Болезни Военный билет Призыв

Метод множителей лагранжа достаточное условие. Метод Лагранжа (вариации постоянной). Линейные дифференциальные уравнения первого порядка. Смотреть что такое "лагранжа метод" в других словарях

Способ определения условного экстремума начинается с построения вспомогательной функции Лагранжа, которая в области допустимых решений достигает максимума для тех же значений переменных x 1 , x 2 , ..., x n , что и целевая функция z . Пусть решается задача определения условного экстремума функции z = f (X) при ограничениях φ i ( x 1 , x 2 , ..., x n ) = 0, i = 1, 2, ..., m , m < n

Составим функцию

которая называется функцией Лагранжа . X , - постоянные множители (множители Лагранжа ). Отметим, что множителям Лагранжа можно придать экономический смысл. Если f (x 1 , x 2 , ..., x n ) - доход, соответствующий плану X = (x 1 , x 2 , ..., x n ) , а функция φ i (x 1 , x 2 , ..., x n ) - издержки i-го ресурса, соответствующие этому плану, то X , - цена (оценка) i-го ресурса, характеризующая изменение экстремального значения целевой функции в зависимости от изменения размера i-го ресурса (маргинальная оценка). L(Х) - функция n + m переменных (x 1 , x 2 , ..., x n , λ 1 , λ 2 , ..., λ n ) . Определение стационарных точек этой функции приводит к решению системы уравнений

Легко заметить, что . Таким образом, задача нахождения условного экстремума функции z = f (X) сводится к нахождению локального экстремума функции L(X) . Если стационарная точка найдена, то вопрос о существовании экстремума в простейших случаях решается на основании достаточных условий экстремума - исследования знака второго дифференциала d 2 L(X) в стационарной точке при условии, что переменные приращения Δx i - связаны соотношениями

полученными путем дифференцирования уравнений связи.

Решение системы нелинейных уравнений с двумя неизвестными с помощью средства Поиск решения

Настройка Поиск решения позволяет находить решение систе­мы нелинейных уравнений с двумя неизвестными:

где
- нелинейная функция от переменныхx и y ,
- произвольная постоянная.

Известно, что пара (x , y ) является решением системы уравнений (10) тогда и только тогда, когда она является решением следующего уравнение с двумя неизвестными:

С другой стороны, решение системы (10) - это точки пересечения двух кривых: f ] (x , y ) = C и f 2 (х, у) = С 2 на плоскости ХО Y .

Из этого следует метод нахождения корней системы. нелинейных уравнений:

    Определить (хотя бы приближенно) интервал существования решения системы уравнений (10) или уравнения (11). Здесь не­обходимо учитывать вид уравнений, входящих в систему, область определения каждого их уравнений и т. п. Иногда применяется подбор начального приближения решения;

    Протабулировать решение уравнения (11) по переменным x и y на выбранном интервале, либо построить графики функций f 1 (x , y ) = С, и f 2 (х,у) = С 2 (система(10)).

    Локализовать предполагаемые корни системы уравнений - найти несколько минимальных значений из таблицы табулирование­ корней уравнения (11), либо определить точки пересечения кривых, входящих в систему (10).

4. Найти корни для системы уравнений (10) с помощью надстройки Поиск решения.

Метод Множителей Лагранжа является классическим методом решения задач математического программирования (в частности выпуклого). К сожалению, при практическом применении метода могут встретиться значительные вычислительные трудности, сужающие область его использования. Мы рассматриваем здесь метод Лагранжа главным образом потому, что он является аппаратом, активно используемым для обоснования различных современных численных методов, широко применяемых на практике. Что же касается функции Лагранжа и множителей Лагранжа, то они играют самостоятельную и исключительно важную роль в теории и приложениях не только математического программирования.

Рассмотрим классическую задачу оптимизации

max (min) z=f(x) (7.20)

Эта задача выделяется из задачи (7.18), (7.19) тем, что среди ограничений (7.21) нет неравенств, нет условий неотрицательности переменных, их дискретности, и функции f(x) и непрерывны и имеют частные производные по крайней мере второго порядка.

