Болезни Военный билет Призыв

Минералогия. Общая минералогия

МИНЕРАЛОГИЯ (от минерал и греч. logos - слово, учение * а. mineralogy; н. Mineralogie; ф. mineralogie; и. mineralogie) - наука о минералах; изучает состав, свойства, морфологию, особенности структуры, процессы образования и изменения минералов, закономерности их совместного нахождения в природе, а также условия и методы искусственного получения (синтеза) и практического использования. Главные задачи: разработка научной классификации минералов, выявление связей между вариациями их состава, строения, свойств и условиями образования и нахождения в природе; создание научных основ для поисков и оценки месторождений минерального сырья , совершенствования технологии его переработки, вовлечения новых видов минерального сырья в промышленное использование; разработка методов искусственного выращивания и облагораживания кристаллов ценных минералов. Минералогия - древнейшая из наук геологического цикла. Термин "минералогия" введён в 1636 итальянским натуралистом Б. Цезием. Постепенная дифференциация минералогии в ходе развития наук привела к отделению от неё геологии и кристаллографии (18 век), петрографии (19 век), учения о полезных ископаемых , геохимии и металлогении (конец 19 - начало 20 вв.), учения о каустобиолитах (20 век), кристаллохимии (середина 20 века). В своём развитии минералогия наиболее тесно связана с физикой твёрдого тела и химией; методы и теоретическая концепция этих наук особенно интенсивно внедряются в современной минералогии с 50-х гг. 20 в. Объекты исследования в минералогии - минеральные индивиды, агрегаты , парагенезисы и ассоциации. Современная минералогия включает ряд основных направлений. Описательная минералогия охватывает весь круг вопросов, относящихся к характеристике отдельных минералов: их конституции, физических свойств , морфологии выделений. Описательная минералогия занимается также вопросами систематики и классификации минералов, устанавливает вариации их химического состава, изучает зависимости между физическими свойствами минералов и особенностями их состава или кристаллической структуры. Самостоятельный раздел описательной минералогии - физика минералов , использующая методы физики твёрдого тела при исследовании реальных кристаллов минералов. Особый раздел описательной минералогии - минераграфия , занимающаяся изучением рудных минералов с применением специфических методов исследования (оптики отражённого света, микрохимических реакций и др.). Генетическая минералогия выясняет условия, процессы и способы образования и изменения минералов в природе. Различают несколько самостоятельных разделов: учение о типоморфизме минералов, связывающее особенности морфологии, состава, структуры и физических свойств минералов с геологическими и физико-химическими условиями их формирования (учение о типоморфизме распространяется и на минеральные ассоциации); онтогенический и кристалломорфологический анализ, расшифровывающий историю и механизм образования минеральных индивидов и агрегатов; термобаро-геохимию (исследование твердофазных и газово-жидких включений в минералах), дающую информацию о химизме минералообразующей среды и физико-химических параметрах (температура, давление, pH, окислительно-восстановительные условия); изотопические исследования, помогающие вскрыть источник вещества при минералообразовании; трифогенезис, рассматривающий способ питания минералов и их агрегатов в процессе образования; топогенез, охватывающий закономерности распределения минералов в пространстве и механизмы формирования различных типов минералогической зональности; парагенетический анализ как метод изучения эволюции процессов минералообразования путём выявления последовательно сменяющих друг друга во времени и пространстве минеральных парагенезисов и закономерностей, управляющих этой сменой; учение о сосуществующих минералах, базирующееся на принципе фазового соответствия, который позволяет (исходя из предпосылки о равновесности процессов формирования парагенезисов) использовать сосуществующие минералы как геотермометры и геобарометры; энергетические и термодинамические расчёты в минералогии, дающие возможность оценивать кислотно-основные свойства минеральных фаз и вероятную последовательность их возникновения, т.е. судить о физико-химических тенденциях процессов минералообразования. С позиций современной генетической минералогии, включающей онтогению и филогению минералов, минерал в особенностях своего состава (в т.ч. состава микропримесей), тонких деталях структуры, микрогетерогенности, вариациях физических свойств несёт богатую информацию о своём происхождении и позднейшем изменении, расшифровка которой становится возможной лишь с применением новейших физических, физико-химических и кристаллохимических методов исследования. Экспериментальная минералогия примыкает к генетической минералогии и дополняет её лабораторным моделированием природных процессов минералообразования и изучением физико-химических систем, воспроизводящих (обычно с известными упрощениями) природные минеральные парагенезисы и обстановку их формирования. Самостоятельный раздел экспериментальной минералогии, близкий к ней в методическом отношении, - синтез и облагораживание минералов, имеющих многообразное применение в ювелирном деле и технике (алмаз , пьезокварц , оптический флюорит , слюда , рубин , сапфир , гранаты , аметист , изумруд , малахит , опал и др.). Региональная минералогия и топоминералогия осуществляют минералогическое изучение отдельных участков и территорий - от конкретных рудных месторождений до крупных геологических (рудных, металлогенических) провинций или экономико-географических регионов. Основная задача региональной минералогии - выявление закономерностей пространственного распределения и локализации минералов и минеральных ассоциаций в связи с геологической историей развития провинции (региона) или формирования месторождения. Региональная минералогия непосредственно связывает минералогию с металлогенией и минерагенией . Минералогия космических тел (Луны и планет, а также метеоритов) - новая область минералогии, существенно расширяющая сферу её интересов и связывающая минералогию с быстро развивающейся сравнительной планетологией. Прикладная минералогия в её современном понимании включает три главных раздела. Поисковая минералогия опирается на учение о типоморфизме минералов и минералах-индикаторах оруденения. Она ставит перед собой задачу повышения эффективности геологоразведочных работ путём выявления новых минералогических поисковых и прогнозно-оценочных критериев, совершенствования минералогических методов поисков и оценки перспектив оруденения, разработки научных основ комплексирования минералогических методов поисков с геохимическими и геофизическими методами. Технологическая минералогия направлена на интенсификацию использования минер, сырья, т.е. на повышение полноты и комплексности его использования. Она охватывает: минералогическое и минералого-технологическое картирование рудных полей и месторождений полезных ископаемых с целью оценки запасов полезных компонентов (в т.ч. попутных) в извлекаемой минеральной форме, технологические прогнозирования, планирования добычи и стабилизации минерального состава руды , поступающей на обогатительную фабрику; изучение технологических свойств минералов, слагающих руды (электрических, магнитных, плотностных, поверхностных, ионообменных, гранулометрии и морфологии рудных минералов, их тонких структурных особенностей, растворимости в воде и в водных растворах электролитов при различных значениях pH и т.д.); разработку методов направленного изменения состава, структуры и свойств минералов путём радиационного, термического (обжиг), акустического (ультразвук) и прочих воздействий с целью повышения извлечения полезных компонентов при обогащении и сортности концентратов , а также улучшения их вскрытия при химико-металлургическом переделе; текущий минералогический контроль состава концентратов на действующих горно-металлургических предприятиях и разработку рекомендаций по оптимизации технологических режимов передела концентратов с целью повышения сквозного извлечения конечных продуктов в металлургическом процессе. Минералогия новых видов сырья занимается выявлением особенностей состава и свойств минералов, пока не нашедших практического применения, которые могут представить интерес для промышленности, а также возможных областей использования этих минералов и их распространённости в природе с целью вовлечения новых минералов в промышленное освоение и расширения сфер применения уже известных видов минерального сырья. Помимо традиционных методов полевого и лабораторного определения и анализа минералов, а также давно вошедших в минералогическую практику оптического, рентгенографического, и термического методов, минералогия вооружена разнообразными прецизионными физическими методами исследования, такими, как просвечивающая электронная микроскопия (растровая и сканирующая), электроно- и нейтронография, электронно-зондовый (микрорентгено-спектральный) и локальный спектральный (лазерный) анализ, магнетохимия, магнитостатические (метод Фарадея) и термомагнитные измерения, электрофизические методы (определение диэлектрической проницаемости , тангенса угла диэлектрических потерь и термо-эдс), серия спектроскопических методов (оптическая, люминесцентная, ИК-спектроскопия), группа резонансных методов: ЯГР (мёссбауэровская спектроскопия), ЭПР (электронный парамагнитный резонанс), ЯМР (ядерный магнитный резонанс) и другие радиоспектроскопии, методы, позволяющие вскрывать весьма тонкие особенности кристаллической структуры минералов, наличие в них точечных дефектов и т.д. Всё шире используются в минералогии изотопические методы, методы термобарогеохимии с анализом состава жидкой и газовой фаз включений и привлечением спектроскопии комбинационного рассеяния к исследованию состава минералообразующих сред по индивидуальным включениям. Определение палеотемператур и давлений производится также по составу сосуществующих минералов. Интенсивно развиваются методы количественного фазового анализа в минералогии. Создана, и всё шире применяется в минералогии разнообразная аппаратура для выделения и изучения высокодисперсных минералов. Исторический очерк. Минералогия возникла в глубокой древности. Развитие минералогии шло параллельно с развитием горного дела и металлургии. Элементы минералогических знаний встречаются у античных натурфилософов с середины 4 века до н.э. Аристотель различал в минеральном мире 2 класса тел - камни и руды. Его ученик Теофраст в специальном трактате "О камнях" (около 315 до н.э.) выделял 3 класса - металлы, камни (обыкновенные и драгоценные) и земли . Всего им упоминается 73 названия минеральных тел, в т.ч. 32 минерала. В 1 в. н.э. древнеримскому натуралисту Плинию Старшему был известен 41 минерал; в последних 5 книгах своей "Естественной истории" он рассматривает металлы, руды, камни, драгоценные и поделочные камни . В средние века на развитие минералогии оказывали значительное влияние алхимия и медицина. В раннем средневековье наибольший вклад в минералогию внесли учёные Востока - Бируни (973-1048) и Ибн Сина (980-1037). Первый описал около 100 минеральных веществ (среди них 36 минералов), второй - дал их новую классификацию, выделив 4 класса: камни, плавкие тела (т. е. металлы), горючие тела ("серы") и соли (тела, растворимые в воде). В средневековой Европе минералогическими исследованиями занимались главным образом алхимики. Один из них - Альберт Великий - опубликовал в 13 веке (после 1262) специальный трактат "De Mineralibus" - полный свод знаний той эпохи об объектах минерального царства. В средневековых европейских лапидариях вплоть до 15-16 вв. упоминалось не более 50-60 минералов, хотя общее число рассматриваемых минеральных образований постепенно росло. У истоков научной минералогии стоит Г. Агрикола; в его трактатах приведены названия свыше 100 минеральных тел, систематизированных в соответствии с новой классификацией, представляющей дальнейшее развитие классификации Ибн Сины. В ней простые тела, т.е. минералы, подразделяются на земли, камни, металлы и "загустевшие соки", жирные и тощие. В 17 в. трудами датских (Э. Бартолин, Н. Стено), английских (Р. Бойль, Р. Гук), голландских (Х. Гюйгенс) учёных были заложены основы геометрической кристаллографии и кристаллооптики, что способствовало в дальнейшем быстрому прогрессу минералогии. Новый этап в её развитии начался в 18 - начале 19 вв., когда работы французского кристаллографа Ж. Б. Роме де Лиля, выполнившего точные измерения межгранных углов на кристаллах ряда минералов (1783), и Р. Ж. Аюи (Гаюи), создавшего первую научную модель их внутреннего строения ("Трактат о минералогии", 1801), а также английского химика и кристаллографа У. Волластона (1766-1828) стимулировали оформление кристалломорфологического направления в описательной минералогии. В те же годы в Германии А. Г. Вернер (1749-1817) и его ученики активно развивали в минералогии качественно-описательное (физиографическое) направление. Вернер, отделивший геологию от минералогии, впервые чётко разграничил минералы и горные породы , введя понятие о минерале, в основном чертах близкое к современным представлениям. Выдающуюся роль в становлении минералогии как науки сыграли русские учёные 18 - начала 19 вв., особенно М. В. Ломоносов и В. М. Севергин . Идеи Ломоносова в области минералогии и кристаллографии (например, в вопросе о внутреннем строении кристаллов) далеко опередили своё время. Замечательный минералог и химик В. М. Севергин стал первым и крупнейшим в России представителем вернеровского физиографического направления в минералогии. Им описано несколько новых минералов, созданы фундаментальные обобщающие труды по минералогии, чётко сформулированы задачи минералогии и дано определение минералогии как науки. Ломоносов и Севергин наряду с их западноевропейскими современниками - шведами И. Г. Валериусом (1747), А. Кронштедтом (1758) и Й. Я. Берцелиусом (1814), французами А. Лавуазье (1743-94) и Л. Вокленом (1763-1829), немецкими учёными минералогии Г. Клапротом (1743-1817) и И. Ф. А. Брейтгауптом (1791-1873) положили начало развитию химического направления в минералогии. 19 век в истории минералогии ознаменован быстрым накоплением фактического материала, резким расширением числа минералов, дальнейшей дифференциацией минералогии и ответвлением от неё ряда самостоятельных наук. В этот период складываются такие основополагающие понятия минералогии, как полиморфизм , изоморфизм, псевдоморфозы , парагенезис, типоморфизм минералов и др. На протяжении 19 - начала 20 вв. в минералогии, носившей преимущественно описательный характер, параллельно развиваются кристаллографические (кристалломорфологические) и химические направления. В России становление первого из них связано с именами Н. И. Кокшарова, П. В. Еремеева, М. А. Толстопятова и особенно Е. С. Фёдорова, а развитие второго направления - с именами В. В. Докучаева , П. А. Земятченского, но особенно В. И. Вернадского и А. Е. Ферсмана . В связи с рентгенографическими работами У. Г. и У. Л. Брэггов и Г. В. Вульфа (1915) в развитии минералогии начинается новый период. Первые сводки полученных результатов по расшифровке кристаллических структур минералов появились в 1930-х гг. (Р. Уайкофф, 1931-35; У. Л. Брэгг, 1937). В развитие кристаллохим. исследований существенный вклад внесли также Г. В. Вульф, Л. Полинг, Э. Шибольд, У. Г. Тейлор, Ф. Лавес, У. Захариасен, Н. В. Белов и др. На основе этих исследований стало возможным построить общую теорию кристаллической структуры минералов, по-новому рассмотреть проблемы изоморфизма, энергетики кристаллов, подойти к структурной интерпретации физических свойств минералов и дать их кристаллохимическую классификацию. Хотя кристаллография и кристаллохимия формально обособились от минералогии, но связь их с минералогией по-прежнему очень прочна: фактически обе они насквозь пронизывают всю современную минералогии, составляя её теоретическую базу. Одновременно в 20 веке в минералогии активизировались экспериментальные и физико-химические направления; решающее влияние на них оказало учение о правиле фаз, приспособленное норвежским химиком В. М. Гольдшмидтом и советским геологом Д. С. Коржинским к анализу процессов минералообразования. В современной минералогии происходит синтез её исторически сложившихся, ранее автономных направлений. Так, слияние кристаллографического направления в минералогии с химическим послужило основой возникновения учения о конституции минералов (Д. П. Григорьев, А. С. Поваренных). С другой стороны, проникновение в минералогию методов физики твёрдого тела, расширяющих возможности изучения и интерпретации внутреннего строения и свойств минералов, позволяет извлекать заключённую в них генетическую информацию, что приводит к синтезу описательного и генетического направлений в минералогии. Потребности бурно развивающейся с первых лет Советской власти горнодобывающей промышленности и соответственно геологоразведочной службы, с которыми тесно связана минералогия, в сочетании с плановым подходом к организации науки предопределили ускоренный рост в CCCP минералогических центров и стимулировали широкомасштабные топоминералогические исследования всей страны. Этими исследованиями в 1920-х - 30-х гг. руководили крупнейшие советские геологи А. Е. Ферсман, Д. И. Щербаков , Н. М. Федоровский , С. С. Смирнов, Н. А. Смольянинов и др. В результате было открыто и освоено множество месторождений и горнорудных районов (Кольский полуостров, KMA, северо-восток CCCP, Средняя Азия , Северный Кавказ , Приморье, Центральный Казахстан и др.), получен новый минералогический материал, ставший основой для глубоких теоретических, кристаллохимических и геохимических обобщений. Одновременно это ускорило развитие прикладной минералогии, привело к вовлечению в промышленное освоение новых видов минерального сырья (апатита, нефелина , лопарита , пирохлора , кианита , фенакита , бертрандита и др.), к выявлению новых областей практического использования минералов. Быстрыми темпами стала развиваться генетическая минералогия, особенно применительно к изучению рудных месторождений. Открыта и исследована кристалломорфологическая эволюция минералов, послужившая основой для разработки новых методов поисков и оценки месторождений полезных ископаемых (Д. П. Григорьев, И. И. Шафрановский, И. Н. Костов , Н. П. Юшкин и др.). Значительные успехи достигнуты в области промышленного синтеза минералов и геммологии . Большое развитие в CCCP получила прикладная минералогия, основоположниками которой были Н. М. Федоровский и А. И. Гинзбург . Особое внимание уделяется развитию технологической минералогии. Минералогические исследования в CCCP проводятся институтами Академии Наук CCCP и союзных республик, вузами, НИИ и объединениями системы Министерства геологии CCCP и других ведомств. Основные работы в области минералогии ведутся в Москве (ИГЕМ, Минералогический музей им. А. Е. Ферсмана , ГИН, МГУ, ВИМС, ИМГРЭ, МГРИ, Институт экспериментальной минералогии - ИЭМ, ЦНИГРИ, ВНИИСИМС, Гиредмет, ГИГХС и др.), Ленинграде (ЛГУ, ЛГИ, ВСЕГЕИ, МЕХАНОБР и др.), Киеве (Институт геохимии и физики минералов - ИГФМ), Львове (университет), Сыктывкаре (Институт геологии), Апатитах (Геологический институт), Свердловске (ИГГ), Миассе (Ильменский заповедник), Казани (университет, ВНИИГеолнеруд), Новосибирске (ИГГ, университет), Иркутске (ИГХ), Хабаровске (ДВИМС), Владивостоке (ДВГИ), Симферополе (ИМР), Алма-Ате (КазИМС), Ростове-на-Дону (университет), Ташкенте (университет, САИГИМС). Большую работу по пропаганде и внедрению достижений минералогии проводят минералогические общества , существующие в CCCP (Всесоюзное, Украинское, Узбекское и др.) и за рубежом: Франция , ГДР , ФРГ , скандинавские страны, Италия , Швейцария, Испания , Великобритания , США, Канада , Бразилия , Индия , Япония и др.). Эти общества объединены в Международную минералогическую ассоциацию (MMA), съезды которой собираются каждые 4 года. Значительная роль в распространении и популяризации минералогических знаний принадлежит минералогическим музеям (в CCCP крупнейший - Минералогический музей им. А. Е. Ферсмана Академии Наук CCCP). Основные периодические издания по минералогии: в CCCP - "Записки Всесоюзного минералогического общества" (М.-Л., с 1866), "Труды Минералогического музея Академии Наук CCCP" (Л.-М., с 1926, с 1981 - "Новые данные о минералах"), "Минералогический журнал" (К., с 1979); за рубежом - "American Mineralogist" (Wash., с 1916), "Bulletin de minйralogie" (Р., с 1878, до 1978 - "Bulletin de la Sociйtй franзaise de minйralogie et de cristallographie"), "Mineralogical Magazine" (L., с 1876), "Zentralblatt fьr Mineralogie" (Stuttg., с 1807), "Neues Jahrbuch fьr Mineralogie. Abhandlungen" (Stuttg., с 1807), "Соntributions to Mineralogy and Petrology" (N. Y., с 1947) и др.

