Болезни Военный билет Призыв

Марс кьюриосити последние. Что внутри марсохода Curiosity

  • ChemCam представляет собой набор инструментов для проведения дистанционного химического анализа различных образцов. Работа проходит следующим образом: лазер проводит серию выстрелов по исследуемому объекту. Затем проводится анализ спектра света, который излучила испарившаяся порода. ChemCam может изучать объекты, расположенные на расстоянии до 7 метров от него. Стоимость прибора составила около 10 миллионов долларов (перерасход 1.5 млн. долл.). В штатном режиме фокусировка лазера на объекте проходит автоматически.
  • MastCam: система состоящая из двух камер, и содержит множество спектральных фильтров. Возможно получение снимков в естественных цветах размером 1600 × 1200 пикселей. Видео с разрешением 720p (1280 × 720) снимается с частотой до 10 кадров в секунду и аппаратно сжимается. Первая камера — Medium Angle Camera (MAC), имеет фокусное расстояние в 34 мм и 15 градусное поле зрения, 1 пиксель равен 22 см при расстоянии 1 км.
  • Narrow Angle Camera (NAC), имеет фокусное расстояние в 100 мм, 5.1 градусное поле зрения, 1 пиксель равен 7,4 см при расстоянии 1 км. Каждая камера имеет по 8 Гб флеш-памяти, которая способна хранить более 5500 необработанных изображений; имеется поддержка JPEG-сжатия и сжатия без потери качества. В камерах есть функция автоматической фокусировки, которая позволяет им сфокусироваться на объектах, от 2,1 м до бесконечности. Несмотря на наличие у производителя конфигурации с трансфокатором, камеры не имеют зума, поскольку времени для тестирования не оставалось. Каждая камера имеет встроенный фильтр Байера RGB и по 8 переключаемых ИК-фильтров. По сравнению с панорамной камерой, которая стоит на Спирите и Оппортьюнити (MER) и получает чёрно-белые изображения размером 1024 × 1024 пикселя, камера MAC MastCam имеет угловое разрешение в 1,25 раза выше, а камера NAC MastCam — в 3,67 раза выше.
  • Mars Hand Lens Imager (MAHLI): Система состоит из камеры, закреплённой на роботизированной «руке» марсохода, используется для получения микроскопических изображений горных пород и грунта. MAHLI может снять изображение размером 1600 × 1200 пикселей и с разрешением до 14,5 мкм на пиксель. MAHLI имеет фокусное расстояние от 18,3 мм до 21,3 мм и поле зрения от 33,8 до 38,5 градусов. MAHLI имеет как белую, так и ультрафиолетовую светодиодную подсветку для работы в темноте или с использованием флуоресцентной подсветки. Ультрафиолетовая подсветка необходима для вызова излучения карбонатных и эвапоритных минералов, наличие которых позволяет говорить о том, что в формировании поверхности Марса принимала участие вода. MAHLI фокусируется на объектах от 1 мм. Система может сделать несколько изображений с акцентом на обработку снимка. MAHLI может сохранить необработанное фото без потери качества или же сделать сжатие JPEG файла.
  • MSL Mars Descent Imager (MARDI): Во время спуска на поверхность Марса, MARDI передавал цветное изображение размером 1600 × 1200 пикселей со временем экспозиции в 1,3 мс, камера начала съёмку с расстояния 3,7 км и закончила на расстояния 5 метров от поверхности Марса, снимала цветное изображение с частотой 5 кадров в секунду, съёмка продлилась около 2-ух минут. 1 пиксель равен 1,5 метра на расстоянии 2 км, и 1,5 мм на расстоянии 2 метра, угол обзора камеры — 90 градусов. MARDI содержит 8 Гб встроенной памяти, которая может хранить более 4000 фотографий. Снимки с камеры позволили увидеть окружающий рельеф на месте посадки. JunoCam, построенная для космического аппарата Juno, основана на технологии MARDI.
  • Alpha-particle X-ray spectrometer (APXS): Это устройство будет облучать альфа-частицами и сопоставлять спектры в рентгеновских лучах для определения элементного состава породы. APXS является формой Particle-Induced X-ray Emission (PIXE), который ранее использовался в Mars Pathfinder и Mars Exploration Rovers. APXS был разработан Канадским космическим агентством. MacDonald Dettwiler (MDA) — Аэрокосмическая канадская компания, которая строит Canadarm и RADARSAT, несут ответственность за проектирование и строительство APXS. Команда по разработке APXS включает в себя членов из Университета Гвельфов, Университета Нью-Брансуик, Университета Западного Онтарио, НАСА, Университет Калифорнии, Сан-Диего и Корнельского университета.
  • Collection and Handling for In-Situ Martian Rock Analysis (CHIMRA): CHIMRA представляет собой ковш 4х7 сантиметров, который зачерпывает грунт. Во внутренних полостях CHIMRA он просеивается через сито с ячейкой 150 микрон, чему помогает работа вибромеханизма, лишнее удаляется, а на просеивание отправляется следующая порция. Всего проходит три этапа забора из ковша и просеивания грунта. В результате остается немного порошка необходимой фракции, который и отправляется в грунтоприемник, на теле ровера, а лишнее выбрасывается. В итоге из всего ковша на анализ поступает слой грунта в 1 мм. Подготовленный порошок изучают приборы CheMin и SAM.
