Болезни Военный билет Призыв

Моделирование в информатике - это что такое? Виды и этапы моделирования. Цель моделирования

Модель – это упрощенное представление о реальном объекте, процессе или явлении.

Моделирование – это посторенние моделей для исследования объектов, процессов, явлений.

В моделировании есть два заметно разных пути. Модель может быть похожей копией объекта, выполненной из другого материала, в другом масштабе, с отсутствием деталей. Например, это игрушечный кораблик, самолет и т.д. Модель может отображать реальность более абстрактно – словесным описанием в свободной форме, описанием, формализованным по каким-то правилам, математическими соотношениями и т.д.

1) традиционное математическое моделирование без какой-либо привязки к техническим средствам информатики.

2) Информационные модели и моделирование, имеющие приложения в информационных системах.

3) Вербальные (компьютерные) технологии, которые надо делить:

На инструментальное использование базовых универсальных программных средств (текстовых редакторов, СУБД, табличных процессоров и т.д.);

На компьютерное моделирование, приставляющее собой:

Вычислительное (имитационное) моделирование;

- «визуализацию явлений и процессов»;

- «высшие» технологии, понимаемые как специализированы прикладные технологии, использующие компьютер в сочетании с измерительной аппаратурой, датчиками, сенсорами и т.д.

Укрупненная классификация абстрактных моделей (идеальных) такова:

1) Вербальные (текстовые) модели. Эти модели используют последовательности предложений на формализованных диалектах естественного языка для описания той или иной области действительности.

2) Математические модели. Очень широкий класс знаковых моделей, широко использующие те или иные математические методы.

3) Информационные модели. Класс знакомых моделей, описывающие информационные процессы в системах самой разнообразной природы.

Цели моделирования:

1. Модель нужна для того, чтобы узнать, как устроен конкретный объект, каковы его законы развития и взаимодействие с окружающим миром.

2. Модель нужна для того, чтобы научиться управлять объектом и определить наилучшие способы управления при заданных целях и критериях.

3. Модель нужна для того, чтобы прогнозировать прямые и косвенные последствия реализации заданных способов и форм воздействия на объект.

Рассмотрим основные этапы моделирования подробнее.

Этап 1. Постановка задачи.

Под задачей понимается некая проблема, которую надо решить. На этапе постановки задачи необходимо:

описать задачу, определить цели моделирования, проанализировать объект или процесс.

Описание задачи.

Задача формулируется на обычном языке, и описание должно быть понятным. Главное здесь - определить объект моделирования и понять, что должен представлять собой результат.



Цели моделирования.

Познание окружающего мира.

Зачем человек создает модели? Чтобы ответить на этот вопрос, надо заглянуть в далекое прошлое. Несколько миллионов лет назад, на заре человечества, первобытные люди изучали окружающую природу, чтобы научиться противостоять природным стихиям, пользоваться природными благами, просто выживать. Накопленные знания передавались из поколения в поколение устно, позже письменно, наконец с помощью предметных моделей. Так родилась, к примеру, модель земного шара - глобус, - позволяющая получить наглядное представление о форме нашей планеты, ее вращении вокруг собственной оси и расположении материков. Такие модели позволяют понять, как устроен конкретный объект, узнать его основные свойства, установить законы его развития и взаимодействия с окружающим миром моделей.

Создание объектов с заданными свойствами (задача типа «Как сделать, чтобы...»).

Накопив достаточно знаний, человек задал себе вопрос: «Нельзя ли создать объект с заданными свойствами и возможностями, чтобы противодействовать стихиям или ставить себе на службу природные явления?» Человек стал строить модели еще не существующих объектов. Так родились идеи создания ветряных мельниц, различных механизмов, даже обыкновенного зонтика. Многие из этих моделей стали в настоящее время реальностью. Это объекты, созданные руками человека.

Определение последствий воздействия на объект и принятие правильного решения (задача типа «Что будет, если...»: что будет, если увеличить плату за проезд в транспорте, или что произойдет, если закопать ядерные отходы в такой-то местности?)

Например, для спасения Петербурга от постоянных наводнений, приносящих огромный ущерб, решено было возвести дамбу. При ее проектировании было построено множество моделей, в том числе и натурных, именно для того, чтобы предсказать последствия вмешательства в природу.

Эффективность управления объектом (или процессом).

Поскольку критерии управления бывают весьма противоречивыми, то эффективным оно окажется только при условии, если будут «и волки сыты, и овцы целы». Например, нужно наладить питание в школьной столовой. С одной стороны, оно должно отвечать возрастным требованиям (калорийное, содержащее витамины и минеральные соли), с другой - нравиться большинству ребят и к тому же быть «по карману» родителям, а с третьей - технология приготовления должна соответствовать возможностям школьных столовых. Как совместить несовместимое? Построение модели поможет найти приемлемое решение.

Анализ объекта.

На этом этапе четко выделяют моделируемый объект, его основные свойства, его элементы и связи между ними. Простой пример подчиненных связей объектов - разбор предложения. Сначала выделяются главные члены (подлежащее, сказуемое), затем второстепенные члены, относящиеся к главным, затем слова, относящиеся к второстепенным, и т. д.

Этап 2. Разработка модели.

Информационная модель.

На этом этапе выясняются свойства, состояния, действия и другие характеристики элементарных объектов в любой форме: устно, в виде схем, таблиц. Формируется представление об элементарных объектах, составляющих исходный объект, т. е. информационная модель. Модели должны отражать наиболее существенные признаки, свойства, состояния и отношения объектов предметного мира. Именно они дают полную информацию об объекте.

Знаковая модель.