Общая Минералогия

А.Г.БУЛАХ

Предмет и история минералогии объекты и содержание минералогии

Из курса общей геологии известно, что горные породы и руды состоят из мине­ралов. Например, минералы микроклин, биотит, альбит, кварц являются главными составными частями гранитов, гематит, магнетит-главными минералами некоторых железных руд. Что же такое минералогия и что является объектом ее изучения?

Любая наука находится в постоянном развитии, меняются ее цели, объекты, ме­тоды. Часть традиционных объектов исследования отходит в область других наук, вза­мен появляются новые. Понятие "минерал" и содержание науки минералогии также меняются во времени. Поэтому существуют различные определения понятия "мине­рал" , отвечающие разным подходам и тенденциям развития науки. Мы же будем от­носить к минералам природные химические соединения кристаллической структуры, например кварц, ортоклаз, гематит. Их около 3500-4000, и все они являются пря­мыми, обязательными и простыми по сути определения минерала объектами минера­логии. Но это не единственный предмет изучения в минералогии. Также к прямым, но усложненным ее объектам следует отнести капельки жидкой ртути, иногда находи­мые в месторождениях киновари; газовые, жидкие, смешанные включения, образую­щиеся в природных кристаллах минералов во время их роста; аморфные или частично аморфные продукты радиогенного самораспада некоторых минералов урана и тория

опал как форму существования в виде твердого коллоидного раствора двух минера­лов (кристобалита и тридимита), - все это закономерные продукты жизни минералов. Хотя они не обязательно имеют кристаллическое строение и не всегда являются ин­дивидуальными химическими веществами, они не могут быть исключены из рассмо­трения явлений минералообразования и изъяты из минералогии. Также к прямым, но дополняющим объектам минералогии относятся горные породы, руды, минеральные месторождения и другие геологические объекты, так как вне связи с ними минерало­гия не только теряет смысл геологической науки, но главное-лишается начального источника информации об условиях образования минералов в природе. Все это обяза­тельные объекты минералогии.

В то же время лед (минерал, по нашему определению) является объектом гляцио­логии и грунтоведения; оксалаты, фосфаты, ураты, слагающие камни в почках чело­века,-объекты изучения как в медицине, так и в особой ветви минералогии, называ­емой биоминералогией, т.е. это общие сейчас объекты разных наук.

Еще менее определенно положение тех природных химических соединений кристал­лической структуры, которые искусственно получены человеком или формируются в результате явлений самопроизвольного преобразования в естественных условиях раз­личных техногенных

продуктов, например в ходе самовозгорания терриконов, хими­ческих превращений захороненных отходов производства, взаимодействия фильтратов сточных вод с грунтами. Большинство исследователей не считают эти процессы гео­логическими и не относят эти вещества к минералам-это необязательные (спорные) объекты минералогии. "Спорность" здесь, однако, не указывает на ненужность их исследования. Загадка многих природных процессов минералообразования решается при изучении этих объектов, просто они уже находятся в области перекрытия инте­ресов минералогии с другими науками, где последние порой играют ведущую роль. В этом сайте они не рассматриваются.

Учитывая все условности границ, мы будем считать минералами только те при­родные химические соединения кристаллической структуры, которые образовались в ходе геологических процессов на Земле или сходных процессов на других космических телах, понимая в то же время условность и того, что надо относить к геологическим процессам. Здесь мы подробно охарактеризуем только минералы - составные части горных пород и руд.