  • CheMin: Chemin исследует химический и минералогический состав, с помощью рентгеновского флуоресцентного инструмента и рентгеновской дифракции. CheMin является одним из четырёх спектрометров. CheMin позволяет определить обилие полезных ископаемых на Марсе. Инструмент был разработан Дэвидом Блейком в Ames Research Center НАСА и Jet Propulsion Laboratory НАСА. Марсоход будет бурить горные породы, а полученный порошок будет собран инструментом. Затем рентгеновские лучи, будут направлены на порошок, внутренняя кристаллическая структура полезных ископаемых отразится на дифракционной картине лучей. Дифракция рентгеновских лучей различна для разных минералов, поэтому картина дифракции позволит учёным определить структуру вещества. Информацию о светимости атомов и дифракционную картину будет снимать специально подготовленная E2V CCD-224 матрица размером 600х600 пикселей. У Кьюриосити имеется 27 ячеек для анализа образцов, после изучения одного образца ячейка может быть переиспользована, но анализ проводимый над ней будет иметь меньшую точность из-за загрязнения предыдущим образцом. Таким образом у ровера есть всего 27 попыток для полноценного изучения образцов. Ещё 5 запаянных ячеек хранят образцы с Земли. Они нужны чтобы протестировать работоспособность прибора в марсианских условиях. Для работы прибора нужна температура −60 градусов Цельсия, иначе будут мешать помехи от прибора DAN.
  • Sample Analysis at Mars (SAM): Набор инструментов SAM будет анализировать твёрдые образцы, органические вещества и состав атмосферы. Инструмент был разработан: Goddard Space Flight Center, Лаборатория Inter-Universitaire, Французскими CNRS и Honeybee Robotics, наряду со многими другими партнёрами.
  • Radiation assessment detector (RAD), «Детектор оценки радиации»: Этот прибор собирает данные для оценки уровня радиационного фона, который будет воздействовать на участников будущих экспедиций к Марсу. Прибор установлен практически в самом «сердце» ровера, и тем самым имитирует астронавта, находящегося внутри космического корабля. RAD был включен первым из научнах инструментов для MSL, ещё на околоземной орбите, и фиксировал радиационный фон внутри аппарата — а затем и внутри ровера во время его работы на поверхности Марса. Он собирает данные об интенсивности облучения двух типов: высокоэнергетических галактических лучей и частиц, испускаемых Солнцем. RAD был разработан в Германии Юго-западным исследовательским институтом (SwRI) внеземной физики в группе Christian-Albrechts-Universität zu Kiel при финансовой поддержке управления Exploration Systems Mission в штаб-квартире НАСА и Германии.
  • Dynamic Albedo of Neutrons (DAN): «Динамическое альбедо нейтронов» (ДАН) используется для обнаружения водорода, водяного льда вблизи поверхности Марса, предоставлен Федеральным Космическим Агентством (Роскосмос). Является совместной разработкой НИИ автоматики им. Н. Л. Духова при «Росатоме» (импульсный нейтронный генератор), Института космических исследований РАН (блок детектирования) и Объединённого института ядерных исследований (калибровка). Стоимость разработки прибора составила около 100 млн рублей. Фото прибора. В состав прибора входят импульсный источник нейтронов и приемник нейтронного излучения. Генератор испускает в сторону марсианской поверхности короткие, мощные импульсы нейтронов. Продолжительность импульса составляет около 1 мкс, мощность потока — до 10 млн нейтронов с энергией 14 МэВ за один импульс. Частицы проникают в грунт Марса на глубину до 1 м, где взаимодействуют с ядрами основных породообразующих элементов, в результате чего, замедляются и частично поглощаются. Оставшаяся часть нейтронов отражается и регистрируется приемником. Точные измерения возможны до глубины 50 - 70 см. Помимо активного обследования поверхности Красной планеты, прибор способен вести мониторинг естественного радиационного фона поверхности (пассивное обследование).
  • Rover environmental monitoring station (REMS): Комплект метеорологических приборов и ультрафиолетовый датчик предоставило Испанское Министерство Образования и Науки. Исследовательская группа во главе с Хавьером Гомес-Эльвира, Центра Астробиологии (Мадрид) включает Финский Метеорологический институт в качестве партнёра. Установили её на мачту камеры для измерения атмосферного давления, влажности, направления ветра, воздушных и наземных температур, ультрафиолетового излучения. Все датчики расположены в трёх частях: две стрелы присоединены к марсоходу, Remote Sensing Mast (RSM), Ultraviolet Sensor (UVS) находится на верхней мачте марсохода, и Instrument Control Unit (ICU) внутри корпуса. REMS даст новые представления о местном гидрологическом состоянии, о разрушительном влиянии ультрафиолетового излучения, о подземной жизни.
  • MSL entry descent and landing instrumentation (MEDLI): Основной целью MEDLI является изучение атмосферной среды. После замедления спускаемого аппарата с марсоходом в плотных слоях атмосферы теплозащитный экран отделился — в этот период были собраны необходимые данные о марсианской атмосфере. Эти данные будут использованы в будущих миссиях, дав возможность определить параметры атмосферы. Также их возможно использовать для изменения конструкции спускаемого аппарата в будущих миссиях на Марс. MEDLI состоит из трёх основных приборов: MEDLI Integrated Sensor Plugs (MISP), Mars Entry Atmospheric Data System (MEADS) и Sensor Support Electronics (SSE).
  • Hazard avoidance cameras (Hazcams): Марсоход имеет две пары чёрно-белых навигационных камеры, расположенных по бокам аппарата. Они используются для избежания опасности во время передвижения марсохода и для безопасного наведения манипулятора на камни и почву. Камеры делают 3D изображения (поле зрения каждой камеры — 120 градусов), составляют карту местности впереди марсохода. Составленные карты позволяют марсоходу избежать случайных столкновений и используются программным обеспечением аппарата для выбора необходимого пути преодоления препятствий.
  • Navigation cameras (Navcams): Для навигации марсоход использует пару чёрно-белых камер, которые установлены на мачте для слежения за передвижением марсохода. Камеры имеют 45 градусное поле зрения, делают 3D изображения. Их разрешение позволяет видеть объект размером в 2 сантиметра с расстояния 25 метров.