Прежде чем приступить к процессу моделирования, человек делает предварительные наброски чертежей либо схем на бумаге, выводит расчетные формулы, т. е. составляет информационную модель в той или иной знаковой форме, которая может быть либо компьютерной, либо некомпьютерной.

Компьютерная модель

Это модель, реализованная средствами программной среды.

Существует множество программных комплексов, которые позволяют проводить исследование (моделирование) информационных моделей. Каждая программная среда имеет свой инструментарий и позволяет работать с определенными видами информационных объектов.

Человек уже знает, какова будет модель, и использует компьютер для придания ей знаковой формы. Например, для построения геометрических моделей, схем используются графические среды, для словесных или табличных описаний - среда текстового редактора.

Основные функции компьютера при моделировании систем:

исполнение роли вспомогательного средства для решения задач, решаемых и обычными вычислительными средствами, алгоритмами, технологиями;

исполнение роли средства постановки и решения новых задач, не решаемых традиционными средствами, алгоритмами, технологиями;

исполнение роли средства конструирования компьютерных обучающих и моделирующих сред типа: «обучаемый - компьютер - обучающий», «обучающий - компьютер - обучаемый», «обучающий - компьютер - группа обучаемых», «группа обучаемых - компьютер - обучающий», «компьютер - обучаемый - компьютер»;

исполнение роли средства моделирования для получения новых знаний;

«обучение» новых моделей (самообучение моделей).

Этап 3. Компьютерный эксперимент.

Компьютерное моделирование - основа представления знаний в ЭВМ. Компьютерное моделирование для рождения новой информации использует любую информацию, которую можно актуализировать с помощью ЭВМ. Прогресс моделирования связан с разработкой систем компьютерного моделирования, а прогресс в информационной технологии - с актуализацией опыта моделирования на компьютере, с созданием банков моделей, методов и программных систем, позволяющих собирать новые модели из моделей банка.

Разновидность компьютерного моделирования - вычислительный эксперимент, т. е. эксперимент, осуществляемый экспериментатором над исследуемой системой или процессом с помощью орудия эксперимента - компьютера, компьютерной среды, технологии.

Вычислительный эксперимент становится новым инструментом, методом научного познания, новой технологией также из-за возрастающей необходимости перехода от исследования линейных математических моделей систем (для которых достаточно хорошо известны или разработаны методы исследования, теория) к исследованию сложных и нелинейных математических моделей систем (анализ которых гораздо сложнее). Грубо говоря, наши знания об окружающем мире линейны, а процессы в окружающем мире нелинейны.

Вычислительный эксперимент позволяет находить новые закономерности, проверять гипотезы, визуализировать ход событий и т. д.

Чтобы дать жизнь новым конструкторским разработкам, внедрить новые технические решения в производство или проверить новые идеи, нужен эксперимент. В недалеком прошлом такой эксперимент можно было провести либо в лабораторных условиях на специально создаваемых для него установках, либо на натуре, т. е. на настоящем образце изделия, подвергая его всяческим испытаниям.

С развитием вычислительной техники появился новый уникальный метод исследования - компьютерный эксперимент. Компьютерный эксперимент включает некоторую последовательность работы с моделью, совокупность целенаправленных действий пользователя над компьютерной моделью.

Этап 4. Анализ результатов моделирования.

Конечная цель моделирования - принятие решения, которое должно быть выработано на основе всестороннего анализа полученных результатов. Этот этап решающий - либо вы продолжаете исследование, либо заканчиваете. Возможно, вам известен ожидаемый результат, тогда необходимо сравнить полученный и ожидаемый результаты. В случае совпадения вы сможете принять решение.

Основой для выработки решения служат результаты тестирования и экспериментов. Если результаты не соответствуют целям поставленной задачи, значит, допущены ошибки на предыдущих этапах. Это может быть либо слишком упрощенное построение информационной модели, либо неудачный выбор метода или среды моделирования, либо нарушение технологических приемов при построении модели. Если такие ошибки выявлены, то требуется корректировка модели, т. е. возврат к одному из предыдущих этапов. Процесс повторяется до тех пор, пока результаты эксперимента не будут отвечать целям моделирования. Главное, надо всегда помнить: выявленная ошибка - тоже результат.

Виды моделей.

В прикладных областях различают следующие виды абстрактных моделей:

традиционное (прежде всего для теоретической физики, а также механики, химии, биологии, ряда других наук) математическое моделирование без какой-либо привязки к техническим средствам информатики;

информационные модели и моделирование, имеющие приложения в информационных системах;

вербальные (т.е. словесные, текстовые) языковые модели.

информационные (компьютерные) технологии, которые надо делить

а) на инструментальное использование базовых универсальных программных средств (текстовых редакторах, СУБД, табличных процессоров, телекоммуникационных пакетов);

б) на компьютерное моделирование, представляющее собойвычислительное (имитационное) моделирование; "визуализацию явлений и процессов" (графическое моделирование);

"высокие" технологии, понимаемые как специализированные прикладные технологии, использующие компьютер (как правило, в режиме реального времени) в сочетании с измерительной аппаратурой, датчиками, сенсорами и т.д.

Итак, укрупненная классификация абстрактных (идеальных) моделей такова.

ербальные модели. Эти модели используют последовательности предложений на формализованных диалектах естественного языка для описания той или иной области действительности.

Математические модели - очень широкий класс знаковых моделей (основанных на формальных языках над конечными алфавитами), широко использующих те или иные математические методы. Например, можно рассмотреть математическую модель звезды. Эта модель будет представлять собой сложную систему уравнений, описывающих физические процессы, происходящие в недрах звезды.

Информационные модели - класс знаковых моделей, описывающих информационные процессы (возникновение, передачу, преобразование и использование информации) в системах самой разнообразной природы.