Минералогия занимается изучением свойств и состава минералов, выявлением гео­логических условий и физико-химической обстановки образования минералов, иссле­дованием минералов как формы концентрации одних и рассеивания других химиче­ских элементов, вскрытием механизмов зарождения, роста и разрушения минералов, разработкой минералогических критериев поиска рудного и нерудного сырья. Мине­ралог должен знать минералы, уметь их искать и изучать. В таком широком объеме минералогия как одна из главнейших в цикле геолого-минералогических наук пред­стает в учебниках П. Ниггли (1924, 1927), А. Г. Бетехтина, А. К. Болдырева и др. (1936), Н.М. Федоровского (1930), в американской "Минералогической энциклопедии" (1985) и научных публикациях отечественных минералогов В.Ф.Барабанова, К.А.Власова, В.И.Герасимовского, А.И.Гинзбурга, М.Н.Годлевского, А. А.Кухаренко, Е.К.Лаза-ренко, В.Д.Никитина, Д.В.Рундквиста, С.С.Смирнова, В.С.Соболева, А.С.Уклон-ского, А. Е. Ферсмана, Н. П. Юшкина.

"Минералогия во всем пространстве сего слова", - таков девиз научной деятельно­сти исследователей, объединяемых Всероссийским минералогическим обществом при Российской Академии наук. Вместе с тем, так широко трактуемая минералогия пе­рекрывается во многом, и это естественно, с другими отраслями геологических зна­ний- учением о месторождениях полезных ископаемых, петрографией, литологией, геохимией. Каждая из этих наук, имея в общем сходные практические цели, решает их своими методами и использует свои объекты природы. Минералог же-это прежде всего знаток минералов, их тонких особенностей и методов их выявления.

Являясь наукой о природных химических соединениях кристаллической структуры, минералогия тесно связана с кристаллографией, физикой, химией. По сути, мине­ралы являются частными объектами этих трех наук. Из них минералогия черпает основные представления о внутреннем строении минералов, законах роста и огране-ния кристаллов, химических реакциях, возможных при минералообразовании. От них она заимствует методы исследования свойств и состава минералов.

Содержание статьи

МИНЕРАЛЫ И МИНЕРАЛОГИЯ. Минералы твердые природные образования, входящие в состав горных пород Земли, Луны и некоторых других планет, а также метеоритов и астероидов. Минералы, как правило, – довольно однородные кристаллические вещества с упорядоченной внутренней структурой и определенным составом, который может быть выражен соответствующей химической формулой. Минералы не являются смесью мельчайших минеральных частиц, как, например, наждак (состоящий в основном из корунда и магнетита) или лимонит (агрегат гетита и других гидроксидов железа), к ним относятся также соединения элементов с неупорядоченной структурой, подобные вулканическим стеклам (обсидиану и др.). Минералами считаются химические элементы или их соединения, образовавшиеся в результате естественных природных процессов. Из числа минералов исключаются такие важнейшие виды минерального сырья органического происхождения, как уголь и нефть.

Минералогия – наука о минералах, их классификации, химическом составе, особенностях и закономерностях строения (структуры), происхождении, условиях нахождения в природе и практическом применении. Для более глубокого объяснения внутреннего строения минералов и их связи с историей Земли минералогия привлекает математику, физику и химию. Она в большей мере, чем другие геологические науки, использует количественные данные, так как для адекватного описания минералов необходимы тонкий химический анализ и точные физические измерения.

ИСТОРИЯ МИНЕРАЛОГИИ

Кремневые отщепы с острыми краями применялись первобытным человеком в качестве орудий труда уже в палеолите. Кремень (тонкозернистая разновидность кварца) долгое время оставался главным полезным ископаемым. В древности человеку были известны и другие минералы. Некоторые из них, например вишневый гематит , желто-коричневый гетит и черные оксиды марганца, применялись в качестве красок для наскальной живописи и раскрашивания тела, а другие, например янтарь , нефрит, самородное золото , – для изготовления ритуальных предметов, украшений и амулетов. В Египте додинастического периода (5000–3000 до н.э.) знали уже много минералов. Самородная медь , золото и серебро использовались для украшений. Несколько позже из меди и ее сплава – бронзы стали изготавливать орудия труда и оружие. Многие минералы употреблялись в качестве красителей, другие – для украшений и печаток (бирюза , жад , хрусталь, халцедон , малахит , гранат , лазурит и гематит). В настоящее время минералы служат источником получения металлов, строительных материалов (цемент, штукатурка, стекло и проч.), сырья для химической промышленности и др.

В первом известном трактате по минералогии О камнях ученика Аристотеля грека Теофраста (ок. 372–287 до н.э.) минералы делились на металлы, земли и камни. Примерно через 400 лет Плиний Старший (23–79 н.э.) в пяти последних книгах Естественной истории обобщил все имевшиеся на тот момент сведения по минералогии.

В раннем Средневековье в странах арабского Востока, воспринявших знания античной Греции и древней Индии, происходил расцвет науки. Среднеазиатский ученый-энциклопедист Бируни (973 – ок. 1050) составил описания драгоценных камней (Минералогия ) и изобрел метод точного измерения их удельных весов. Другой выдающийся ученый Ибн Сина (Авиценна) (ок. 980–1037) в трактате О камнях дал классификацию всех известных минералов, разделив их на четыре класса: камни и земли, горючие ископаемые, соли, металлы.

В Средние века в Европе происходило накопление практических сведений о минералах. Горняк и старатель по необходимости становились минералогами-практиками и передавали свой опыт и знания ученикам и подмастерьям. Первым сводом фактических сведений по практической минералогии, горному делу и металлургии стал труд Г.Агриколы О металлах (De re metallica ), опубликованный в 1556. Благодаря этому трактату и более раннему труду О природе ископаемых (De natura fossilium , 1546), в котором содержится классификация минералов на основе их физических свойств, Агрикола прослыл отцом минералогии.

На протяжении 300 лет после выхода работ Агриколы исследования в области минералогии были посвящены изучению природных кристаллов. В 1669 датский натуралист Н.Стенон, обобщив свои наблюдения над сотнями кристаллов кварца, установил закон постоянства углов между гранями кристаллов. Столетием позже (1772) Роме де Лиль подтвердил выводы Стенона. В 1784 аббат Р.Гаюи заложил основы современных представлений о кристаллической структуре. В 1809 У.Волластон изобрел отражательный гониометр, что позволило проводить более точные измерения углов между гранями кристаллов, а в 1812 выдвинул концепцию пространственной решетки как закона внутреннего строения кристаллов. В 1815 П.Кордье предложил изучать оптические свойства обломков раздробленных минералов под микроскопом. Дальнейшее развитие микроскопических исследований связано с изобретением в 1828 У.Николем устройства для получения поляризованного света (призмы Николя). Поляризационный микроскоп был усовершенствован в 1849 Г.Сорби, который применил его к изучению прозрачных шлифов горных пород.

Появилась необходимость классификации минералов. В 1735 К.Линней опубликовал труд Система природы (Systema naturae ), в котором минералы классифицировались по внешним признакам, т.е. так же, как растения и животные. Затем шведскими учеными – А.Кронстедтом в 1757 и Й.Берцелиусом в 1815 и 1824 – было предложено несколько вариантов химических классификаций минералов. Вторая классификация Берцелиуса, модифицированная К.Раммельсбергом в 1841–1847, прочно утвердилась после того, как американский минералог Дж.Дана положил ее в основу третьего издания Системы минералогии (Dana"s System of Mineralogy , 1850). Большой вклад в развитие минералогии в 18 – первой половине 19 в. внесли немецкие ученые А.Г.Вернер и И.А.Брайтхаупт и русские – М.В.Ломоносов и В.М.Севергин.

Во второй половине 19 в. усовершенствованные поляризационные микроскопы, оптические гониометры и аналитические методы позволили получить более точные данные по отдельным минеральным видам. Когда с помощью рентгеновского анализа стали изучать кристаллы, пришло более глубокое понимание строения минералов. В 1912 немецкий физик М.Лауэ экспериментально установил, что информация о внутренней структуре кристаллов может быть получена путем пропускания сквозь них рентгеновских лучей. Этот метод произвел переворот в минералогии: преимущественно описательная наука стала более точной и минералоги смогли увязать физические и химические свойства минералов с их кристаллическими структурами.

В конце 19 – начале 20 в. развитию минералогии во многом способствовали работы выдающихся российских ученых Н.И.Кокшарова, В.И.Вернадского , Е.С.Федорова, А.Е.Ферсмана, А.К.Болдырева и др. Во второй половине 20 в. минералогия взяла на вооружение новые исследовательские методы физики твердого тела, в частности, инфракрасную спектроскопию, целую серию резонансных методов (электронный парамагнитный резонанс, ядерный гамма-резонанс и др.), люминесцентную спектроскопию и т.д., а также новейшие аналитические методы, включая электронный микрозондовый анализ, электронную микроскопию в сочетании с электронографией и проч. Применение этих методов дает возможность определять химический состав минералов «в точке», т.е. по отдельным зернам минералов, изучать тонкие особенности их кристаллической структуры, содержание и распределение элементов-примесей, природу окраски и люминесценции. Внедрение точных физических методов исследования произвело в минералогии подлинную революцию. С этим этапом развития минералогии связаны имена таких российских ученых, как Н.В.Белов, Д.С.Коржинский, Д.П.Григорьев, И.И.Шафрановский и др.

ГЛАВНЫЕ СВОЙСТВА МИНЕРАЛОВ

Долгое время основными характеристиками минералов служили внешняя форма их кристаллов и других выделений, а также физические свойства (цвет, блеск, спайность, твердость, плотность и проч.), имеющие и в настоящее время большое значение при их описании и визуальной (в частности, полевой) диагностике. Эти характеристики, а также оптические, химические, электрические, магнитные и иные свойства зависят от химического состава и внутреннего строения (кристаллической структуры) минералов. Первостепенная роль химии в минералогии была осознана к середине 19 в., но важное значение структуры стало очевидным лишь с внедрением рентгенографии. Первые расшифровки кристаллических структур были выполнены уже в 1913 английскими физиками У.Г.Брэггом и У.Л.Брэггом .

Минералы – это химические соединения (исключение составляют самородные элементы). Однако даже бесцветные, оптически прозрачные образцы этих минералов почти всегда содержат небольшие количества примесей. Природные растворы или расплавы, из которых кристаллизуются минералы, обычно состоят из многих элементов. В процессе образования соединений немногочисленные атомы менее распространенных элементов могут замещать атомы главных элементов. Такое замещение настолько обычно, что химический состав многих минералов лишь очень редко приближается к составу чистого соединения. Например, состав распространенного породообразующего минерала оливина меняется в пределах составов двух т.н. конечных членов ряда: от форстерита, силиката магния Mg 2 SiO 4 , до фаялита, силиката железа Fe 2 SiO 4 . Отношения Mg:Si:O в первом минерале и Fe:Si:O – во втором составляют 2:1:4. В оливинах промежуточного состава значения отношений те же, т.е. (Mg + Fe):Si:O равно 2:1:4, а формула записывается в виде (Mg,Fe) 2 SiO 4 . Если относительные количества магния и железа известны, то это можно отразить в формуле (Mg 0,80 Fe 0,20) 2 SiO 4 , из которой видно, что 80% атомов металла представлены магнием, а 20% – железом.

Структура.

Все минералы, за исключением воды (которую – в отличие от льда – обычно не относят к минералам) и , при обычных температурах представлены твердыми телами. Однако, если воду и ртуть сильно охладить, они затвердевают: вода – при 0° С, а ртуть – при -39° С. При этих температурах молекулы воды и атомы ртути образуют характерную правильную трехмерную кристаллическую структуру (термины «кристаллический» и «твердый» в данном случае почти равноценны). Таким образом, минералы представляют собой кристаллические вещества, свойства которых определяются геометрическим расположением составляющих их атомов и типом химической связи между ними.

