Болезни Военный билет Призыв

Международный прототип килограмма. Эталоны массы

Килограмм определяется как масса международного эталона килограмма, хранящегося в Международном бюро мер и весов и представляющего собой цилиндр диаметром и высотой 39 мм из платино-иридиевого сплава (90% платины, 10% иридия). Первоначально в качестве единицы массы химик Антуан Лавуазье и кристаллограф Рене Жюст Айи предложили в 1793 году французской Комиссии мер и весов использовать грамм - массу одного кубического сантиметра чистой воды при температуре плавления льда. Для удобства практического использования уже упоминавшийся Ленуар изготовил эталонную медную гирю массой в 1000 грамм. С 1795 года новую единицу массы стали называть килограммом. Через четыре года было принято предложение физика Луи Лефевра-Гиньо взвешивать воду при температуре ее максимальной плотности (4°С). Новый эталон килограмма был изготовлен из платины и помещен на хранение в Архив Республики. Были также сделаны несколько его копий для использования в качестве образцов при изготовлении гирь. Однако произведенные в XIX веке измерения показали, что масса 1 дм 3 воды на 0,028 г меньше массы архивного эталона. Чтобы не допустить в будущем никаких разночтений, Международная комиссия по эталонам метрической системы в 1872 году решила принять в качестве единицы массы массу прототипа - Архивного килограмма.

В 1880 году увидел свет международный эталон килограмма из сплава, состоящего из платины и иридия, тогда же были изготовлены и четыре из шести ныне существующих официальных копий этого эталона.

Все они сейчас хранятся под двумя герметичными стеклянными колпаками в сейфе, расположенном в подвале Международного бюро мер и весов (Bureau International des Poids et Mesures - BIPM) в Севре неподалеку от Парижа. В 1889 году 1-я Генеральная конференция по мерам и весам приняла определение килограмма как равного массе международного эталона. Это определение действительно и в наше время.К сведению - Международное бюро мер и весов, МБМВ (фр. Bureau International des Poids et Mesures, BIMP) - постоянно действующая международная организация со штаб-квартирой, расположенной в городе Севр (предместье Парижа, Франция). Учреждено в 1875г., вместе с подписанием Метрической конвенции. Основная задача Бюро заключается в обеспечении существования единой системы измерений во всех странах-участницах этой конвенции. В МБМВ хранятся международные эталоны основных единиц и выполняются международные метрологические работы, связанные с разработкой и хранением международных эталонов и сличением национальных эталонов с международными и между собой.

Копия международного эталона хранятся также и в Российской Федерации, во ВНИИ метрологии им. Менделеева. Примерно раз в 10 лет национальные эталоны сравниваются с международным. Эти сравнения показывают, что точность национальных эталонов составляет примерно 2 мкг. Так как они хранятся в тех же условиях, нет никаких оснований считать, что международный эталон точнее. По разным причинам, за сто лет международный эталон теряет 0,00000003-ую часть своей массы. Однако, по определению, масса международного эталона в точности равна одному килограмму. Поэтому любые изменения действительной массы эталона приводят к изменению величины килограмма.

Килограмм - одна из семи основных величин международной системы единиц СИ. Остальные - метр, секунда, ампер, кельвин, моль и кандела - не привязаны к конкретным материальным носителям. Платиново-иридиевый эталон метра был отменен в 1960 году. Единственный в настоящее время оставшийся «механический» эталон - это килограмм. Но даже масса главного международного эталона со временем меняется - к настоящему времени считается, что он «похудел» на 50 мкг за счет микропереноса вещества на поверхность подставки во время хранения, а также на поверхность захватов, которыми его перемещают при сверке с национальными эталонами.

Всё это может искажать результаты сверхточных научных расчетов, поэтому ученые задумываются о необходимости дать новое определение килограмму. В 1975 году доктор Брайан Киббл из Национальной физической лаборатории (NPL) Великобритании предложил идею так называемых ватт-весов. Это устройство позволяет связать между собой единицы электрической и механической мощности. «Эта связь - основа метрологии, - объясняет «Популярной механике» ведущий научный сотрудник Всероссийского НИИ метрологии им. Д. И. Менделеева Эдмунд Француз. - Весы состоят из двух катушек, взаимодействующих между собой при протекании электрического тока. В отличие от токовых весов, здесь используется дополнительная калибровка при движении катушки с известной скоростью в эталонном магнитном поле. За счет этого удается существенно уменьшить ошибку измерения силы взаимодействия, обусловленную геометрией катушки. Таким образом, можно выразить килограмм через электрические единицы, измеренные на основе квантовых эффектов, то есть через фундаментальные константы, - это позволит избавиться от «механического» эталона. Пока что работающие ватт-весы реализованы в США в NIST и в NPL, но на данный момент наименьшая погрешность их измерений составляет 3,6×10 –8 , что минимум в два раза хуже, чем необходимо для эталона».