К основным этапам компьютерного моделирования относятся:

постановка задачи, определение объекта моделирования;

разработка концептуальной модели, выявление основных элементов системы и элементарных актов взаимодействия;

формализация, то есть переход к математической модели; создание алгоритма и написание программы;

планирование и проведение компьютерных экспериментов;

анализ и интерпретация результатов.

Вычислительный (или компьютерный) эксперимент во многом аналогичен обычному (натурному). Это и планирование экспериментов, и создание экспериментальной установки, и выполнение контрольных испытаний. Затем следует проведение серийных опытов, обработка экспериментальных данных, их интерпретация и т. д. Однако вычислительный эксперимент проводится не над реальным объектом, а над его математической моделью, и роль экспериментальной установки играет оснащенная специально разработанной программой ЭВМ.

Широкое применение ЭВМ в математическом моделировании, на основе хорошо разработанной теории, позволяет получать значительные практические результаты. И можно говорить о вычислительном эксперименте как о новой технологии и методологии научных и прикладных исследований.

Создание эффективного программного обеспечения, наряду с техническим развитием ЭВМ позволяет проводить расчеты, когда достоверность прогноза достигает более 90 %. Причем прогноз делается столь быстро, что за время реализации одного натурного эксперимента можно много раз проварьировать его вычислительный аналог.

Достоинства вычислительного эксперимента очевидны. Вычислительный эксперимент, как правило, дешевле физического. В этот эксперимент можно легко и безопасно вмешиваться. Его можно повторить и прервать в любой момент. В ходе этого эксперимента можно смоделировать условия, которые не получается воссоздать в лаборатории.

В ряде случаев проведение натурного эксперимента бывает затруднено или простоневозможно, так как изучаются быстропротекающие процессы, исследуются труднодоступные или вообще недоступные (пока) объекты и т.д. и т.п. Часто проведение полномасштабного натурного эксперимента сопряжено с губительными или непредсказуемыми последствиями, с опасностью для жизни и здоровья человека (ядерная зима, поворот сибирских рек, генетическая модификация растений и животных). Нередко требуется исследование и прогнозирование результатов катастрофических явлений (глобальное потепление климата, землетрясение, авария ядерного реактора АЭС). В таких случаях вычислительный эксперимент может (и должен!) стать основным средством исследования. Заметим, что с его помощью оказывается возможным прогнозировать свойства новых, еще не созданных конструкций и материалов на стадии их проектирования. Применение вычислительного эксперимента в медицине позволяет изучать и предсказывать влияние медикаментов на состояние пациента, проводить предоперационное моделирование.

В вычислительном как и в натурном эксперименте, чтобы проанализировать влияние K параметров на исход эксперимента, необходимо провести nK испытаний, где n - количество варьируемых значений одного параметра. Уже при задаче средней сложности (K, n = 5-10) число экспериментов может стать просто огромным. Но, как уже говорилось, проведение нужного количества испытаний практически не представляет труда при проведении компьютерного эксперимента. Для сложных задач характерно наличие значительного числа параметров характеризующих используемую модель. Создание нового изделия или технологического процесса предполагает выбор среди большого числа альтернативных вариантов, а также оптимизацию по ряду параметров. Поэтому в ходе вычислительного эксперимента расчеты проводятся многократно с разными значениями входных данных. Для получения нужных результатов с требуемой точностью и в приемлемые сроки необходимо, чтобы на расчет каждого варианта тратилось минимальное время. Именно поэтому при создании программного обеспечения так важно использовать эффективные численные методы.

Разработка программного обеспечения для вычислительного эксперимента в конкретной области деятельности приводит к созданию крупного программного комплекса. Он состоит из связанных между собой прикладных программ и системных средств, включающих средства, предоставляемые пользователю для управления ходом вычислительного эксперимента, обработки и представления его результатов. Такой комплекс программ иногда называют проблемно-ориентированным пакетом прикладных программ.

Современные компьютерные программы обладают высокой сервисностью и дружелюбным интерфейсом, что позволяет легко освоить работу с ними за короткое время.

Дальнейшее развитие в области специального программирования может вообще избавить исследователей от необходимости изучения расчетных методов. В самом деле, ведь пользуются же экспериментаторы сложными высокоавтоматизированными приборами, почти ничего не зная о деталях их конструкций. Отсюда, тем не менее, вовсе нельзя делать вывод, что "коль работает программа, головы совсем не надо".

При проведении исследований важно помнить что вычислительный эксперимент имеет свои ограничения, которые могут привести к неэффективным затратам времени и ресурсов, или даже к получению ошибочных результатов.

Известно, что применимость результатов вычислительного эксперимента ограничена рамками принятой математической модели. Действительно, вычислительный эксперимент не может полностью заменить натурный, и будущее за их разумным сочетанием. Результаты натурного опыта являются фундаментом для построения теории на основе которой создается математическая модель. И надежным критерием, подтверждающим достоверность ее выводов, опять же является практика. Поэтому к результатам численного эксперимента, необходимо подходить с известной осторожностью, особенно, если в его основе лежит новая теория, либо используемые параметры модели находятся на границе области её применимости.

Однако если есть достаточная уверенность, что исследуемая система действительно правильно описывается используемыми уравнениями, и заложенные в них исходные предположения верны, более чем разумно ставить не натурный, а именно компьютерный эксперимент.

Есть у вычислительного эксперимента и ограничения, связанные с математической стороной исследований. Например, с помощью численного подхода нельзя получить общей формулы, позволяющей оценить совместное влияние параметров, входящих в уравнения модели, на решение этих уравнений. Полное представление о таком влиянии дает только аналитическое исследование. Но далеко не всегда, для сложных задач в их полной постановке (без упрощений), аналитическое решение может быть найдено.