Элементарная ячейка (наименьшее подразделение кристалла) построена из регулярно расположенных атомов, удерживаемых вместе благодаря электронным связям. Эти мельчайшие ячейки, бесконечно повторяющиеся в трехмерном пространстве, образуют кристалл. Размеры элементарных ячеек в разных минералах различны и зависят от размеров, числа и взаимного расположения атомов в пределах ячейки. Параметры ячейки выражаются в ангстремах (Å) или нанометрах (1 Å = 10 –8 см = 0,1 нм). Составленные вместе элементарные ячейки кристалла плотно, без зазоров заполняют объем и образуют кристаллическую решетку. Кристаллы подразделяются по признаку симметрии элементарной ячейки, которая характеризуется соотношением между ее ребрами и углами. Обычно выделяют 7 сингоний (в порядке повышения симметрии): триклинную, моноклинную, ромбическую, тетрагональную, тригональную, гексагональную и кубическую (изометрическую). Иногда тригональную и гексагональную сингонии не разделяют и описывают вместе под названием гексагональной сингонии. Сингонии подразделяются на 32 кристаллических класса (вида симметрии), включающих 230 пространственных групп. Эти группы впервые были выделены в 1890 российским ученым Е.С.Федоровым. При помощи рентгеноструктурного анализа определяют размеры элементарной ячейки минерала, его сингонию, класс симметрии и пространственную группу, а также расшифровывают кристаллическую структуру, т.е. взаимное расположение в трехмерном пространстве атомов, составляющих элементарную ячейку.

ГЕОМЕТРИЧЕСКАЯ (МОРФОЛОГИЧЕСКАЯ) КРИСТАЛЛОГРАФИЯ

Кристаллы с их плоскими, гладкими, блестящими гранями издавна привлекали внимание человека. Со времени появления минералогии как науки кристаллография стала основой изучения морфологии и структуры минералов. Было установлено, что грани кристаллов имеют симметричное расположение, позволяющее отнести кристалл к определенной сингонии, а подчас – и к одному из классов (симметрии) (см. выше ). Рентгенографические исследования показали, что внешняя симметрия кристаллов соответствует внутреннему закономерному расположению атомов.

Размеры кристаллов минералов варьируют в очень широких пределах – от гигантов весом в 5 т (масса хорошо образованного кристалла кварца из Бразилии) до столь мелких, что их грани можно различить только под электронным микроскопом. Форма кристалла даже одного и того же минерала в разных образцах может несколько отличаться; например, кристаллы кварца бывают почти изометричными, игольчатыми или уплощенными. Однако все кристаллы кварца, крупные и мелкие, остроконечные и плоские, образуются при повторении идентичных элементарных ячеек. Если эти ячейки ориентированы в каком-то определенном направлении, кристалл имеет удлиненную форму, если в двух направлениях в ущерб третьему – то форма кристалла таблитчатая. Поскольку углы между соответствующими гранями одного и того же кристалла имеют постоянное значение и специфичны для каждого минерального вида, этот признак обязательно включается в характеристику минерала.

Минералы, представленные отдельными хорошо ограненными кристаллами, редки. Гораздо чаще они встречаются в виде неправильных зерен или кристаллических агрегатов. Нередко минерал характеризуется определенным типом агрегата, который может служить диагностическим признаком. Выделяют несколько типов агрегатов.

Дендритовидные ветвящиеся агрегаты похожи на листья папоротника или мох и характерны, например, для пиролюзита.

Волокнистые агрегаты, состоящие из плотно уложенных параллельных волокон, типичны для хризотила и амфибол-асбеста.

Колломорфные агрегаты, имеющие гладкую округлую поверхность, построены из волокон, которые радиально отходят от общего центра. Крупные округлые массы имеют сосцевидную форму (малахит), а более мелкие – почковидную (гематит) или гроздевидную (псиломелан).

Чешуйчатые агрегаты, состоящие из мелких пластинчатых кристаллов, характерны для слюды и барита.

Сталактиты – натечно-капельные образования, свисающие в форме сосулек, трубок, конусов или «занавесок» в карстовых пещерах. Они возникают в результате испарения минерализованных вод, просачивающихся по трещинам известняка, и часто сложены кальцитом (карбонатом кальция) или арагонитом.

Оолиты – агрегаты, состоящие из маленьких шариков и напоминающие рыбью икру, встречаются в некоторых кальцитовых (оолитовый известняк), гетитовых (оолитовая железная руда) и других подобных образованиях.

КРИСТАЛЛОХИМИЯ

После накопления рентгенографических данных и их сопоставления с результатами химических анализов стало очевидно, что особенности кристаллической структуры минерала зависят от его химического состава. Таким образом были заложены основы новой науки – кристаллохимии. Многие на первый взгляд не связанные между собой свойства минералов могут быть объяснены на основе учета их кристаллической структуры и химического состава.

Некоторые химические элементы (золото, серебро, медь) встречаются в самородном, т.е. чистом, виде. Они построены из электронейтральных атомов (в отличие от большинства минералов, атомы которых несут электрический заряд и называются ионами). Атом с недостатком электронов заряжен положительно и называется катионом; атом с избытком электронов имеет отрицательный заряд и называется анионом. Притяжение между противоположно заряженными ионами называется ионной связью и служит главной связующей силой в минералах.

При другом типе связи внешние электроны вращаются вокруг ядер по общим орбитам, соединяя атомы между собой. Ковалентная связь – самый прочный тип связи. Минералы с ковалентной связью обычно имеют высокие твердость и температуру плавления (например, алмаз).

Значительно меньшую роль в минералах играет слабая ван-дер-ваальсова связь, возникающая между электронейтральными структурными единицами. Энергия связи таких структурных единиц (слоев или групп атомов) распределена неравномерно. Ван-дер-ваальсова связь обеспечивает притяжение между противоположно заряженными участками в более крупных структурных единицах. Такой тип связи наблюдается между слоями графита (одной из природных форм углерода), образованными благодаря сильной ковалентной связи атомов углерода. Из-за слабых связей между слоями графит имеет низкую твердость и весьма совершенную спайность, параллельную слоям. Поэтому графит используют как смазочный материал.

Противоположно заряженные ионы сближаются между собой до расстояния, на котором сила отталкивания уравновешивает силу притяжения. Для любой конкретной пары «катион – анион» это критическое расстояние равно сумме «радиусов» двух ионов. Путем определения критических расстояний между различными ионами удалось установить размеры радиусов большинства ионов (в нанометрах, нм).

Поскольку для большинства минералов характерны ионные связи, их структуры можно наглядно представить в виде соприкасающихся шаров. Структуры ионных кристаллов зависят в основном от величины и знака заряда и относительных размеров ионов. Так как кристалл в целом электронейтрален, сумма положительных зарядов ионов должна быть равна сумме отрицательных. В хлориде натрия (NaCl, минерал галит) каждый ион натрия имеет заряд +1, а каждый ион хлора -1 (рис. 1), т.е. каждому иону натрия соответствует один ион хлора. Однако во флюорите (фториде кальция, CaF 2) каждый ион кальция имеет заряд +2, а ион фтора –1. Поэтому для сохранения общей электронейтральность ионов фтора должно быть вдвое больше, чем ионов кальция (рис. 2).

От величины ионов зависит также возможность их вхождения в данную кристаллическую структуру. Если ионы имеют одинаковый размер и упакованы таким образом, что каждый ион соприкасается с 12 другими, то они находятся в соответствующей координации. Существуют два способа упаковки шаров одинакового размера (рис. 3): кубическая плотнейшая упаковка, в общем случае приводящая к образованию изометрических кристаллов, и гексагональная плотнейшая упаковка, образующая гексагональные кристаллы.

Как правило, катионы меньше по размеру, чем анионы, и их размеры выражаются в долях радиуса аниона, принятого за единицу. Обычно используют отношение, получаемое путем деления радиуса катиона на радиус аниона. Если катион лишь немного меньше анионов, с которыми сочетается, он может соприкасаться с восемью окружающими его анионами, или, как принято говорить, находится в восьмерной координации по отношению к анионам, которые располагаются как бы в вершинах куба вокруг него. Эта координация (называемая также кубической) устойчива при отношениях ионных радиусов от 1 до 0,732 (рис. 4,а ). При меньшем отношении ионных радиусов восемь анионов не могут быть уложены так, чтобы касаться катиона. В таких случаях геометрия упаковки допускает шестерную координацию катионов с расположением анионов в шести вершинах октаэдра (рис. 4,б ), которая будет устойчивой при отношениях их радиусов от 0,732 до 0,416. С дальнейшим уменьшением относительного размера катиона осуществляется переход к четверной, или тетраэдрической, координации, устойчивой при значениях отношений радиусов от 0,414 до 0,225 (рис. 4,в ), затем к тройной – в пределах отношений радиусов от 0,225 до 0,155 (рис. 4,г ) и двойной – при отношениях радиусов менее 0,155 (рис. 4,д ). Хотя другие факторы также определяют тип координационного полиэдра, для большинства минералов принцип отношения радиусов ионов – одно из эффективных средств прогнозирования кристаллической структуры.

Минералы совершенно разного химического состава могут иметь аналогичные структуры, которые можно описать с помощью одних и тех же координационных полиэдров. Например, в хлориде натрия NaCl отношение радиуса иона натрия к радиусу иона хлора составляет 0,535, указывая на октаэдрическую, или шестерную, координацию. Если шесть анионов группируются вокруг каждого катиона, то, чтобы сохранить соотношение катионов и анионов, равное 1:1, вокруг каждого аниона должно быть шесть катионов. Так образуется кубическая структура, известная как структура типа хлорида натрия. Хотя ионные радиусы свинца и серы резко отличаются от ионных радиусов натрия и хлора, их отношение также предопределяет шестерную координацию, поэтому галенит PbS имеет структуру типа хлорида натрия, т.е. галит и галенит изоструктурны.

Примеси в минералах обычно присутствуют в виде ионов, замещающих ионы минерала-«хозяина». Подобные замещения в большой мере влияют на размеры ионов. Если радиусы двух ионов равны или отличаются менее чем на 15%, они легко взаимно замещаются. Если это различие составляет 15–30%, такое замещение ограничено; при различии свыше 30% замещение практически невозможно.

Существует много примеров пар изоструктурных минералов со сходным химическим составом, между которыми происходит замещение ионов. Так, карбонаты сидерит (FeCO 3) и родохрозит (MnCO 3) имеют аналогичные структуры, а железо и марганец могут замещать друг друга в любых соотношениях, образуя т.н. твердые растворы. Между этими двумя минералами существует непрерывный ряд твердых растворов. В других парах минералов ионы возможности взаимного замещения ограничены.

Поскольку минералы электронейтральны, заряд ионов также влияет на их взаимное замещение. Если происходит замещение противоположно заряженным ионом, то в каком-либо участке этой структуры должно иметь место второе замещение, при котором заряд замещающего иона компенсирует нарушение электронейтральности, вызванное первым. Такое сопряженное замещение отмечается в полевых шпатах – плагиоклазах, когда кальций (Ca 2+) замещает натрий (Na +) с образованием непрерывного ряда твердых растворов. Избыточный положительный заряд, возникающий в результате замещения ионом Ca 2+ иона Na + , компенсируется путем одновременного замещения кремния (Si 4+) на алюминий (Al 3+) в соседних участках структуры.

ФИЗИЧЕСКИЕ СВОЙСТВА МИНЕРАЛОВ

Хотя главные характеристики минералов (химический состав и внутренняя кристаллическая структура) устанавливаются на основе химических анализов и рентгеноструктурного метода, косвенно они отражаются в свойствах, которые легко наблюдаются или измеряются. Для диагностики большинства минералов достаточно определить их блеск, цвет, спайность, твердость, плотность.