Классический подход к решению задачи (7.20), (7.21) дает систему уравнений (необходимые условия), которым должна удовлетворять точка х*,доставляющая функции f(x)локальный экстремум на множестве точек, удовлетворяющих ограничениям (7.21) (для задачи выпуклого программирования найденная точка х*в соответствии с теоремой 7.6 будет одновременно и точкой глобального экстремума).

Предположим, что в точке х* функция (7.20) имеет локальный условный экстремум и ранг матрицы равен . Тогда необходимые условия запишутся в виде:

(7.22)

есть функция Лагранжа; - множители Лагранжа.

Существуют также и достаточные условия, при выполнении которых решение системы уравнений (7.22) определяет точку экстремума функции f(x). Этот вопрос решается на основании исследования знака второго дифференциала функции Лагранжа. Однако достаточные условия представляют главным образом теоретический интерес.

Можно указать следующий порядок решения задачи (7.20), (7.21) методом множителей Лагранжа:

1) составить функцию Лагранжа (7.23);

2) найти частные производные функции Лагранжа по всем переменным и приравнять их нулю. Тем самым будет получена система (7.22), состоящая из уравнений. Решить полученную систему (если это окажется возможным!) и найти таким образом все стационарные точки функции Лагранжа;

3) из стационарных точек, взятых без координат , выбрать точки, в которых функция f(x) имеет условные локальные экстремумы при наличии ограничений (7.21). Этот выбор осуществляется, например, с применением достаточных условий локального экстремума. Часто исследование упрощается, если использовать конкретные условия задачи.



Пример 7.3 . Найти оптимальное распределение ограниченного ресурса в a ед. между n потребителями, если прибыль, получаемая при выделении j-му потребителю x j единиц ресурса, вычисляется по формуле .

Решение. Математическая модель задачи имеет следующий вид:


Составляем функцию Лагранжа:

.

Находим частные производные функции Лагранжа и приравниваем их нулю:

Решая эту систему уравнений, получаем:

Таким образом, если j-му потребителю будет выделено ед. ресурса, то суммарная прибыль достигнет максимальной величины и составит ден. ед.

Мы рассмотрелиметод Лагранжа применительно к классической задаче оптимизации. Можно обобщить этот метод на случай, когда переменные неотрицательны и некоторые ограничения заданы в форме неравенств. Однако это обобщение имеет преимущественно теоретическое значение и не приводит к конкретным вычислительным алгоритмам.

В заключение дадим множителям Лагранжа экономическую интерпретацию. Для этого обратимся к простейшей классической задаче оптимизации

max (min) z =f (x 1 , х 2); (7.24)

𝜑(x 1 , х 2)=b. (7.25)

Предположим, что условный экстремум достигается в точке . Соответствующее экстремальное значение функции f (x )

Допустим, что в ограничениях (7.25) величина b может меняться, тогда координаты точки экстремума, а следовательно, и экстремальное значение f* функции f (x ) станут величинами, зависящими от b , т. е. ,, а поэтому производная функции (7.24)

Наименование параметра Значение
Тема статьи: Метод Лагранжа.
Рубрика (тематическая категория) Математика

Найти полином означает определить значения его коэффициента . Для этого используя условие интерполяции можно сформировать систему линœейных алгебраических уравнений (СЛАУ).

Определитель этой СЛАУ принято называть определителœем Вандермонда. Определитель Вандермонда не равен нулю при для , то есть в том случае, когда в интерполяционной таблице нет совпадающих узлов. Τᴀᴋᴎᴍ ᴏϬᴩᴀᴈᴏᴍ, можно утверждать, что СЛАУ имеет решение и это решение единственно. Решив СЛАУ и определив неизвестные коэффициенты можно построить интерполяционный полином .

Полином, удовлетворяющий условиям интерполяции, при интерполяции методом Лагранжа строится в виде линœейной комбинации многочленов n-ой степени:

Многочлены принято называть базисными многочленами. Для того, чтобы многочлен Лагранжа удовлетворял условиям интерполяции крайне важно, чтобы для его базисных многочленов выполнялись следующие условия:

для .