Иногда модели пишут на языках программирования, но это долгий и дорогой процесс. Для моделирования можно использовать математические пакеты, но, как показывает опыт, в них обычно не хватает многих инженерных инструментов. Оптимальным является использование среды моделирования.

В нашем курсе в качестве такой среды выбрана . Лабораторные работы и демонстрации, которые вы встретите в курсе, следует запускать как проекты среды Stratum-2000.

Модель, выполненная с учётом возможности её модернизации, конечно, имеет недостатки, например, низкую скорость исполнения кода. Но есть и неоспоримые достоинства. Видна и сохранена структура модели, связи, элементы, подсистемы. Всегда можно вернуться назад и что-то переделать. Сохранен след в истории проектирования модели (но когда модель отлажена, имеет смысл убрать из проекта служебную информацию). В конце концов, модель, которая сдаётся заказчику, может быть оформлена в виде специализированного автоматизированного рабочего места (АРМа), написанного уже на языке программирования, внимание в котором уже, в основном, уделено интерфейсу, скоростным параметрам и другим потребительским свойствам, которые важны для заказчика. АРМ, безусловно, вещь дорогая, поэтому выпускается он только тогда, когда заказчик полностью оттестировал проект в среде моделирования, сделал все замечания и обязуется больше не менять своих требований.

Моделирование является инженерной наукой, технологией решения задач. Это замечание — очень важное. Так как технология есть способ достижения результата с известным заранее качеством и гарантированными затратами и сроками, то моделирование, как дисциплина:

  • изучает способы решения задач, то есть является инженерной наукой;
  • является универсальным инструментом, гарантирующим решение любых задач, независимо от предметной области.

Смежными моделированию предметами являются: программирование, математика, исследование операций.

Программирование — потому что часто модель реализуют на искусственном носителе (пластилин, вода, кирпичи, математические выражения…), а компьютер является одним из самых универсальных носителей информации и притом активным (имитирует пластилин, воду, кирпичи, считает математические выражения и т. д.). Программирование есть способ изложения алгоритма в языковой форме. Алгоритм — один из способов представления (отражения) мысли, процесса, явления в искусственной вычислительной среде, которой является компьютер (фон-Неймановской архитектуры). Специфика алгоритма состоит в отражении последовательности действий. Моделирование может использовать программирование, если моделируемый объект легко описать с точки зрения его поведения. Если легче описать свойства объекта, то использовать программирование затруднительно. Если моделирующая среда построена не на основе фон-Неймановской архитектуры, программирование практически бесполезно.

Какова разница между алгоритмом и моделью?

Алгоритм — это процесс решения задачи путём реализации последовательности шагов, тогда как модель — совокупность потенциальных свойств объекта. Если к модели поставить вопрос и добавить дополнительные условия в виде исходных данных (связь с другими объектами, начальные условия, ограничения), то она может быть разрешена исследователем относительно неизвестных. Процесс решения задачи может быть представлен алгоритмом (но известны и другие способы решения). Вообще примеры алгоритмов в природе неизвестны, они суть порождение человеческого мозга, разума, способного к установлению плана. Собственно алгоритм — это и есть план, развёрнутый в последовательность действий. Следует различать поведение объектов, связанное с естественными причинами, и промысел разума, управляющий ходом движения, предсказывающий результат на основе знания и выбирающий целесообразный вариант поведения.

модель + вопрос + дополнительные условия = задача .

Математика — наука, предоставляющая возможность исчисления моделей, приводимых к стандартному (каноническому) виду. Наука о нахождении решений аналитических моделей (анализ) средствами формальных преобразований.

Исследование операций — дисциплина, реализующая способы исследования моделей с точки зрения нахождения наилучших управляющих воздействий на модели (синтез). По большей части имеет дело с аналитическими моделями. Помогает принимать решения, используя построенные модели.

Проектирование — процесс создания объекта и его модели; моделирование — способ оценки результата проектирования; моделирования без проектирования не существует.

Смежными дисциплинами для моделирования можно признать электротехнику, экономику, биологию, географию и другие в том смысле, что они используют методы моделирования для исследования собственного прикладного объекта (например, модель ландшафта, модель электрической цепи, модель денежных потоков и т. д.).

В качестве примера посмотрим, как можно обнаружить, а потом описать закономерность.

Допустим, что нам нужно решить «Задачу о разрезаниях», то есть надо предсказать, сколько потребуется разрезов в виде прямых линий, чтобы разделить фигуру (рис. 1.16 ) на заданное число кусков (для примера достаточно, чтобы фигура была выпуклой).

Попробуем решить эту задачу вручную.

Из рис. 1.16 видно, что при 0 разрезах образуется 1 кусок, при 1 разрезе образуется 2 куска, при двух — 4, при трёх — 7, при четырёх — 11. Можете ли вы сейчас сказать наперёд, сколько потребуется разрезов для образования, например, 821 куска? По-моему, нет! Почему вы затрудняетесь? — Вам неизвестна закономерность K = f (P ) , где K — количество кусков, P — количество разрезов. Как обнаружить закономерность?

Составим таблицу, связывающую известные нам числа кусков и разрезов.

Пока закономерность не ясна. Поэтому рассмотрим разности между отдельными экспериментами, посмотрим, чем отличается результат одного эксперимента от другого. Поняв разницу, мы найдём способ перехода от одного результата к другому, то есть закон, связывающий K и P .

Уже кое-какая закономерность проявилась, не правда ли?

Вычислим вторые разности.

Теперь все просто. Функция f называется производящей функцией . Если она линейна, то первые разности равны между собой. Если она квадратичная, то вторые разности равны между собой. И так далее.