Другой способ переопределить килограмм предложила группа ученых из Германии, Австралии, Италии и Японии под руководством исследователей из Физико-технического института Германии. Они намерены использовать «метод Авогадро», то есть определить килограмм как энное число атомов. «Основные трудности этого метода в том, что нужно построить идеальную кристаллическую решетку, - говорит Эдмунд Француз, - без единого дефекта, и притом из одного изотопа - кремния-28. Относительная погрешность этого метода пока еще слишком велика - 3,1×10 –7 . Кстати, было еще одно направление, которое разрабатывалось у нас во ВНИИМ и в Японии, - метод левитирующей сверхпроводниковой массы, который обеспечивал точность порядка 4×10 –6 . Но по различным причинам исследования не были завершены ни в одной из стран».

Так что килограмм пока остается последним чисто механическим эталоном.

К сведению - допустимая абсолютная погрешность широко распространенной гири массой 1 килограмм составляет 0,5 грамма.

По материалам сайтов:www.omedb.ru; www.russianamerica.com; wikipedia.org.

В 1872 г. решением Международной комиссии по эталонам метрической системы за единицу массы была принята масса прототипа килограмма, хранящегося в Национальном архиве Франции. Этот прототип представляет собой платиновую цилиндрическую гирю высотой и диаметром 39 мм. Прототипы килограмма для практического использования были изготовлены из платиноиридиевого сплава. За международный прототип килограмма была принята платиноиридиевая гиря, наиболее близкая к массе платинового килограмма Архива. Следует отметить, что масса международного прототипа килограмма несколько отличается от массы кубического дециметра воды. В результате объем 1 литра воды и 1 кубического дециметра не равны друг другу (1л = 1,000028 дм 3). В 1964 г. XII Генеральная конференция по мерам и весам решила приравнять 1 л к 1 дм 3 .

Международный протопит килограмма был утвержден на I Генеральной конференции по метрам и весам в 1889 г. как прототип единицы массы, хотя в тот период еще не существовало четкого разграничения понятий массы и веса и поэтому часто эталон массы называли эталоном веса.

По решению I Конференции по мерам и весам из 42 изготовленных прототипов килограмма России были переданы платиноиридиевые прототипы килограмма № 12 и № 26. прототип килограмма № 12 был утвержден в 1899 г. в качестве государственного эталона массы факультативно (фунт должен был периодически сличаться с килограммом), а прототип № 26 использоваться в качестве вторичного эталона.

В состав эталона входят:

копия международного прототипа килограмма (№12), представляющая собой платиноиридиевую гирю в виде прямого цилиндра с закругленными ребрами диаметром и высотой 39 мм. Прототип килограмма храниться в ВНИИМ им. Д. М. Менделеева (г. Санкт-Петербург) на кварцевой подставке под двумя стеклянными колпаками в стальном сейфе. Эталон храниться при поддержание температуры воздуха в пределах (20 ±3) ° С и относительной влажности 65%. С целью сохранения эталона с ним сличают два вторичных эталона раз в 10 лет. Они и используются для дальнейшей передачи размера килограмма. При сличении с международным эталоном килограмма отечественной платиноиридиевой гире приписано значение 1,0000000877 кг;

равноплечие призменные весы на 1 кг. № 1 с дистанционным управлением (с целью исключения влияния оператора на температуру окружающей среды), изготовленные фирмой «Рупрехт», и равноплечие современные призменные весы на 1 кг №2, изготовленные во ВНИИМ им. Д.М. Менделеева. Весы № 1 и № 2 служат для передачи размера единицы массы от прототипа № 12 вторичным эталонам.

Погрешность воспроизведения килограмма, выраженная средним квадратическим отклонением результата измерений 2 . 10 -9 . Удивительная долговечность эталона единицы массы в виде платиноиридиевой гире не связана с тем, что в свое время был найден наименее уязвимый способ воспроизведения килограмма. Отнюдь нет. Уже несколько десятилетий тому назад требования к точности измерений массы превзошли возможности их реализации с помощью действующий эталонов единицы массы. Длительное время продолжаются исследования по воспроизведению массы с помощью известных фундаментальных физических констант масс различных атомных частиц (протон, электрон, нейтрон и др.). Однако реальная погрешность воспроизведения больших масс (например, килограмма), привязанных, в частности, к массе покоя нейтрона, пока что существенно больше, чем погрешность воспроизведения килограмма с помощью платиноиридиевой гире. Масса покоя единичной частицы - нейрона составляет 1,6949286 (10)х10 -27 кг и определяется со средним квадратическим отклонением 0,59 . 10 -6 .