Блеск

– качественная характеристика отраженного минералом света. Некоторые непрозрачные минералы сильно отражают свет и имеют металлический блеск. Это характерно для рудных минералов, например, галенита (минерал свинца), халькопирита и борнита (минералы меди), аргентита и акантита (минералы серебра). Большинство минералов поглощают или пропускают значительную часть падающего на них света и обладают неметаллическим блеском. Некоторые минералы имеют блеск, переходный от металлического к неметаллическому, который называется полуметаллическим.

Минералы с неметаллическим блеском обычно светлоокрашенные, некоторые из них прозрачны. Часто бывают прозрачными кварц, гипс и светлая слюда. Другие минералы (например, молочно-белый кварц), пропускающие свет, но сквозь которые нельзя четко различить предметы, называют просвечивающими. Минералы, содержащие металлы, отличаются от прочих по светопропусканию. Если свет проходит сквозь минерал, хотя бы в самых тонких краях зерен, то он, как правило, нерудный; если же свет не проходит, то он – рудный. Бывают, впрочем, и исключения: например, светлоокрашенный сфалерит (минерал цинка) или киноварь (минерал ртути) нередко прозрачны или просвечивают.

Минералы различаются по качественным характеристикам неметаллического блеска. Глина имеет тусклый землистый блеск. Кварц на гранях кристаллов или на поверхностях излома – стеклянный, тальк, разделяющийся на тонкие листочки по плоскостям спайности, – перламутровый. Яркий, сверкающий, как у алмаза, блеск называется алмазным.

Когда свет падает на минерал с неметаллическим блеском, то он частично отражается от поверхности минерала, а частично преломляется на этой границе. Каждое вещество характеризуется определенным показателем преломления. Поскольку этот показатель может быть измерен с высокой точностью, он является весьма полезным диагностическим признаком минералов.

Характер блеска зависит от показателя преломления, а оба они – от химического состава и кристаллической структуры минерала. В общем случае прозрачные минералы, содержащие атомы тяжелых металлов, отличаются сильным блеском и высоким показателем преломления. К этой группе относятся такие распространенные минералы, как англезит (сульфат свинца), касситерит (оксид олова) и титанит, или сфен (силикат кальция и титана). Минералы, состоящие из относительно легких элементов, также могут иметь сильный блеск и высокий показатель преломления, если их атомы плотно упакованы и удерживаются сильными химическими связями. Ярким примером является алмаз, состоящий только из одного легкого элемента углерода . В меньшей степени это справедливо и для минерала корунда (Al 2 O 3), прозрачные цветные разновидности которого – рубин и сапфиры – являются драгоценными камнями. Хотя корунд состоит из легких атомов алюминия и кислорода, они так крепко связаны между собой, что минерал имеет довольно сильный блеск и относительно высокий показатель преломления.

Некоторые блески (жирный, восковой, матовый, шелковистый и др.) зависят от состояния поверхности минерала или от строения минерального агрегата; смоляной блеск характерен для многих аморфных веществ (в том числе минералов, содержащих радиоактивные элементы уран или торий).

Цвет

– простой и удобный диагностический признак. В качестве примеров можно привести латунно-желтый пирит (FeS 2), свинцово-серый галенит (PbS) и серебристо-белый арсенопирит (FeAsS 2). У других рудных минералов с металлическим или полуметаллическим блеском характерный цвет может быть замаскирован игрой света в тонкой поверхностной пленке (побежалостью). Это свойственно большинству минералов меди, особенно борниту , который называют «павлиньей рудой» из-за его радужной сине-зеленой побежалости, быстро возникающей на свежем изломе. Однако другие медные минералы окрашены в хорошо всем знакомые цвета: малахит – в зеленый, азурит – в синий.

Некоторые неметаллические минералы безошибочно узнаются по цвету, обусловленному главным химическим элементом (желтому – серы и черному – темно-серому – графита и др.). Многие неметаллические минералы состоят из элементов, которые не обеспечивают им специфической окраски, но у них известны окрашенные разновидности, цвет которых обусловлен присутствием примесей химических элементов в малых количествах, не сопоставимых с интенсивностью вызываемой ими окраски. Такие элементы называют хромофорами; их ионы отличаются избирательным поглощением света. Например, густо-фиолетовый аметист обязан своей окраской ничтожной примеси железа в кварце, а густой зеленый цвет изумруда связан с небольшим содержанием хрома в берилле. Окраска обычно бесцветных минералов может появляться вследствие дефектов кристаллической структуры (обусловленных незаполненными позициями атомов в решетке или вхождением посторонних ионов), которые могут вызвать селективное поглощение некоторых длин волн в спектре белого света. Тогда минералы окрашиваются в дополнительные цвета. Рубины , сапфиры и александриты обязаны своей окраской именно таким световым эффектам.

Бесцветные минералы могут быть окрашены механическими включениями. Так, тонкая рассеянная вкрапленность гематита придает кварцу красный цвет, хлорита – зеленый. Молочный кварц замутнен газово-жидкими включениями. Хотя цвет минералов – одно из самых легко определяемых свойств при диагностике минералов, его надо использовать с осторожностью, так как он зависит от многих факторов.

Несмотря на изменчивость окраски многих минералов, цвет порошка минерала весьма постоянен, а потому является важным диагностическим признаком. Обычно цвет порошка минерала устанавливают по черте (т.н. «цвету черты»), которую оставляет минерал, если им провести по неглазурованной фарфоровой пластинке (бисквиту). Например, минерал флюорит бывает окрашен в разные цвета, но черта у него всегда белая.

Спайность.

Характерным свойством минералов является их поведение при раскалывании. Например, кварц и турмалин , поверхность излома которых напоминает скол стекла, имеют раковистый излом. У других минералов излом может быть описан как шероховатый, неровный или занозистый. Для многих минералов характеристикой служит не излом, а спайность. Это означает, что они раскалываются по гладким плоскостям, непосредственно связанным с их кристаллической структурой. Силы связи между плоскостями кристаллической решетки могут быть различными в зависимости от кристаллографического направления. Если в каких-то направлениях они гораздо больше, чем в других, то минерал будет раскалываться поперек самой слабой связи. Так как спайность всегда параллельна атомным плоскостям, она может быть обозначена с указанием кристаллографических направлений. Например, галит (NaCl) имеет спайность по кубу, т.е. три взаимоперпендикулярных направления возможного раскола. Спайность характеризуется также легкостью проявления и качеством возникающей спайной поверхности. Слюда обладает весьма совершенной спайностью в одном направлении, т.е. легко расщепляется на очень тонкие листочки с гладкой блестящей поверхностью. У топаза спайность совершенная в одном направлении. Минералы могут иметь два, три, четыре или шесть направлений спайности, по которым они одинаково легко раскалываются, либо несколько направлений спайности разной степени. У некоторых минералов спайность вообще отсутствует. Поскольку спайность как проявление внутренней структуры минералов является их неизменным свойством, она служит важным диагностическим признаком.

Твердость

– сопротивление, которое минерал оказывает при царапании. Твердость зависит от кристаллической структуры: чем прочнее связаны между собой атомы в структуре минерала, тем труднее его поцарапать. Тальк и графит – мягкие пластинчатые минералы, построенные из слоев атомов, связанных между собой очень слабыми силами. Они жирные на ощупь: при трении о кожу руки происходит соскальзывание отдельных тончайших слоев. Самый твердый минерал – алмаз, в котором атомы углерода так прочно связаны, что его можно поцарапать только другим алмазом. В начале 19 в. австрийский минералог Ф.Моос расположил 10 минералов в порядке возрастания их твердости. С тех пор они используются как эталоны относительной твердости минералов, т.н. шкала Мооса (табл. 1).

Чтобы определить твердость минерала, необходимо выявить самый твердый минерал, который он может поцарапать. Твердость исследуемого минерала будет больше твердости поцарапанного им минерала, но меньше твердости следующего по шкале Мооса минерала. Силы связи могут меняться в зависимости от кристаллографического направления, а поскольку твердость является грубой оценкой этих сил, она может различаться в разных направлениях. Эта разница обычно невелика, исключение составляет кианит, у которого твердость 5 в направлении, параллельном длине кристалла, и 7 – в поперечном направлении.

В минералогической практике используется также измерение абсолютных значений твердости (т.н. микротвердости) при помощи прибора склерометра, которая выражается в кг/мм 2 .

Плотность.

Масса атомов химических элементов меняется от водорода (самый легкий) до урана (самый тяжелый). При прочих равных условиях масса вещества, состоящего из тяжелых атомов, больше, чем у вещества, состоящего из легких атомов. Например, два карбоната – арагонит и церуссит – имеют сходную внутреннюю структуру, но в состав арагонита входят легкие атомы кальция, а в состав церуссита – тяжелые атомы свинца. В результате масса церуссита превышает массу арагонита того же объема. Масса единицы объема минерала зависит также от плотности упаковки атомов. Кальцит, как и арагонит, представляет собой карбонат кальция, но в кальците атомы упакованы менее плотно, потому он имеет меньшую массу единицы объема, чем арагонит. Относительная масса, или плотность, зависит от химического состава и внутренней структуры. Плотность – это отношение массы вещества к массе того же объема воды при 4° С. Так, если масса минерала составляет 4 г, а масса того же объема воды – 1 г, то плотность минерала равна 4. В минералогии принято выражать плотность в г/см 3 .

Плотность – важный диагностический признак минералов, и ее нетрудно измерить. Сначала образец взвешивается в воздушной среде, а затем – в воде. Поскольку на образец, погруженный в воду, действует выталкивающая сила, направленная вверх, его вес там меньше, чем в воздухе. Потеря веса равна весу вытесненной воды. Таким образом, плотность определяется отношением массы образца на воздухе к потере его веса в воде.

КЛАССИФИКАЦИЯ МИНЕРАЛОВ

Хотя химический состав служил основой классификации минералов с середины 19 в., минералоги не всегда придерживались единого мнения о том, каким должен быть порядок расположения в ней минералов. Согласно одному из методов построения классификации, минералы группировали по одинаковому главному металлу или катиону. При этом минералы железа попадали в одну группу, минералы свинца – в другую, минералы цинка – в третью и т.д. Однако по мере развития науки выяснилось, что минералы, содержащие один и тот же неметалл (анион или анионную группу), имеют сходные свойства и похожи между собой гораздо больше, чем минералы с общим металлом. К тому же минералы с общим анионом встречаются в одинаковой геологической обстановке и имеют близкое происхождение. В результате в современной систематике (см. табл. 2) минералы объединяются в классы по признаку общего аниона или анионной группы. Единственное исключение составляют самородные элементы, которые встречаются в природе сами по себе, не образуя соединений с другими элементами.

Таблица 2. Классификация минералов
Таблица 2. КЛАССИФИКАЦИЯ МИНЕРАЛОВ
Класс Минерал (пример) Химическая формула
Самородные элементы Золото Au
Карбиды 1 Муассанит SiC
Сульфиды 2 и сульфосоли Киноварь
Энаргит
HgS
Cu 3 AsS 4
Оксиды Гематит Fe 2 O 3
Гидроксиды Брусит Mg(OH) 2
Галогениды Флюорит CaF 2
Карбонаты Кальцит CaCO 3
Нитраты Калиевая селитра KNO 3
Бораты Бура Na 2 B 4 O 5 (OH)4Ч8H 2 O
Фосфаты 3 Апатит Ca 5 (PO 4) 3 F
Сульфаты Гипс CaSO 4Ч 2H 2 O
Хроматы Крокоит PbCrO 4
Вольфраматы 4 Шеелит CaWO 4
Силикаты Альбит NaAlSi 3 O 8
Включая нитриды и фосфиды
2 Включая арсениды, селениды и теллуриды.
3 Включая арсенаты и ванадаты.
4 Включая молибдаты.