Функция f есть частный случай формулы Ньютона:

Коэффициенты a , b , c , d , e для нашей квадратичной функции f находятся в первых ячейках строк экспериментальной таблицы 1.5.

Итак, закономерность есть, и она такова:

K = a + b · p + c · p · (p – 1)/2 = 1 + p + p · (p – 1)/2 = 0.5 · p 2 + 0.5 · p + 1 .

Теперь, когда закономерность определена, можно решить обратную задачу и ответить на поставленный вопрос: сколько надо выполнить разрезов, чтобы получить 821 кусок? K = 821 , K = 0.5 · p 2 + 0.5 · p + 1 , p = ?

Решаем квадратное уравнение 821 = 0.5 · p 2 + 0.5 · p + 1 , находим корни: p = 40 .

Подведём итоги (обратите на это внимание!).

Сразу угадать решение мы не смогли. Поставить эксперимент оказалось затруднительно. Пришлось построить модель, то есть найти закономерность между переменными. Модель получилась в виде уравнения. Добавив к уравнению вопрос и уравнение, отражающее известное условие, образовали задачу. Поскольку задача оказалась типового вида (канонического), то её удалось решить одним из известных методов. Поэтому задача оказалась решена.

И ещё очень важно отметить, что модель отражает причинно-следственные связи. Между переменными построенной модели действительно есть крепкая связь. Изменение одной переменной влечёт за собой изменение другой. Мы ранее сказали, что «модель играет системообразующую и смыслообразующую роль в научном познании, позволяет понять явление, структуру изучаемого объекта, установить связь причины и следствия между собой». Это означает, что модель позволяет определить причины явлений, характер взаимодействия её составляющих. Модель связывает причины и следствия через законы, то есть переменные связываются между собой через уравнения или выражения.

Но!!! Сама математика не даёт возможности выводить из результатов экспериментов какие-либо законы или модели , как это может показаться после рассмотренного только что примера. Математика это только способ изучения объекта, явления, и, причём, один из нескольких возможных способов мышления. Есть ещё, например, религиозный способ или способ, которым пользуются художники, эмоционально-интуитивный, с помощью этих способов тоже познают мир, природу, людей, себя.

Итак, гипотезу о связи переменных А и В надо вносить самому исследователю, извне, сверх того. А как это делает человек? Посоветовать внести гипотезу легко, но как научить этому, объяснить это действо, а значит, опять-таки как его формализовать? Подробно мы покажем это в будущем курсе «Моделирование систем искусственного интеллекта».

А вот почему это надо делать извне, отдельно, дополнительно и сверх того, поясним сейчас. Носит это рассуждение имя Геделя, который доказал теорему о неполноте — нельзя доказать правильность некоторой теории (модели) в рамках этой же теории (модели). Посмотрите ещё раз на рис. 1.12 . Модель более высокого уровня преобразует эквивалентно модель более низкого уровня из одного вида в другой. Или генерирует модель более низкого уровня по эквивалентному опять же её описанию. А вот саму себя она преобразовать не может. Модель строит модель. И эта пирамида моделей (теорий) бесконечна.

А пока, чтобы «не подорваться на ерунде», вам надо быть настороже и проверять все здравым смыслом. Приведём пример, старую известную шутку из фольклора физиков.

3. Цели моделирования.

1. Познание окружающего мира.

Зачем человек создает модели? Чтобы ответить на этот вопрос, надо заглянуть в далекое прошлое. Несколько миллионов лет назад, на заре человечества, первобыт­ные люди изучали окружающую природу, чтобы научиться противостоять природ­ным стихиям, пользоваться природными благами, просто выживать.

Накопленные знания передавались из поколения в поколение устно, позже пись­менно, наконец с помощью предметных моделей. Так родилась, к примеру, модель земного шара - глобус, - позволяющая получить наглядное представление о фор­ме нашей планеты, ее вращении вокруг собственной оси и расположении матери­ков. Такие модели позволяют понять, как устроен конкретный объект, узнать его основные свойства, установить законы его развития и взаимодействия с окружаю­щим миром моделей.

2. Создание объектов с заданными свойствами (задача типа «Как сделать, чтобы...»).

Накопив достаточно знаний, человек задал себе вопрос: «Нельзя ли создать объект с заданными свойствами и возможностями, чтобы противодействовать стихиям или ставить себе на службу природные явления?» Человек стал строить модели еще не существующих объектов. Так родились идеи создания ветряных мельниц, различ­ных механизмов, даже обыкновенного зонтика. Многие из этих моделей стали в настоящее время реальностью. Это объекты, созданные руками человека.

3. Определение последствий воздействия на объект и принятие правильного решения (задача типа «Что будет, если...»: что будет, если увеличить плату за про­езд в транспорте, или что произойдет, если закопать ядерные отходы в такой-то местности?)

Например, для спасения Петербурга от постоянных наводнений, приносящих огромный ущерб, решено было возвести дамбу. При ее проектировании было по­строено множество моделей, в том числе и натурных, именно для того, чтобы пред­сказать последствия вмешательства в природу.

4. Эффективность управления объектом (или процессом).

Поскольку критерии управления бывают весьма противоречивыми, то эффек­тивным оно окажется только при условии, если будут «и волки сыты, и овцы целы».

Например, нужно наладить питание в школьной столовой. С одной стороны, оно должно отвечать возрастным требованиям (калорийное, содержащее витамины и минеральные соли), с другой - нравиться большинству ребят и к тому же быть «по карману» родителям, а с третьей - технология приготовления должна соответ­ствовать возможностям школьных столовых. Как совместить несовместимое? Построение модели поможет найти приемлемое решение.

Анализ объекта.

На этом этапе четко выделяют моделируемый объект, его оснбвные свойства, его элементы и связи между ними.