Со времени создания прототипов килограмма прошло более 100 лет. За истекший период периодически сличали национальные эталоны с международным эталоном. В Японии созданы специальные весы с применением лазерного луча для регистрации «раскачки» коромысла с эталонной и тарируемой гирями. Обработка результатов ведется с помощью ЭВМ. При этом погрешность воспроизведения килограмма удалось повысить примерно до 10 -10 (по СКО).один комплект подобных весов имеется в Метрологической службе Вооруженных Сил РФ.

Наверное, многие читатели помнят телевизионную рекламу одного сотового оператора, в которой появился знаменитый слоган "Скока вешать в граммах?" "Точность никогда не бывает лишней", - резюмировал свой вопрос один из героев ролика . На самом деле, он лукавил - точно отвесить, скажем, 200 граммов чего-либо невозможно. И дело не только в том, что существующие способы взвешивания плохи - просто у людей нет надежного эталона килограмма, а значит, и грамма.

Потребность в разработке стандартов, ориентируясь на которые можно определять значения массы, времени, длины и температуры (а после появления физики еще силы света, силы тока и единицы вещества) возникла у человечества давно. Потребность эта вполне объяснима - для того чтобы строить дороги и дома, путешествовать и торговать, необходимы были неизменные единицы, используя которые два строителя или торговца могли бы понимать, что нарисовано в чертежах друг друга и о каких количествах товара идет речь.

Свои собственные единицы измерения были у каждой цивилизации: например, в Древнем Египте массу измеряли в кантарах и киккарах, в Древней Греции - в талантах и драхмах, а на Руси - в пудах и золотниках. Как любят говорить ученые, при создании каждой из этих единиц люди как бы договаривались , что отныне масса, длина или температура чего-либо будут сравниваться с одной единицей массы, длины или температуры соответственно. Число тех, кто непосредственно участвовал в этих договоренностях, было очень невелико - у двух торговцев из разных концов страны пуды вполне могли отличаться на треть.

Как бы договоренности прекрасно работали до тех пор, пока люди не начали всерьез заниматься наукой и осваивать инженерное дело. Оказалось, что для описания законов природы или создания парового котла приближенных значений недостаточно, особенно если в работе принимают участие люди из разных стран. Осознав этот факт, ученые со всего мира занялись разработкой единых точных стандартов, или эталонов, для основных единиц измерения. 20 мая 1875 года во Франции было подписано соглашение об установлении этих единиц - Метрическая конвенция. Все страны, подписавшие этот документ, обязались использовать в качестве эталонов специально созданные стандарты. Для обеспечения государств-подписантов самыми точными эталонами была создана Международная палата мер и весов (или Международное бюро мер и весов). В задачи этой организации входит регулярное сравнение национальных эталонов между собой и курирование работ по созданию более точных способов измерения.

В России введение метрической системы связано с именем Дмитрия Ивановича Менделеева, создавшего в 1893 году Главную палату мер и весов и вообще немало сделавшего для развития метрологии. Свой интерес к точным измерениям он объяснял так: "Наука начинается с тех пор, как начинают измерять. Точная наука немыслима без меры". Благодаря усилиям Менделеева, с первого января 1900 года в России наряду с национальными были разрешены к применению метрические меры.

После подписания Метрической конвенции специалисты занялись разработкой единых эталонов метра и килограмма (эти единицы измерения существовали и до 1875 года, однако эталонов, которые бы признавались во всем мире, не существовало). Эталон метра был установлен после знаменитой экспедиции по измерению длины дуги Парижского меридиана и представлял собой линейку из сплава платины и иридия в соотношении 9 к 1, длина которой равнялась одной сорокамиллионной части меридиана. По месту хранения его стали называть "метр архива" или "архивный метр". Эталон килограмма был отлит из того же сплава, и его масса соответствовала массе одного кубического дециметра (литра) чистой воды при температуре 4 градуса Цельсия (когда вода имеет максимальную плотность) и стандартном атмосферном давлении на уровне моря. В 1889 году в ходе первой Генеральной конференции по мерам и весам была принята система мер, основанная на только что изготовленных эталонах метра и килограмма, а также на эталоне секунды. Стандартом секунды стала считаться 1/86400 часть продолжительности средних солнечных суток (позже эталон привязали к тропическому году - секунду приравняли к 1/31556925,9747 его части). Страны, признавшие новую систему мер, получили копии этих эталонов, а прототипы отправились на хранение в Палату мер и весов.