Химические классы подразделяются на подклассы (по химизму и структурному мотиву), которые, в свою очередь, разбиваются на семейства и группы (по структурному типу). Отдельные минеральные виды, входящие в состав группы, могут образовывать ряды, а один минеральный вид может иметь несколько разновидностей.

К настоящему времени ок. 4000 минералов признаны самостоятельными минеральными видами. К этому списку по мере открытия добавляются новые минералы и исключаются давно известные, но дискредитированные по мере совершенствования методов минералогических исследований.

ПРОИСХОЖДЕНИЕ И УСЛОВИЯ НАХОЖДЕНИЯ МИНЕРАЛОВ

Минералогия не ограничивается определением свойств минералов, она исследует также происхождение, условия нахождения и природные ассоциации минералов. Со времени возникновения Земли примерно 4,6 млрд. лет назад многие минералы разрушились в результате механического дробления, химических преобразований или плавления. Но элементы, слагавшие эти минералы, сохранились, перегруппировались и образовали новые минералы. Таким образом, существующие ныне минералы являются продуктами процессов, развивавшихся на протяжении геологической истории Земли.

Бóльшая часть земной коры сложена изверженными породами, которые местами перекрыты относительно маломощным покровом осадочных и метаморфических пород. Поэтому состав земной коры в принципе соответствует усредненному составу изверженной породы. Восемь элементов (см. табл. 3 ) составляют 99% массы земной коры и соответственно 99% массы слагающих ее минералов.

Элемент Массовые проценты Объемные проценты Кислород 46,40 94,04 Кремний 28,15 0,88 Алюминий 8,23 0,48 Железо 5,63 0,49 Кальций 4,15 1,18 Натрий 2,36 1,11 Магний 2,33 0,33 Калий 2,09 1,49

По элементному составу земная кора представляет собой каркасную постройку, состоящую из ионов кислорода, связанных с более мелкими ионами кремния и алюминия. Таким образом, главными минералами являются силикаты, на долю которых приходится ок. 35% всех известных минералов и ок. 40% – наиболее распространенных. Важнейшие из них – полевые шпаты (семейство алюмосиликатов, содержащих калий, натрий и кальций, реже – барий). Другие распространенные породообразующие силикаты представлены кварцем (впрочем, он чаще относится к оксидам), слюдами, амфиболами, пироксенами и оливином.

Изверженные породы.

Изверженные, или магматические, породы образуются при охлаждении и кристаллизации расплавленной магмы. Процентное содержание различных минералов и, следовательно, тип образовавшейся породы зависят от соотношения элементов, содержавшихся в магме во время ее затвердевания. Каждый тип изверженной горной породы обычно состоит из ограниченного набора минералов, называющихся главными породообразующими. В дополнение к ним могут присутствовать в меньших количествах второстепенные и акцессорные минералы. Например, главными минералами в граните могут быть калиевый полевой шпат (30%), натрий-кальциевый полевой шпат (30%), кварц (30%), слюды и роговая обманка (10%). В качестве акцессорных минералов могут присутствовать циркон, сфен, апатит, магнетит и ильменит.

Изверженные породы обычно классифицируют в зависимости от вида и количества каждого из содержащихся в них полевых шпатов. Однако в некоторых породах полевой шпат отсутствует. Далее изверженные породы классифицируют по их структуре, которая отражает условия затвердевания породы. Медленно кристаллизующаяся глубоко в недрах Земли магма порождает интрузивные плутонические породы с крупно- или среднезернистой структурой. Если магма извергается на поверхность в виде лавы, она быстро остывает и возникают тонкозернистые вулканические (эффузивные, или излившиеся) породы. Иногда некоторые вулканические породы (например, обсидиан) остывают столь быстро, что не успевает произойти их кристаллизация; подобные породы имеют стекловидный облик (вулканические стекла).

Осадочные породы.

Когда коренные породы выветриваются или размываются, обломочный или растворенный материал оказывается включенным в состав осадочных пород. В результате химического выветривания минералов, происходящего на границе литосферы и атмосферы, формируются новые минералы, например, глинистые – из полевого шпата. Некоторые элементы высвобождаются при растворении минералов (например, кальцита) в поверхностных водах. Однако другие минералы, например кварц, даже механически раздробленные, сохраняют устойчивость к химическому выветриванию.

Высвободившиеся при выветривании механически и химически устойчивые минералы с достаточно высокой плотностью образуют на земной поверхности россыпные месторождения. Из россыпей, чаще всего аллювиальных (речных), добывают золото, платину, алмазы, иные драгоценные камни, оловянный камень (касситерит), минералы других металлов. В определенных климатических условиях формируются мощные коры выветривания, нередко обогащенные рудными минералами. С корами выветривания бывают сопряжены промышленные месторождения бокситов (руд алюминия), скопления гематита (железных руд), водных силикатов никеля, минералов ниобия и других редких металлов.

Основная масса продуктов выветривания выносится по системе водотоков в озера и моря, на дне которых образует слоистую осадочную толщу. Глинистые сланцы сложены в основном глинистыми минералами, а песчаник состоит преимущественно из сцементированных зерен кварца. Растворенный материал может извлекаться из воды живыми организмами или выпадать в осадок в результате химических реакций и испарения. Карбонат кальция поглощается из морской воды моллюсками, которые строят из него свои твердые раковины. Бóльшая часть известняков образуется в результате аккумуляции раковин и скелетов морских организмов, хотя частично карбонат кальция осаждается химическим путем.

Эвапоритовые залежи формируются в результате испарения морской воды. Эвапориты – обширная группа минералов, в число которых входят галит (поваренная соль), гипс и ангидрит (сульфаты кальция), сильвин (хлорид калия); все они имеют важное практическое применение. Эти минералы осаждаются также при испарении с поверхности соляных озер, но в этом случае повышение концентрации редких элементов может привести к дополнительному осаждению некоторых других минералов. Именно в такой обстановке образуются бораты.

Метаморфические породы.

Региональный метаморфизм.

Изверженные и осадочные породы, захороненные на большой глубине, под действием температуры и давления испытывают преобразования, называющиеся метаморфическими, в ходе которых меняются первоначальные свойства горных пород, а исходные минералы перекристаллизовываются или полностью трансформируются. В результате минералы обычно располагаются вдоль параллельных плоскостей, придавая породам сланцеватый облик. Тонкосланцеватые метаморфические породы называются сланцами. Они часто бывают обогащены пластинчатыми силикатными минералами (слюдой, хлоритом или тальком). Более грубосланцеватые метаморфические породы – гнейсы; в них чередуются полосы кварца, полевого шпата и темноцветных минералов. Когда сланцы и гнейсы содержат какой-либо типично метаморфический минерал, это отражается в названии породы, например, силлиманитовый или ставролитовый сланец, кианитовый или гранатовый гнейс.

Контактовый метаморфизм.

При подъеме магмы в верхние слои земной коры в породах, в которые она внедрилась, обычно происходят изменения, т.н. контактовый метаморфизм. Эти изменения проявляются в перекристаллизации первоначальных или образовании новых минералов. Степень метаморфизма зависит как от типа магмы, так и от типа породы, которую она пронизывает. Глинистые и близкие им по химическому составу породы преобразуются в контактовые роговики (биотитовые, кордиеритовые, гранатовые и др.). Наиболее интенсивные изменения происходят, когда гранитная магма внедряется в известняки: термическое воздействие является причиной их перекристаллизации и образования мрамора; в результате химического взаимодействия с известняками отделяющихся от магмы растворов образуется большая группа минералов (силикаты кальция и магния: волластонит, гроссуляровый и андрадитовый гранаты, везувиан, или идокраз, эпидот, тремолит и диопсид). В некоторых случаях при контактовом метаморфизме привносятся рудные минералы, что делает породы ценными источниками получения меди, свинца, цинка и вольфрама.

Метасоматоз.

В результате регионального и контактового метаморфизма не происходит существенного изменения химического состава исходных пород, а меняются лишь их минеральный состав и внешний облик. Когда растворами привносятся одни элементы и выносятся другие, происходит значительное изменение химического состава пород. Такие вновь образовавшиеся породы называются метосоматическими. Например, взаимодействие известняков с растворами, выделяемыми гранитной магмой в ходе кристаллизации, приводит к образованию вокруг гранитных массивов зон контактово-метасоматических руд – скарпов, которые нередко вмещают оруденение.

РУДНЫЕ МЕСТОРОЖДЕНИЯ И ПЕГМАТИТЫ

Химический состав крупнозернистого гранита может существенно отличаться от состава исходной магмы. Изучение пород показало, что минералы выделяются из магмы в определенной последовательности. Такие богатые железом и магнием минералы, как оливин и пироксены, а также акцессорные минералы кристаллизуются в первую очередь. Из-за более высокой плотности, чем окружающий расплав, в результате процесса магматической сегрегации они оседают вниз. Полагают, что таким образом образуются дуниты – породы, состоящие почти целиком из оливина. Сходное происхождение приписывается некоторым крупным скоплениям магнетита, ильменита и хромита, которые являются рядами соответственно железа, титана и хрома.

Однако состав расплава, остающегося после удаления минералов путем магматической сегрегации, не полностью идентичен составу образующейся из него породы. В ходе кристаллизации расплава в нем возрастает концентрация воды и других летучих компонентов (например, соединений фтора и бора), а вместе с ними многих других элементов, атомы которых слишком велики или слишком малы для вхождения в кристаллические структуры породообразующих минералов. Выделившиеся из кристаллизующейся магмы водные флюиды могут подниматься по трещинам к поверхности Земли, в область более низких температур и давлений. Это обусловливает отложение минералов в трещинах и образование жильных месторождений. Некоторые жилы сложены в основном неметаллическими минералами (кварцем, кальцитом, баритом и флюоритом). Другие жилы содержат минералы таких металлов, как золото, серебро, медь, свинец, цинк, олово и ртуть; соответственно, они могут представлять собой ценные рудные месторождения. Поскольку подобные месторождения образуются при участии нагретых водных растворов, их называют гидротермальными. Следует сказать, что самые крупные гидротермальные месторождения – не жильные, а метасоматические; они представляют собой пластообразные или иной формы залежи, образовавшиеся путем замещения горных пород (чаще всего известняков) рудоносными растворами. О минералах, слагающих такие месторождения, говорят, что они имеют гидротермально-метасоматическое происхождение.

Пегматиты генетически связаны с кристаллизующейся гранитной магмой. Масса высокоподвижного флюида, еще богатая элементами, входящими в состав породообразующих минералов, может быть выброшена из магматической камеры во вмещающие породы, где она кристаллизуется с образованием тел грубозернистой структуры, сложенных в основном породообразующими минералами – кварцем, полевым шпатом и слюдой. Такие тела горных пород, называемые пегматитами, весьма изменчивы по величине. Максимальная протяженность большинства пегматитовых тел – несколько сотен метров, но самые крупные из них достигают длины 3 км, а у небольших она измеряется первыми метрами. В пегматитах содержатся крупные кристаллы отдельных минералов, в том числе самые большие в мире полевошпатовые длиной в несколько метров, слюды – до 3 м в поперечнике, кварца – массой до 5 т.

В некоторых пегматитообразующих флюидах концентрируются редкие элементы (часто в форме крупных кристаллов), например, бериллий – в берилле и хризоберилле, литий – в сподумене, петалитите, амблигоните и лепидолите, цезий – в полуците, бор – в турмалине, фтор – в апатите и топазе. Большинство этих минералов имеют ювелирные разновидности. Промышленное значение пегматитов отчасти связано с тем, что они являются источником драгоценных камней, но главным образом – высокосортных калиевого полевого шпата и слюды, а также рудами лития, цезия и тантала, отчасти бериллия.