Простой пример подчиненных связей объектов - разбор предложения. Сначала выделяются главные члены (подлежащее, сказуемое), затем второстепенные чле­ны, относящиеся к главным, затем слова, относящиеся к второстепенным, и т. д.Этап П. Разработка модели

Информационная модель.

На этом этапе выясняются свойства, состояния, действия и другие характерис­тики элементарных объектов в любой форме: устно, в виде схем, таблиц. Форми­руется представление об элементарных объектах, составляющих исходный объект, т. е. информационная модель.

Модели должны отражать наиболее существенные признаки, свойства, состоя­ния и отношения объектов предметного мира. Именно они дают полную информа­цию об объекте.

Пример. Представьте себе, что нужно отгадать загадку. Вам предлагают пере­чень свойств реального предмета: круглое, зеленое, глянцевое, прохладное, полосатое, звонкое, зрелое, ароматное, сладкое, сочное, тяжелое, крупное, с сухим хвостиком...

Список можно продолжать, но вы, наверное, уже догадались, что речь идет об арбузе. Информация о нем дана самая разнообразная: и цвет, и запах, и вкус, и даже звук... Очевидно, ее гораздо больше, чем требуется для решения этой задачи. Попробуйте выбрать из всех перечисленных признаков и свойств минимум, по­зволяющий безошибочно определить объект. В русском фольклоре давно найдено решение: «Сам алый, сахарный, кафтан зеленый, бархатный».

Если бы информация предназначалась художнику для написания натюрморта, можно было ограничиться следующими свойствами объекта: круглый, большой, зеленый, полосатый. Чтобы вызвать аппетит у сладкоежки, выбрали бы другие свойства: зрелый, сочный, ароматный, сладкий. Для человека, выбирающего арбуз на бахче, можно было бы предложить следующую модель: крупный, звонкий, с сухим хвостиком.

Этот пример показывает, что информации не обязательно должно быть мно­го. Важно, чтобы она была «по существу вопроса», т. е. соответствовала цели, для которой используется.

Например, в школе учащиеся знакомятся с информационной моделью кровооб­ращения. Предлагаемой в учебнике анатомии информации достаточно для школь­ника, но мало для тех, кто проводит операции на сосудах в больницах.

Информационные модели играют очень важную роль в жизни человека.

Знания, получаемые вами в школе, имеют вид информационной модели, цель которой - изучение предметов и явлений.

Уроки истории дают возможность построить модель развития общества, а зна­ние этой модели позволяет строить собственную жизнь, либо повторяя ошибки пред­ков, либо учитывая их.

На уроках географии вам сообщают информацию о географических объектах: горах, реках, странах и др. Это тоже информационные модели. Многое, о чем рас­сказывается на занятиях по географии, вы никогда не увидите в реальности.

На уроках химии информация о свойствах разных веществ и законах их взаи­модействия подкрепляется опытами, которые есть не что иное, как реальные моде­ли химических процессов.

Информационная модель никогда не характеризует объект полностью. Для одного и того же объекта можно построить различные информационные модели.

Пример. Выберем для моделирования объект «человек». Человека можно рассмот­реть с различных точек зрения: как отдельного индивида и как человека вообще.

Если иметь в виду конкретного человека, то можно построить модели, которые представлены в таблицах.

(Информационная модель ученика.)

(Информационная модель посетителя школьного медкабинета.)

(работника предприятия.)

Другой пример различных информационных моделей для одного и того же объек­та. Многочисленные свидетели преступления сообщили разнообразную информацию о предполагаемом злоумышленнике - это их информационные модели. Представи­телю милиции следует выбрать из потока сведений наиболее существенные, которые помогут найти преступника и задержать его. У представителя закона может сло­житься не одна информационная модель бандита. От того, насколько правильно будут выбраны существенные черты и отброшены второстепенные, зависит успех дела.

Выбор наиболее существенной информации при создании информационной мо­дели и сложность этой модели обусловлены целью моделирования.

Построение информационной модели является отправным пунктом этапа разра­ботки модели. Все входные параметры объектов, выделенные при анализе, распо­лагают в порядке убывания значимости и проводят упрощение модели в соответ­ствии с целью моделирования.

Знаковая модель.

Прежде чем приступить к процессу моделирования, человек делает предва­рительные наброски чертежей либо схем на бумаге, выводит расчетные форму­лы, т. е. составляет информационную модель в той или иной знаковой форме, которая может быть либо компьютерной, либо некомпьютерной.

Компьютерная модель.

Компьютерная модель - это модель, реализованная средствами программной среды.

Существует множество программных комплексов, которые позволяют прово­дить исследование (моделирование) информационных моделей. Каждая программ­ная среда имеет свой инструментарий и позволяет работать с определенными вида­ми информационных объектов.

Человек уже знает, какова будет модель, и использует компьютер для придания ей знаковой формы. Например, для построения геометрических моделей, схем ис­пользуются графические среды, для словесных или табличных описаний - среда текстового редактора.

Этап III. Компьютерный эксперимент

Чтобы дать жизнь новым конструкторским разработкам, внедрить новые тех­нические решения в производство или проверить новые идеи, нужен эксперимент. В недалеком прошлом такой эксперимент можно было провести либо в лаборатор­ных условиях на специально создаваемых для него установках, либо на натуре, т. е. на настоящем образце изделия, подвергая его всяческим испытаниям.

С развитием вычислительной техники появился новый уникальный метод ис­следования - компьютерный эксперимент. Компьютерный эксперимент включа­ет некоторую последовательность работы с моделью, совокупность целенаправлен­ных действий пользователя над компьютерной моделью.