Через некоторое время к этим трем эталонам добавились эталоны канделы (сила света), ампера (сила тока) и кельвина (температура). В 1960 году одиннадцатая Генеральная конференция по мерам и весам приняла систему мер и весов, основанную на использовании этих шести единиц и моля (единица количества вещества - его эталона не существует) - новая система получила название Международная система единиц, или СИ. Казалось бы, на этом история эталонов должна была завершиться, однако, в действительности, она только начиналась.

Все, что может испортиться…

По мере совершенствования технологий измерения стало ясно, что все хранящиеся в Париже эталоны не идеальны. Постепенно ученые приходили к мысли, что за стандарты основных единиц стоит брать не рукотворные предметы, а гораздо более совершенные образцы, уже созданные природой. Так, за стандарт секунды приняли интервал времени, равный 9192631770 периодам излучения, соответствующего переходу между двумя сверхтонкими уровнями основного (квантового) состояния атома цезия-133 в покое при 0 кельвинов при отсутствии возмущения внешними полями, а за стандарт метра - расстояние, которое проходит свет в вакууме за промежуток времени, равный 1/299792458 секунды. В отличие от старых, новые стандарты являются атомными или квантовыми, то есть в них "работают" самые "базовые" законы природы.

Постепенно шесть из семи основных единиц СИ получили способы воспроизведения, для которых не нужен уникальный эталон, хранящийся где-то в одном месте. Теоретически, любой ученый, который захочет точно (очень точно) узнать, например, сколько длится секунда, может взять миллиграмм-другой изотопа цезия-133 и отсчитать, когда произойдут 9192631770 периодов излучения (кстати, свои атомные стандарты времени установлены, например, на всех спутниках GPS). "В девушках" остался только килограмм - его эталон все еще пылится в глубоком подвале под Парижем.

Слово "пылится" в предыдущем абзаце вовсе не является стилистическим украшением - пыль на самом деле постепенно скапливается на эталоне килограмма, несмотря на все контрмеры. Достать платино-иридиевый цилиндр и протереть нельзя - во-первых, при извлечении на нем опять же осядет пыль, а во-вторых, протирка или даже обмахивание щеточкой неминуемо приведет к "отскакиванию" нескольких молекул. Иными словами, независимо от того, что делают или не делают с эталоном, его масса со временем изменяется. Долгое время считалось, что эти изменения незначительны, однако проведенная несколько лет назад проверка показала, что за последнее время эталон "похудел" на 50 микрограммов, а это уже внушительные потери.

Моль, кремний и золото

Возможный выход из этого печального положения (за какой-нибудь миллиард лет эталон станет легче на треть) предложили в 2007 году два американских ученых из Технологического института Джорджии. Вместо переменчивого цилиндра они предложили считать стандартом массы куб из углерода, который будет содержать строго определенное количество атомов. Так как масса каждого отдельного атома постоянна, то и масса их совокупности также не будет меняться. Исследователи рассчитали, что куб массой ровно один килограмм будет состоять из 2250 х 28148963 3 атомов (50184513538686668007780750 атомов), а его грань составит 8,11 сантиметра. За три года ученые уточнили некоторые детали и представили свои соображения в статье, препринт которой можно найти на сайте arXiv.org.

Американские физики озаботились проблемой стандарта килограмма и выбрали в качестве "эталонного" элемента углерод неспроста - до этого они занимались уточнением числа Авогадро - одной из фундаментальных констант, определяющей, сколько атомов содержится в одном моле любого вещества. Хотя это число и является одним из самых главных в химии, его точного значения не существует (в числе прочих вопросов ученые, например, решали, четное оно или нет). Число Авогадро подобрано так, чтобы масса моля в граммах равнялась массе молекулы (атома) в атомных единицах массы. Атом углерода имеет массу 12 атомных единиц массы, а значит, масса моля углерода должна составлять12 граммов. Уточнив число Авогадро и приняв его равным 84446886 3 (602214098282748740154456), исследователи смогли рассчитать необходимое число атомов углерода в эталоне.

