения нервных импульсов на одной и той же нервной клетке. Такой контакт обеспечивает одновременную суммацию либо ВПСП, либо ТПСП, вызывая концентрацию возбуждения или торможения

Латеральное торможение

При возбуждении одной рефлекторной дуги, вторая тормозится за счёт тормозного нейрона от коллатерали первой рефлекторной дуги

Латеральное торможение обеспечивает точные реакции и исключает ненужные в данный момент рефлексы.

Обратная афферентация

– это обратная импульсация от рабочего органа в нервный центр для того, чтобы информировать нервный центр о рабочем эффекте. Если эта информация пойдёт через возбуждающий нейрон, то в эфферентном нейроне будет продолжаться процесс возбуждения. Если рабочий орган выполнит свою задачу, то обратная информация к эфферентному нейрону пойдёт через тормозный нейрон для того, чтобы вызвать в нём торможение и прекратить действие рабочего органа

Окклюзия

— перекрытие синаптических полей взаимодействующих рефлексов

При одновременном возбуждении параллельных рефлекторных дуг суммарный эффект рабочих органов (мышц) будет меньше, чем при последовательном подключении этих же рефлексов. При работе 1-ой рефлекторной дуги возбуждается мотонейрон этого рефлекса и соседнего за счёт коллатерали. Отвечать будет не одна, а две мышцы. Мышечная реакция удваивается. При работе 3-ей рефлекторной дуги сокращаться будут мышцы 3-ей и 2-ой рефлекторных дуг. Мышечный ответ опять удваивается.

Фассилитация

– облегчение (проторение) проведения нервного импульса. Возникает при взаимодействии рефлекторных дуг через коллатерали

Например: при раздражении 2-ой рефлекторной дуги возбуждение через коллатераль пербрасывается на мотонейрон 1-ой рефлекторной дуги, вызывая в нём ВПСП. Возбудимость этого нейрона увеличивается, что облегчает генерацию потенциала действия в нём при слабом раздражении 1-ой рефлекторной дуги.

Доминанта

– преобладание возбуждения в каком-то нервном центре. Доминанта была открыта русским физиологом А.А. Ухтомским. Он на лекции демонстрировал собаку с вживлёнными электродами в область коры головного мозга. Раздражение электрическим током определённых участков коры вызывало сгибание лапы. Этим опытом доказывалась локализация моторных зон коры. Однажды лаборант не подготовил собаку и привёл её с переполненной прямой кишкой. При раздражении электрическим током моторной зоны коры вместо сгибания лапы произошёл акт дефекации. Учёный пришел к выводу, что центр дефекации в данной ситуации слишком возбуждён и раздражение на этом фоне соседнего моторного центра усилило имеющуюся доминанту. Произошёл биологически важный для организма рефлекс (собаке важнее опустошить прямую кишку, чем согнуть лапу). Доминанту вызывают биологически важные рефлексы (например, доминирует центр голода при голодании, или половой центр у животных в брачный период и т.д.).

Свойства доминант ы

  1. Она притягивает на себя возбуждение от соседнего нервного центра.
  2. Тормозит соседний нервный центр.
  3. Разрешается (прекращается) при выполнении биологически важной реакции.

Доминанта лежит в основе некоторых заболеваний: при гипертонической болезни доминирует сердечно-сосудистый центр, который посылает импульсы к сосудам, суживая их и увеличивая артериальное давление.