Этап IV. Анализ результатов моделирования

Конечная цель моделирования - принятие решения, которое должно быть вы­работано на основе всестороннего анализа полученных результатов. Этот этап ре­шающий - либо вы продолжаете исследование, либо заканчиваете. Возможно, вам известен ожидаемый результат, тогда необходимо сравнить полученный и ожидае­мый результаты. В случае совпадения вы сможете принять решение.

Общая цель моделирования подчинена цели любых естественно-научных исследований – прогнозировать результаты предстоящих экспериментов (в том числе результаты эксплуатации любых устройств и систем).

1. Обеспечить поддержку принятия решений при решении тактических и стратегических задач управления. Существует иерархия задач управления технологическими комплексами. На верхнем уровне решаются задачи планирования производства, материально-технического снабжения и реализации продукции. На нижележащих уровнях иерархии решаются задачи распределения программы выпуска продукции на весь плановый период, задачи календарного планирования и текущего управления. Этой иерархии задач соответствует иерархия математических моделей.

Успех управления в значительной мере зависит от возможности и своевременности использования информации на всех организационных уровнях.

Стратегические задачи связаны с созданием новых или реконструкцией существующих объектов. Тактические задачи связаны с изменением технологических режимов и решаются при условии, что структура объекта сохраняется.

Например, математические модели, поддерживающие решения стратегических задач, позволяют прогнозировать развитие проектируемого предприятия и разрабатывать меры, направленные на предотвращение, ликвидацию или ограничение опасных последствий горных работ.

Основной чертой современных информационных систем является обилие информации, вследствие чего возрастает значение ее адекватного отбора.

Совместно обрабатывая разнородную информацию (результаты экспресс-контроля, показания датчиков, результаты экспертных оценок), необходимо осуществить селекцию (отбор) той информации, которая совместима с известными закономерностями процесса, имеющими, например, вид аналитических моделей.

Качественная и количественная селекция информации позволяет повысить эффективность управления.

Таким образом, математическая модель выполняет роль связующего элемента всей информации о ходе исследуемого процесса и позволяет ответить на следующие вопросы.

Какова существующая технологическая ситуация? Ответ на этот вопрос требует интерпретации потока сообщений, поступающих от объекта, и отнесения существующей ситуации к определенному классу.

Какие ресурсы необходимы для ведения процесса на прогнозируемом интервале времени?

Как нужно изменить технологический режим для предотвращения аварийных ситуаций и оптимизации технологического режима? Ответ на последний вопрос подразумевает наличие прогнозирования развития технологической ситуации и знание соответствующих регулировочных характеристик.

2. Заменить недопустимые на реальном объекте опыты экспериментами на его модели. Модели реальных объектов издавна используются в науке и технике для проверки идей, отработки гипотез, получения экспериментального материала. Так, при проектировании карьера возникает задача определения его глубины и конечных границ. Для решения этой задачи необходима математическая модель месторождения, позволяющая из различных вариантов выбрать оптимальный, исходя из минимизации затрат на разработку всех запасов руды. При этом мы заменяем недопустимые на реальном объекте опыты вычислительными экспериментами на его модели. Необходимым условием успешности такого подхода является соответствие модели реальному объекту.

3. Свести исследование реального, “нематематического” объекта к решению математической задачи. Такое сведение открывает возможность использования для изучения реального объекта хорошо разработанного математического аппарата и мощной вычислительной техники. Необходимо отметить, что математические модели – это не только уравнения математической задачи, но и условия их применимости.

Уместно напомнить девиз британского Королевского научного общества: “Ничего словами!” Все научные положения должны основываться на математических доказательствах и подтверждаться результатами экспериментов.

Математическая модель – это всегда приближенное, упрощенное представление объекта. Отсюда следует, что моделей, характеризующих один и тот же объект с одних и тех же позиций, может быть много и можно говорить о “хороших” и “плохих” моделях с точки зрения определенных критериев.

Всякая математическая модель является схемой исследуемого явления, из которой с помощью формальной логики можно извлекать следствия, касающиеся свойств этого явления.

4. Получить эффективный инструмент исследования сложных систем. Математическое моделирование является эффективным инструментом исследования сложных систем. Один из основоположников применения математических методов в биологии А. А. Ляпунов считал, что “это единственная возможность отчетливого совместного рассмотрения ряда одновременно протекающих процессов и выбора разумного способа вмешательства в их течение, т. е. управления ими”.

5. Обобщить знания, накопленные об объекте. Модели служат как бы аккумуляторами знаний об объектах.

С помощью моделей можно имитировать функционирование и прогнозировать будущие свойства объектов или их свойства в новых, ранее не описанных ситуациях. Моделирование позволяет сократить число необходимых опытов и наблюдений и более четко интерпретировать их результаты.

Модели выполняют особую смыслообразующую роль в системе научного знания. Если модель адекватна реальному объекту, то это свидетельствует с большой вероятностью о том, что мы правильно понимаем процессы, происходящие в реальном объекте.

Создавая модель, исследователь “познает” систему , т. е. выделяет ее из окружающей среды и строит ее формальное описание в соответствии с поставленными целями, задачами и имеющимися возможностями.

Важнейшей характеристикой математической модели является ее проблемная ориентированность , т. е. математическая модель всегда ориентирована на решение определенных проблем, например, повышение стабильности качественных характеристик товарной продукции, снижение потерь, повышение надежности и т. д. Назвав проблему, мы определяем систему выходных переменных (показателей процесса).

Разнообразие целей моделирования хорошо иллюстрируется перечнем задач, связанных с бизнес-процессами, когда требуется получить описание финансовых, производственных, логистических и маркетинговых характеристик затрат, доходов, прибыли, инвестиций, производственных мощностей, каналов снабжения и сбыта, процессов, функций, информационных потоков, организационных структур и т. д.