Не исключено, что новая работа будет рассмотрена на очередной Генеральной конференции по мерам и весам, которая пройдет в 2011 году. Однако у ученых из Джорджии есть конкуренты. Например, в Вашингтонском национальном институте стандартов и технологии очень активно работают над концепцией электронного килограмма. Вкратце суть предлагаемого ими метода такова: эталон определяется через силу тока, которая необходима для создания магнитного поля, способного уравновесить груз в один килограмм. Этот способ очень хорош, так как позволяет добиться высокой точности (он основан на использовании еще одной фундаментальной константы - постоянной Планка), однако сам эксперимент чрезвычайно сложен.

Еще один вариант нового эталона – кремниевая сфера, параметры которой рассчитаны таким образом, что она будет содержать строго определенное количество атомов (этот расчет можно провести, так как ученым известно расстояние между отдельными атомами, а сам процесс производства чистого кремния очень хорошо налажен). Такая сфера даже была создана, но с ней немедленно возникли сложности, напоминающие сложности нынешнего эталона - со временем сфера теряет часть своих атомов и, кроме того, на ней образуется пленка оксида кремния.

Третий подход к созданию эталона предполагает, что он будет каждый раз производиться de novo . Для получения стандарта массы необходимо накапливать ионы висмута и золота до тех пор, пока их суммарный заряд не достигнет определенного значения. Этот метод уже признали неудовлетворительным: он требует слишком много времени, а результаты плохо воспроизводятся. Вообще, с высокой вероятностью, все описанные способы получения нового эталона килограмма, кроме способа, основанного на использовании числа Авогадро, останутся только в памяти историков науки, так как в отличие от остальных, эталон килограмм в виде куба из изотопа углерода-12 основан на прямом использовании одного из фундаментальных атомных понятий.

Пока неясно, станет ли углеродный эталон общепризнанным или же ученые придумают новый, более удобный способ. Но тот факт, что хранящийся в Париже цилиндр, верой и правдой служивший людям 120 лет, скоро отправится на пенсию, сомнений не вызывает.

Назад

История килограмма

7 апреля 1795 года во Франции было утверждено официальное определение грамма, новой единицы массы, под которой стали понимать вес кубического сантиметра чистой воды, находящегося при температуре 0°С. К слову, сама идея привязать определение массы к объему воды была вовсе не нова. Впервые она была озвучена английским философом Дж. Уилкинсоном в 1668 году. Однако, на практике грамм в силу своей малой величины оказался неудобен в использовании в торговле. По этой причине была продолжена работа над определением килограмма, равного, соответственно, массе одного литра чистой воды.

Спустя несколько лет кропотливых исследований химик Луи Лефевр-Жино и натуралист Джованни Фабброни уточнили условия наиболее стабильного состояния воды. По мнению ученых, наибольшей плотностью и, следовательно, устойчивостью вода обладала при температуре 4°С. Полученные результаты были учтены в 1799 году в процессе переопределения килограмма. В том же году был отлит и первый эталон новой единицы массы, выполненный в форме платиновой . Однако, в последствии выяснилось, что масса гири превышала массу эталонного литра воды на 0,028 грамм. В 1889 году в Лондоне был отлит металлический цилиндр, ставший новым эталоном килограмма. Изделие из сплава иридия и платины размером с солонку было доставлено в Париж, где подверглось окончательной обработке. И по сей день эталон килограмма в условиях вакуума хранится в Международном бюро мер и весов.

В конце ХХ столетия ученые забили тревогу. Эталон взвесили на весах Ватта: предельно точный механизм позволил определить массу цилиндра с точностью до 10 микрограмм. Результаты взвешивания оказались неутешительными. Выяснилось, что масса цилиндра с годами стала меньше. И хотя за все время своего существования Парижский эталон потерял всего 50 микрограмм — 1/ 200 000 000 от своего изначального веса — стало очевидно, что необходимо определить новую физическую константу килограмма. Ведь от точности эталона зависит точность его копий, и, следовательно, точность производимых измерений во всем мире.

На сегодняшний день килограмм остается единственной единицей , эталоном которой служит предмет, изготовленный людьми. Современные ученые ищут основу для переопределении килограмма в мире атомов, среди фундаментальных физических постоянных. Так, существуют предложения связать его массу с числом Авогадро или постоянной Планка. Планируется, что окончательное решение по переопределению килограмма будет вынесено к 2018 году.