Литература:

Минералы: Справочник , тт. 1–4. М., 1960–1992
Флейшер М. Словарь минеральных видов . М., 1980
Минералогическая энциклопедия . Л., 1985
Берри Л., Мейсон Б., Дитрих Р. Минералогия. М., 1987



Минералогия - это наука о минералах и природных химических соединениях. Минералогия занимается изучением состава, свойств, структуры и условий образования минералов. Это одна из древнейших геологических наук.

Турмалин (с сингал. තුරමලි «турамали» — драгоценный камень) — представитель группы минералов из класса алюмосиликатов переменного состава, содержащих в составе бор. Обобщенная химическая формула минерала выглядит примерно: R1+R2+3Al6Si6O18(BO3)3(OH)4. R1+ — ионы натрия или лития; R2+ — ионы Mg, Fe, Mn.

Гранат — не существует минерала с таким названием. Гранатами называют целую группу минералов из класса силикатов. Название произошло из-за весьма большого сходства сростков кристаллов (щеток) с зернами фрукта граната. Общая химическая формула: R2+3R3+2(SiO4)3, где 2-хвалентным радикалом могут выступать Mg, Mn, Fe, Ca. Чаще всего 3-хвалентный радикал это Al, но иногда вместо него в минерале содержатся Fe …

Рубрика:

Ставролит (с греч. σταυρός - крест, λίθος - камень) — минерал семейства силикатов: островной силикат железа и алюминия. Камень назван в 1792 году французом Ж. К. Деламетри из-за крестообразной формы кристаллов минерала. Химическая формула: Fe(OH)2(Al2SiO5)2.

Рубрика:

Каолинит (от названия местности Каолин в Китае, где был впервые найден) – глинистый минерал из класса водных силикатов. Химическая формула: Al2(ОН)4.

Рубрика:

Серпентин (с лат. serpens - змея) – минерал из класса водных силикатов. Синоним: змеевик. Химическая формула: Mg3(OH)4.

Рубрика:

Тальк – минерал из класса водных алюмосиликатов, группа талька. Химическая формула: Mg3(0H)2.

Рубрика:

Биотит (в честь франц. химика Жана Батиста Био) – породообразующий минерал из класса водных алюмосиликатов, группа слюд. Химическая формула: К(Mg,Fe)3(ОН,F)2.

Рубрика:

Мусковит – минерал из класса водных алюмосиликатов, группа слюд. Химическая формула: KAl2(ОН,F)2.

, жидкости и газы , т.е. все неживые естественные тела. Затем из минералогии были выделены окаменелости (они стали объектом палеонтологии), горные породы (они стали объектом петрографии), нефть, газ, уголь (они стали объектами геологии нефти и газа и твердых полезных ископаемых).

В настоящее время под минералами понимают природные химические соединения, образовавшиеся в результате физико-химических процессов и являющиеся составными частями горных пород и руд. С химической точки зрения минерал - более или менее однородное тело, отвечающее определенному составу. В основном, это твердые, кристаллические (98%) образования, реже - аморфные (некристаллические), жидкие (вода, ртуть), газообразные (метан, оксид серы, диоксид углерода).

Кристаллические минералы имеют широкое распространение. Внутренняя структура этих минералов выражается кристаллической решеткой, которая обусловливает форму кристаллов, физические, оптические и другие свойства минералов. Кристаллы нередко имеют идеально выраженную форму в виде многогранников (призмы, пирамиды, куба и др.).

Аморфные минералы не обладают какой-либо закономерностью внутреннего строения. В земной коре они расположены незначительно, являются неустойчивыми и могут переходить в кристаллическое состояния. Для этого необходимо длительное выдерживание их при температуре, близкой к точке плавления. Аморфные вещества (опал, кремень) характеризуются изотропными свойствами и непостоянством состава. Образуются обычно при быстром охлаждении расплавленных вязких масс или при выпадении из растворов.

Облик кристаллов минерала зависит от его внутреннего строения и условий образования. Существуют изометрические формы минералов: кубы пирата и галита, октаэдр магнетита; вытянутые в одном направлении: призматические, столбчатые, игольчатые; вытянутые в двух направлениях: таблитчатые, пластинчатые, листовые (полевые шпаты, гипс, слюда). Многие минералы обладают сходным обликом кристаллов, например, кристаллы кальцита и доломита - ромбоэдрические, пирита и галита - кубические, полевого шпата и гипса - таблитчатые или пластинчатые.

Одиночные кристаллы образуются при медленном охлаждении и кристаллизации магматического расплава в условиях свободного роста в пространстве. Они представляют собой геометрически правильные многогранники (например, кристалл горного хрусталя).

Формы природных выделений минералов. Друза (щетка) - совокупность кристаллов, наросших на какую либо поверхность своими основаниями. Вершины кристаллов, обращенных в сторону пустого пространства, обычно хорошо ограничены. Друзы характерны для кварца, кальцита, пирита и др.

Агрегат - совокупность компактно сросшихся кристаллов и кристаллических зерен. В минеральных агрегатах иногда наблюдается упорядоченное расположение кристаллов с образованием лучистых, игольчатых, жилковатых, волокнистых, пластинчатых, зернистых структур.

Натечные формы характерны для коллоидных минеральных образований, имеют вид корочек, почек, сосулек (сталактиты и сталагмиты) и для таких минералов как кальцит, лимонит, халцедон, гипс. Натеки возникают в пещерах или пустотах из просачивающихся вод, а также образуются гейзерами и источниками, имеющими в растворе избыток углекислого кальция (известковый туф).

Псевдоморфоза - ложная, необычная форма кристалла, не соответствующая его внутренней структуре. Образуется в результате замещения одного материала другим с сохранением внешней формы замещенного кристалла при обменных реакциях (например, псевдо-морфоза лимонита по кубическому кристаллу пирита) или при последующем заполнения пустот, возникающие после выщелачивания минералов.

В настоящие время известно более 7000 минералов, но только 100 из них относятся к породообразующим и около 30 широко распространенными (основными) .

Основные породообразующие минералы наиболее распространены в горных породах и определяют их вещественный состав. Например, для гранитов породообразующими минералами являются полевые шпаты (ортоклаз, реже - плагиоклаз), кварц и слюды; в диоритах преобладает средний плагиоклаз (андезин), слюды и роговая обманка, в меньшей мере - кварц; в габбро распространены основной плагиоклаз, роговая обманка, пироксен.

Для осадочных глинистых пород и пород биохимического происхождения характерны каолинит, монтмориллонит, доломит, гипс, ангидрит, кальцит, галит и др. В песчаных породах широко распространены обломки кварца, полевых шпатов, иногда глинистые минералы. Для метаморфических пород главным породообразующими минералами частично являются перечисленные выше минералы плюс типично метаморфические: змеевик, тальк, асбест и др

Основные диагностические свойства минералов. К основным свойствам минералов относятся: цвет, блеск, прозрачность, спайность, твердость, реакция с НСl.

Цвет минерала - это его окраска в образце. Он зависит от его структурных особенностей и химического состава и является постоянным (так называемый собственный цвет). Ложный цвет минерала обусловлен механическими примесями красящих элементов, а также световым воз- действием. Цвет следует наблюдать на свежем изломе.

Цвет черты - цвет минералов в тонком порошке, служит одним из диагностических признаков для определения минералов и горных пород. Многие минералы в порошкообразном состоянии имеют другой цвет, чем цвет в куске. Обычно для определения цвета минерала в порошке проводят кусочком минерала черту на белой шероховатой поверхности неглазурированного фарфора (его иногда называют «бисквит»). Этот метод диагностики весьма важен. Например, цвет черты соломенно-желтого пирита - черный, черного гематита - вишнево-красный, а черного магнетита - черный. В случае, если твердость минерала выше, чем твердость фарфоровой пластинки, то минерал не дает черты, а образует на фарфоре царапину.

Прозрачность минерала - это способность пропускать сквозь себя свет. Многие минералы, кажущиеся в больших кристаллах непрозрачными, в тонких осколках, шлифах просвечивают (например, биотит - черная слюда). Поэтому прозрачность минерала определяют в тонких пластинках.

В зависимости от степени прозрачности все минералы подразделяются на следующие группы:

1. прозрачные (наблюдаемый сквозь пластинку предмет ясно различим) - горный хрусталь, исландский шпат, мусковит;



2. полупрозрачные (предмет виден слабо) - галит, кварц;

3. непрозрачные (не пропускают света, пред- мет не виден) - все рудные минералы: пирит, магнетит, роговая обманка и др.

Блеск - это способность минерала отражать свет, падающий на его поверхность. Блеск за- висит от показателя преломления минерала, характера отражающей поверхности, трещиноватости, посторонних включений и т.п. Различают минералы с неметаллическим и металлическим блеском. В группе минералов с неметаллическим блеском выделяются оттенки блеска: стеклянный (кварц, карбонат); алмазный (алмаз, самородная сера); жирный (кварц с неровным изломом); шелковистый (волокнистый гипс, ас- бест); перламутровый (мусковит, тальк, пластичный гипс); матовый и восковой (доломит, лимонит); полуметаллический (гематит).

Спайность - способность минерала раскалываться или расщепляться с образованием правильных зеркальных поверхностей по определенным кристаллографическим направлениям. Такие поверхности называются плоскостями спайности. Спайность различается по степени ее совершенства:

а) весьма совершенная - минерал легко расщепляется на тонкие листочки-волокна в одном направлении (слюда, гипс, асбест);

б) совершенная - минерал раскалывается на геометрически правильные осколки, внешне на- поминающие настоящие кристаллы (галит);

в) средняя - при раскалывании минерала образуются гладкие поверхности спайности, а также неровные изломы по случайным направлениям (полевые шпаты, роговая обманка, оливин);

г) несовершенная - преобладают поверхности излома, а плоскости спайности обнаруживаются с трудом (апатит, сера);

д) весьма несовершенная - спайность практически отсутствует, минерал раскалывается с образованием поверхности излома (кварц, га- лит, магнетит и др.).

Излом - поверхность раскола, прошедшая в минерале (не по спайности). По характеру поверхности раскола различают несколько видов излома:

а) ступенчатый - у кристаллов с совершенной и средней спайностью (полевой шпат);

б) занозистый - у минералов волокнистого сложения (роговая обманка, асбест);

в) неровный - имеет неровную поверхность (шероховатую) и характерен для минералов с несовершенной спайностью (апатит, кварц);

г) раковистый - поверхность излома напоминает раковину, наблюдается у минералов без спайности (опал, халцедон, кварц);

д) землистый - характерен для глинистых минералов (каолинит).

Твердость - сопротивление минерала механическому воздействию при царапании пред- метами эталонной твердости (относительная твердость). В практике обычно определяют относительную твердость образцов по специальной таблице (табл. 2), а также легкодоступными предметами, твердость которых известна (на- пример, ноготь пальца - 2,5; медная монета - 3; стальной нож и стекло - 5,5-6).

Различают пассивную и активную твердость. Первая определяется способностью минерала воспринимать царапанье, вторая - его способностью царапать Магнитность свойственна минералам, содержащим железо. Наиболее магнитным является магнетит.

Реакция 10%-ным раствором соляной кислоты применяется для выявления карбонатных солей в минералах. Бурно реагирует («вскипает») под воздействием холодной HCl кальцит; доломит «вскипает» медленно, но в порошке, а также при нагретой HCl, он реагирует более интенсивно.


Вкус определяется для минеральных солей, хорошо растворимых в воде. Так, минерал сильвин (KCl) имеет горько-соленый вкус, а галит (каменная соль NaCl) - соленый.