Средства построения моделей определяются видами моделей и пристрастиями разработчика. Так, язык IDEF0 используется для описания связи функций друг с другом по входам, выходам, контролю и исполнению. Модели “сущность – связь” используют для описания параметров объекта и взаимозависимости между ними для проектирования БД. Потоковые модели (Data Flow Diagrams) предназначены для описания связей функциональной и информационной моделей – какие функции, какими потоками данных управляют.

На этой лекции мы обсудим одно из самых популярных понятий, которое используется практически во всех научных дисциплинах и оказывается незаменимым при решении большого класса прикладных задач. Для начала определим, что есть модель и что есть моделирование.

Методологическая основа моделирования заключается в следующем. Исследование объектов и систем объектов окружающего мира зачастую начинается с построения гипотезы об их устройстве, функционировании и динамике развития. Гипотезы строятся на основании опытных данных, догадок или наблюдений. Любая гипотеза должна быть проверена в ходе эксперимента. Когда мы начинаем строить гипотезу, то, как правило, основываемся на каких-то проверенных опытным путём аналогиях. Что есть аналогия? Это некоторое суждение о частичном сходстве двух объектов. Именно на аналогии строятся современные научные гипотезы, которые сводятся, например, к упрощённым и удобным для исследования логическим схемам рассуждений. Такие логические схемы, упрощающие рассуждения, построения, сам эксперимент, и называются моделями.

Таким образом, модель - это некий заместитель объекта-оригинала, обладающий существенными для исследователя свойствами оригинала.

Соответственно, моделирование - это замещение одного объекта другим с целью получения информации о свойствах объекта-оригинала с помощью объекта-модели.

Обратимся к уроку электронного практикума «Раз - цветочек, два - грибочек, будет песенка, или Модели и моделирование». Упражнение 1 как раз нацелено на то, чтобы учащийся смог выбрать объект-модель для объекта-оригинала. И это упражнение под силу выполнить даже безобразнику и бездельнику Васе Петрову:-).

То, что модель может быть представлена различными способами, демонстрирует упражнение 2 практикума, в котором нужно найти путь из одного пункта в другой. Модель передвижения выполнена в виде графа, проходя по рёбрам которого нужно найти верный путь.

Третье упражнение использует совсем другую модель - математическую. Учащемуся в интерактивном режиме предлагается решить задачу, составив формулу геометрической прогрессии. Вот где пригодится знание математики! Собственно, цель этого урока - показать разнообразие моделей, строящихся для объектов-оригиналов.

Итак, основные выводы, касающиеся моделирования:

  1. Моделирование - это метод познания окружающей действительности.
  2. Моделирование - познавательный процесс, включающий в себя обработку информации об объектах-оригиналах и явлениях, в результате которой появляются образы-аналогии (модели), соответствующие оригиналам.

В процессе моделирования всегда есть объект исследования, сам исследователь с поставленной конкретной задачей и модель объекта, которая создаётся для решения поставленной задачи.

Цель моделирования

Наверное, самым важным этапом моделирования является определение цели моделирования на этапе постановки задачи. Вполне естественно, что именно цель позволяет определить, какие характеристики объекта-оригинала считать существенными, а какими можно пренебречь. Цель определяет, каковы будут методы решения поставленной задачи, какие средства, например, программная среда, будут выбраны, и каким образом будут отображены результаты исследования. Если биолог постарается рассмотреть, например, полено с точки зрения биологии и определит возраст срубленного дерева, то художник увидит некое творческое применение красиво искривлённому сучку, то есть модель отображает не объект-оригинал, а то, что в нём интересует и соответствует выбранной цели моделирования.


В электронном практикуме этой теме посвящён урок «Теория голодной козы, или Как строят модели». На примере всё пожирающих вокруг себя коз строятся разные модели - информационная, геометрическая, математическая, графическая. Рассмотрим такую задачу: «Определить площадь участка, на котором могла побывать коза, находившаяся на привязи. При условии, что некто прогуливался по лугу, держа козу на поводке длиной 1 м, и путь его проходил по сторонам прямоугольника 3 x 5 м». При её выполнении сначала строится геометрическая модель:



После этого строится математическая модель:

Каковы возможные цели моделирования?

В основном модели строятся для познания окружающего мира, и моделирование процессов, явлений, объектов позволяет делать предположения о природе вещей и исследовать построенные с определённой целью модели.

Целями моделирования являются:

  1. Понимание того, как устроен объект, каковы его структура, основные свойства, законы развития и взаимодействия с окружающей средой. Такие модели помогают понять, как устроен конкретный объект, узнать его основные свойства, установить законы его развития и взаимодействия с окружающим миром. В этом случае целью построения модели является познание окружающего мира.
  2. Управление объектом или процессом и определение наилучших способов управления при заданных целях.
  3. Создание объектов с заданными свойствами.
  4. Прогнозирование последствий воздействия на объект.

Например, в упражнении 2 целью моделирования является конструирование «неваляшки», совершающей интересные движения в зависимости от положения центра тяжести. И учащийся, основываясь на знании законов физики, может сделать самостоятельные предположения о характере движения неваляшки, а в будущем - сконструировать свою собственную, оригинально движущуюся неваляшку:-).


Таким образом, от выбора цели моделирования зависит, какую модель вы построите.

Задания

  1. Определите объект моделирования, метод моделирования и цель.
  2. Объясните различие моделей бабочки с точки зрения биолога, художника, рыболова, фотографа, скульптора.
  3. Попробуйте рассмотреть ваше любимое стихотворение как модель.
  4. Изобразите графом-моделью фразу «Я знаю, что ты знаешь, что я знаю».