Эталон массы

Это - килограммовая гиря из платиноиридиевого сплава, определенной формы, хранящаяся под двойным колпаком и так далее. Гирь таких было изготовлено несколько, их раз в сколько-то лет свозят в Париж и так далее, см. выше рассуждение насчет того, что такое точность эталона. Естественен вопрос, почему не взять естественный эталон - атом. Вот уж у кого по всем современным воззрениям с постоянством массы дело обстоит хорошо. Ответ прост - потому что атом маленький, а отсчитать число Авогадро атомов - замучаешься. Степень у десяти такая большая, что даже фуллерен из урана не спас бы дела. Но перейти на естественный псевдоатомный эталон хочется. Поэтому ведутся работы по созданию эталона массы на основе эталона метра и атомных свойств (то есть в итоге это все-таки атомный эталон). А именно, предполагается, что это будет шар точно известного размера из моноизотопного кремния. Шар - чтобы избежать неопределенности, связанной с истинной геометрией ребер, кремний - поскольку для него разработаны технологии очистки. У кремния три стабильных изотопа, что затрудняет получение точных копий эталона, но зато для кремния разработаны методы очистки от примесей, а изотопно-чистый кремний представляет, как пишут, свой интерес для полупроводниковой техники и технология его изготовления существует.

Из книги Баллистическая теория Ритца и картина мироздания автора Семиков Сергей Александрович

§ 1.15 Релятивистский эффект изменения массы Эксперименты Кауфмана одинаково хорошо объясняются как посредством допущения абсолютного движения с изменяющейся массой, так и посредством рассмотрения массы как постоянной, а движений как относительных. Также они вполне

Из книги Записки строителя автора Комаровский Александр Николаевич

§ 1.16 Аннигиляция и эквивалентность массы и энергии Тело вещей до тех пор нерушимо, пока не столкнётся С силой, которая их сочетанье способна разрушить. Так что, мы видим, отнюдь не в ничто превращаются вещи, Но разлагаются все на тела основные обратно… ….Словом, не

Из книги Очень общая метрология автора Ашкинази Леонид Александрович

§ 1.17 Природа массы и гравитации Объяснение Цёлльнера, принятое Лоренцем, состоит, как известно, в том, что сила притяжения двух электрических зарядов противоположного знака немного превосходит силу отталкивания двух зарядов одного знака и той же абсолютной величины.

Из книги автора

§ 3.13 Ядерные реакции и дефект массы Все перемены в натуре случающиеся такого суть состояния, что сколько чего от одного тела отнимается, столько присовокупится к другому. Так, ежели где убудет несколько материи, то умножится в другом месте… Сей всеобщий естественной

Из книги автора

Приложение № 3 ТЕХНОЛОГИЯ ПРОИЗВОДСТВА ИЗДЕЛИЙ ИЗ БУМАЖНОЙ МАССЫ Для приготовления 1 кг бумажной массы (мастики) берется (в г):Мел молотый - 450Клей казеиновый марки ОБ - 200Олифа натуральная - 100Канифоль - 20Бумажная пыль (кноп) - 200Квасцы алюминиевые - 15Глицерин

Из книги автора

Эталон длины Сначала эталоны были естественные, например, эталоном длины был, возможно, пояс короля Карла такого-то. Потом король слегка разъелся и экономика сошла с ума. Поэтому взяли длину маятника с определенным периодом (привязав тем самым эталон длины к эталону

Из книги автора

Эталон времени В природе полно периодических процессов, поэтому с естественным эталоном времени проблем не было, правда лично я взял бы не вращение Земли, а периодическое возникновение желания пожрать. Потому что вращается Земля или нет - мы видим только днем, а кушать

Из книги автора

Эталон количества вещества Это моль, который в общем-то дублирует эталон массы, но сохраняется как понятие для удобства в основном химических вычислений. Отдельного эталона моля не существует. По определению, это такое количество вещества, которое содержит столько

Из книги автора

Эталон температуры В физике есть несколько разных «температур», высокая метрология знает одну - термодинамическую температуру. Это та самая, которя однозначно связана с энергией через постоянную Больцмана (поэтому физики часто измеряют температуру в единицах энергии

Из книги автора

Эталон тока Исторически эталонами электрических величин сначала были ток (через гальванопроцесс и вес осадка) и сопротивление (через сопротивление ртутного цилиндрика), напряжение определялось законом Ома, а передавалось - особо стабильным гальваническим элементом

Из книги автора

Эталон силы света Свет - это электромагнитное излучение в диапазоне непосредственного восприятия человеком. Поэтому в технике и, соответственно, метрологии, ему уделяется большее внимание. Световых единиц, как известно, четыре - световой поток, сила света, светимость и