В случае если эти условия выполняются, то для любого имеем:

Τᴀᴋᴎᴍ ᴏϬᴩᴀᴈᴏᴍ, выполнение заданных условий для базисных многочленов означает, что выполняются и условия интерполяции.

Определим вид базисных многочленов исходя из наложенных на них ограничений.

1-е условие: при .

2-е условие: .

Окончательно для базисного многочлена можно записать:

Тогда, подставляя полученное выражение для базисных многочленов в исходный полином, получаем окончательный вид многочлена Лагранжа:

Частная форма многочлена Лагранжа при принято называть формулой линœейной интерполяции:

.

Многочлен Лагранжа взятый при принято называть формулой квадратичной интерполяции:

Метод Лагранжа. - понятие и виды. Классификация и особенности категории "Метод Лагранжа." 2017, 2018.

  • - Метод Лагранжа (метод вариации произвольной постоянной).

    Линейные ДУ. Определение. ДУ вида т.е. линейное относ-но неизвестной ф-ции и ее производной наз-ся линейным. Для реш-я такого типа ур-й рассмотрим два метода: метод Лагранжа и метод Бернулли.Рассмотрим однородное ДУ Это ур-е с разделяющимися переем-ми Решение ур-я Общее... .


  • - Линейные ДУ, однород-е и неоднород-е. Понятие общего реш-я. Метод Лагранжа вариации произв-х постоянных.

    Определение. ДУ наз-ся однород-м, если ф-я может быть представлена, как ф-я отнош-я своих аргументов Пример. Ф-я наз-ся однородной ф-й измерения если Примеры: 1) - 1-й порядок однородности. 2) - 2-й порядок однородности. 3) - нулевой порядок однородности (просто однородная... .


  • - Лекция 8. Применение частных производных: задачи на экстремум. Метод Лагранжа.

    Задачи на экстремум имеют большое значение в экономических расчетах. Это вычисление, например, максимумов дохода, прибыли, минимума издержек в зависимости от нескольких переменных: ресурсов, производственных фондов и т.д. Теория нахождения экстремумов функций... .


  • - Т.2.3. ДУ высших порядков. Уравнение в полных дифференциалах. Т.2.4. Линейные ДУ второго порядка с постоянными коэффициентами. Метод Лагранжа.

    3. 2. 1. ДУ с разделяющимися переменными С.Р. 3. В естествознании, технике и экономике часто приходится иметь дело с эмпирическими формулами, т.е. формулами, составленными на основе обработки статистических данных или...

  • Точка М называется внутренней для некоторого множества G, если она принадлежит этому множеству вместе с некоторой своей окрестностью. Точка N называется граничной для множества G, если в любой ее полной окрестности имеются точки, как принадлежащие G, так и не принадлежащие ему.

    Совокупность всех граничных точек множества G называется границей Г.

    Множество G будет называться областью, если все его точки – внутренние (открытое множество). Множество G с присоединенной границей Г называется замкнутой областью. Область называется ограниченной, если она целиком содержится внутри круга достаточно большого радиуса.

    Наименьшее и наибольшее значения функции в данной области называются абсолютными экстремумами функции в этой области.

    Теорема Вейерштрасса: функция, непрерывная в ограниченной и замкнутой области, достигает в этой области своего наименьшего и своего наибольшего значений.

    Следствие. Абсолютный экстремум функции в данной области достигается либо в критической точке функции, принадлежащей этой области, либо на Для отыскания наибольшего и наименьшего значений функции в замкнутой областиG необходимо найти все ее критические точки в этой области, вычислить значения функции в этих точках (включая граничные) и путем сравнения полученных чисел выбрать наибольшее и наименьшее из них.

    Пример 4.1. Найти абсолютный экстремум функции (наибольшее и наименьшее значения)
    в треугольной областиD с вершинами
    ,
    ,
    (рис.1).


    ;
    ,

    то есть точка О(0, 0) – критическая точка, принадлежащая области D. z(0,0)=0.