Классификация минералов. Минералы классифицируются по химическому составу и кристалло-графическим особенностям, оптическим свойствам и др.Химическая классификация основана на со- отношении химических элементов в составе минералов, что находит отражение в их химических формулах.Выделяют 8 классов минералов. Различают следующие классы:

1. Самородные
2. Сульфиды
3. Сульфаты
4. Оксиды и гидрооксиды
5. Галоиды
6. Карбонаты
7. Фосфаты
8. Силикаты

Описание минералов

Самородные элементы (минералы). Это класс минералов, состоящих их одного химического элемента, и называемых по этому элементу. К ним относятся: золото, серебро, медь, платина, алмаз, графит, сера, и другие. Все они подразделяются на две группы: металлы и неметаллы. В первую группу входят самородные Au, Ag, Cu, Pt, Fe и некоторые другие, во вторую - As, Bi, S, С (алмаз и графит).

Медь . Химическая формула минерала - Сu. Цвет - красный, часто с бурой и пестрой побежалостью. Блеск - металлический. Твердость - 2,5-3. Излом - крючковатый. Самородная медь встречается очень редко. Чаще всего - в виде дендритовых или нитевидных форм. Кроме этого встречаются образования в виде пластин и порошковатых скоплений. Медь встречается в базальтовых лавах, песчаниках, конгломератах, в гидротермальных жилах и пластовых залежах совместно с халькозином, купритом, малахитом. Применение: электротехника, машиностроение, судостроение.

Фото1. Медь. Место отбора образца: Джезказган, Казахстан (№ образца 59, № полки 8)

Графит . Химическая формула минерала - С. Твердость - 1-2. Цвет - тёмно-серый. Блеск - металлический. Жирный (скользкий) на ощупь. При трении расслаивается на отдельные чешуйки (это свойство используется в карандашах). Образуется при высокой температуре в вулканических и магматических горных по- родах, в пегматитах и скарнах. Встречается в кварцевых жилах с вольфрамитом и другими минералами в среднетемпературных гидротермальных полиметаллических месторождениях. Широко распространен в метаморфических породах - кристаллических сланцах, гнейсах, мраморах.

Применение:
- для получения химически активных металлов методом электролиза расплавленных соединений;
- для приготовления твёрдых смазочных материалов, в комбинированных жидких и пастообразных смазках;
- замедлитель нейтронов в ядерных реакторах; - компонент состава для изготовления стержней для чёрных графитовых карандашей (в смеси с каолином);
- для изготовления контактных щёток и токосъёмников для разнообразных электрических машин;
- как токопроводящий компонент высокоомных токопроводящих клеёв.

Фото 2. Графит. Место отбора образца: Красноярский край, Россия (№ образца 35, № полки 5)

Сера . Химическая формула минерала - S. Цвет самородной серы различен (от посторонних примесей селена, сернистого мышьяка, органических веществ) - медово-желтый, серно-желтый, серый и бурый. Блеск - жирный, приближающийся к алмазному. Излом - раковистый. Твердость - 1,5-2,5.

Самородная сера образуется в природе различными путями. Наибольшие количества происходят водным путем из источников и вообще вод, циркулирующих в недрах земной коры, содержащих сероводород. Последний при доступе кислорода воздуха окисляется, образуя воду и выделяя серу. Второй способ образования серы - вулканический. Она отлагается по стенкам кратера вулканов или вследствие непосредственной возгонки, или вследствие взаимодействия сероводорода и сернистого ангидрида, нахождение которых весьма обычно в продуктах вулканической деятельности.

Сера нередко встречается в самородном виде, образуя плотные или землистые массы или же кристаллические агрегаты в виде кристаллических друз, пленок и налетов. Находятся также и хорошо образованные кристаллы, достигающие значительных размеров. Применение: в резиновой, химической промышленности, в медицине, в электротехнике, для отбеливания тканей.

Фото 3. Сера. Место отбора образца - Водинское месторождение, Самарская область, Россия (№ образца 83, № полки 11)

Сихотэ-алинский метеорит. Химическая формула минерала - Fe+Ni- железистый метеорит, общая масса осколков оценивается в 60-100 тонн. Упал в Уссурийской тайге в горах Сихотэ-Алинь на Дальнем Востоке 12 февраля 1947 г. Он раздробился в атмосфере и выпал железным дождем на площади 35 квадратных километров. Отдельные части дождя рассеялись по тайге на площади в виде эллипса с большою осью длиной около 10 километров. По химическим анализам, Сихотэ-алинский метеорит состоит из 94 % железа, 5,5 % никеля, 0,38 % кобальта и небольших количеств углерода, хлора, фосфора и серы.

Фото 4. Сихотэ-алинский метеорит. Место отбора образца: Приморский край (№ образца 60, № полки 7)

Минералогия это наука, исследующая природные химические соединения, называемые минералами, а именно их свойства, состав, структуру и условия генезиса. Это одна из базовых геологических дисциплин.

История науки

Минералогия является древнейшей среди геологических наук. Она появилась намного раньше, чем геология сформировалась в качестве самостоятельного научного направления. Первые минералогические наблюдения относятся к античным временам. Впервые они встречаются в трудах Аристотеля, где он выделил группу металлоидов как подобных металлам образований и классифицировал минералы на руды и камни. Теофраст описал в практическом аспекте 16 минеральных видов, разделив их на камни, металлы и земли. Позже Плиний Старший собрал в четырех трактатах все доступные в то время данные о минералах.

В средневековье развитие геологических наук наиболее интенсивно происходило в арабских странах. Одним из выдающихся ученых в данной сфере является Бируни. Он создал описания драгоценных камней , впервые используя физические параметры такие как относительная твердость и удельный вес. В те же времена Ибн-Сина классифицировал известные минералы на растворимые (соли), земли и камни, горючие (сернистые) ископаемые, плавкие (металлы). В данный период в Европе алхимик Альберт Великий объединил данные о минералах.

К концу средневековья минералогические знания были весьма скудными. Под многими минералами понимали руды. Ввиду отсутствия химии не было данных о их химической природе.

В XVI в. В. Бирингуччио и Г. Агриколлой были составлены сводки минеральных знаний. Последний усовершенствовал классификацию Ибн-Сины. Также он подробно описал диагностические признаки и затронул генезис рудных месторождений.

В XVII в. датские, голландские и английские ученые положили начало геометрической кристаллографии и кристаллооптике.

К XVIII в. основную роль в сфере минералогии играла Швеция благодаря горнодобывающей промышленности. Поэтому здесь сформировалась группа минералогов, среди которых были К. Линней и А. Кронштедт. Первый пытался использовать для минералов двойную номенклатуру, а второй исключил из объекта изучения организмы и исследовал химический состав.

В то время под минералогией все еще понимали научную дисциплину с намного более обширным предметом изучения, чем сейчас. Так, в 1636 г. данный термин был введен в литературу Бернардом Цезиусом в качестве науки о всех естественных ископаемых телах. То есть существовало единое геолого-минералогическое направление естествознания.

Оно было разделено в 1780 г. А.Г. Вегенером на геогнозию (общая и динамическая геология), ориктогнозию (минералогия и петрография), горное искусство (горное дело). Благодаря этому, минералогия обрела более конкретный объект изучения (горные породы и окаменелости отделили от минералов). К тому же появились новые классификация, описательные методы изучения, номенклатура, курс обучения.

В 1783 г.Ж.Б. Роме де Лиля измерил межгранные углы кристаллов некоторых минералов, Р.Ж. Аюи в 1801 г. создал модель их строения. Это вместе с работами У. Воластона способствовало развитию кристаллографии.

Первым российским минералогом считают В.М. Севергина. Продолжив идеи М.В. Ломоносова, он подразделил ископаемые тела на простые (минералы) и сложные (горные породы и фоссилии).

В XIX в. зародились химическое и кристаллографическое направления минералогии. Появились многие фундаментальные понятия.

В XX в., благодаря учению о правиле фаз, особо интенсивно развивались физико-химическое и экспериментальное направления. Кроме того, начался синтез различных разделов минералогии.

Со второй половины XX в.начали развиваться такие направления как органическая, био- и наноминералогия.

Современная минералогия

В настоящее время данная дисциплина включает несколько направлений.

Описательная. Характеризует минералы, систематизирует и классифицирует их. Включает два раздела: физику минералов (применяет методы физики твердого тела для изучения кристаллов) и минераграфию (использует специфические методы такие как микрохимические реакции, оптику отраженного света и т. д.).

Генетическая. Исследует способы и процессы генезиса и преобразования минералов в естественных условиях. Также включает несколько разделов: топоморфизм (выявляет взаимосвязи особенностей минералов и условий их генезиса), термобаро-геохимию (изучает включения в минералах), изотопические исследования (выяснение источника вещества для минералообразования), трифогенезис (изучает способы питания при минералообразовании), топогенез (рассматривает законы пространственного распределения минералов), парагенетический анализ (выявление законов последовательной пространственной и временной смены парагенезисов для исследования эволюции минералообразования), учение о сосуществующих минералах (использование их как геобарометров и геотермометров), энергетические и термодинамические расчеты (оценка кислотно-основных свойств минеральных фаз), онтогенетический и кристалломорфологический анализ (выяснение истории и механизма генезиса минералов).

Экспериментальная. Занимается моделированием естественного минералообразования и обстановки формирования минералов. Включает в качестве самостоятельного раздела облагораживание и синтез их.

Региональная. Исследует отдельные территории такие как рудные месторождения, геологические провинции, экономико-географические регионы с целью выяснения законов пространственного распределения ассоциаций и минералов.

Топоминералогия. Рассматривает законы формирования и распределения их в геологических системах.

Минералогия космических тел. Исследует минералогические вопросы для планет, метеоритов и луны.

Астроминералогия. Перспективное направление, объединяющее минералогию, астрономию, физику. Изучает минеральный состав и минералы метеоров, астероидов и прочих космических тел, околозвездной среды.

Прикладная. Включает три раздела: поисковую минералогию (занимается выяснением поисковых и разведочных критериев, совершенствованием поисковых и оценочных методов, разработкой научных основ совмещения минералогических, геохимических и геофизических поисковых методов с целью увеличения эффективности геологоразведки), технологическую (направлена на увеличение полноты и комплексности применения минерального сырья путем минералогического и минералого-технологического картирования месторождений и рудных полей, технологического прогнозирования, стабилизации и планирования добычи руды, изучения технологических особенностей минералов, разработки способов направленного их изменения, контроля состава концентратов), новых видов сырья (выявляет особенности не используемых минералов и возможные области их применения).

Список минералов

Если показать все известные минералы одним списком, то получится очень много названий для одной страницы. Мы разделили всё по алфавиту.

Образование

В вузах минералогия не представлена в качестве отдельной специальности. Обучение по данной профессии чаще всего производят в рамках специальности прикладная геология либо прикладная геохимия. Они подразумевает изучение общей геологии, основ картографии и геодезии, математических методов моделирования в геологии, безопасности ведения геологоразведки, инженерной графики, общей химии, многих дисциплин специализации и др.

Предусмотрены лабораторные работы и полевые минелогические практики. Помимо минералога, обучение дает такие профессии как геолог, геохимик, геокриолог, гидроэколог, топограф, гидрогеолог, маркшейдер, эколог, петролог, палеонтолог.

В "классическом виде" не особо востребована. Большинство специалистов работают в научной или образовательной сферах. Поэтому вышеназванные универсальные специальности выгодны тем, что дают возможность работы по нескольким профессиям.

Заключение

Минералогия относится к геологическим естественнонаучным дисциплинам. Это древнейшая среди геологических наук, появившаяся раньше самой геологии. В настоящее время включает несколько направлений и имеет большое прикладное значение как наука о процессах формирования, свойствах, методах разработки минерального сырья. Несмотря на это, минералоги в России востребованы мало. Поэтому обучение по данной профессии производится в рамках специальностей прикладная геология либо прикладная геохимия, что дает гораздо большие возможности для трудоустройства.