      Исследуем границу:

    а) ОА: y=0
    ;z(x, 0)=0; z(0, 0)=0; z(1, 0)=0,

    б) ОВ: х=0
    z(0,y)=0; z(0, 0)=0; z(0, 2)=0,

    в) АВ: ;
    ,

    Пример 4.2. Найти наибольшее и наименьшее значения функции в замкнутой области, ограниченной осями координат и прямой
    .

    1) Найдем критические точки, лежащие в области:

    ,
    ,

    .

      Исследуем границу. Т.к. граница состоит из отрезка ОА оси Ох, отрезка ОВ оси Оу и отрезка АВ, то определим наибольшее и наименьшее значения функции z на каждом из этих отрезков.

    , z(0, 2)=–3, z(0, 0)=5, z(0, 4)=5.

    M 3 (5/3,7/3), z(5/3, 7/3)=–10/3.

    Среди всех найденных значений выбираем z наиб =z(4, 0)=13; z наим =z(1, 2)=–4.

    5. Условный экстремум. Метод множителей Лагранжа

    Рассмотрим задачу, специфическую для функций нескольких переменных, когда ее экстремум ищется не на всей области определения, а на множестве, удовлетворяющему некоторому условию.

    Пусть рассматривается функция
    , аргументыикоторой удовлетворяют условию
    , называемому уравнением связи.

    Точка
    называется точкой условного максимума (минимума), если существует такая окрестность этой точки, что для всех точек
    из этой окрестности удовлетворяющих условию
    , выполняется неравенство
    или
    .

    На рис.2 изображена точка условного максимума
    . Очевидно, что она не является точкой безусловного экстремума функции
    (на рис.2 это точка
    ).

    Наиболее простым способом нахождения условного экстремума функции двух переменных является сведение задачи к отысканию экстремума функции одной переменной. Допустим уравнение связи
    удалось разрешить относительно одной из переменных, например, выразитьчерез:
    . Подставив полученное выражение в функцию двух переменных, получим

    т.е. функцию одной переменной. Ее экстремум и будет условным экстремумом функции
    .

    Пример 5.1. Найти точки максимума и минимума функции
    при условии
    .

    Решение. Выразим из уравнения
    переменнуючерез переменнуюи подставим полученное выражение
    в функцию. Получим
    или
    . Эта функция имеет единственный минимум при
    . Соответствующее значение функции
    . Таким образом,
    – точка условного экстремума (минимума).

    В рассмотренном примере уравнение связи
    оказалось линейным, поэтому его легко удалось разрешить относительно одной из переменных. Однако в более сложных случаях сделать это не удается.

    Для отыскания условного экстремума в общем случае используется метод множителей Лагранжа. Рассмотрим функцию трех переменных . Эта функция называется функцией Лагранжа, а– множитель Лагранжа. Верна следующая теорема.

    Теорема. Если точка
    является точкой условного экстремума функции
    при условии
    , то существует значениетакое, что точка
    является точкой экстремума функции
    .

    Таким образом, для нахождения условного экстремума функции
    при условии
    требуется найти решение системы

    Последнее из этих уравнений совпадает с уравнением связи. Первые два уравнения системы можно переписать в виде, т.е. в точке условного экстремума градиенты функций
    и
    коллинеарны. На рис. 3 показан геометрический смысл условий Лагранжа. Линия
    пунктирная, линия уровня
    функции
    сплошные. Из рис. следует, что в точке условного экстремума линия уровня функции
    касается линии
    .

    Пример 5.2 . Найти точки экстремума функции
    при условии
    , используя метод множителей Лагранжа.

    Решение. Составляем функцию Лагранжа . Приравнивая к нулю ее частные производные, получим систему уравнений:

    Ее единственное решение . Таким образом, точкой условного экстремума может быть только точка (3; 1). Нетрудно убедиться в том, что в этой точке функция
    имеет условный минимум. В случае, если число переменных более двух, моет рассматриваться и несколько уравнений связи. Соответственно в этом случае будет и несколько множителей Лагранжа.

    Задача нахождения условного экстремума используется при решении таких экономических задач, как нахождение оптимального распределения ресурсов, выбор оптимального портфеля ценных бумаг и др.