Перед нами пустыня, голая и безжизненная. Горизонт обозначен кромкой кратера, в центре поднимается пятикилометровая вершина.

Перед нами пустыня, голая и безжизненная. Горизонт обозначен кромкой кратера, в центре поднимается пятикилометровая вершина. Прямо у наших ног блестят колеса и панели марсохода. Не пугайтесь: мы в Лондоне, где уникальная Обсерватория данных позволяет геологам перенестись в марсианскую пустыню и работать бок о бок с Curiosity, самым сложным роботом, который когда-либо отправлялся в космос.
Светящаяся на мониторах панорама составлена из кадров, присланных марсоходом на Землю. Голубое небо не должно обманывать: на Марсе оно тускло-желтое, но человеческому глазу привычнее оттенки, которые создаются светом, рассеянным нашей земной атмосферой. Поэтому снимки проходят обработку и отображаются в ненатуральных цветах, позволяя спокойно рассмотреть каждый камешек. «Геология - наука полевая, - объяснил нам профессор Имперского колледжа Лондона Санджев Гупта. - Мы любим пройтись по земле с молотком. Налить кофе из термоса, рассмотреть находки и отобрать самое интересное для лаборатории». На Марсе нет ни лабораторий, ни термосов, зато туда геологи отправили Curiosity, своего электронного коллегу. Соседняя планета интригует человечество давно, и чем больше мы ее узнаем, чем чаще обсуждаем будущую колонизацию, тем серьезнее основания для этого любопытства.

Когда-то Земля и Марс были очень похожи. Обе планеты имели океаны жидкой воды и, видимо, достаточно простой органики. И на Марсе, как на Земле, извергались вулканы, клубилась густая атмосфера, однако в один несчастливый момент что-то пошло не так. «Мы стараемся понять, каким было это место миллиарды лет назад и почему оно настолько изменилось, - сказал профессор геологии из Калифорнийского технологического института Джон Грётцингер в одном из интервью. - Мы полагаем, что там была вода, но не знаем, могла ли она поддерживать жизнь. А если могла, то поддерживала ли. Если и так, то неизвестно, сохранились ли хоть какие-то свидетельства в камнях». Выяснить все это и предстояло геологу-марсоходу.

Curiosity регулярно и тщательно фотографируется, позволяя осмотреть себя и оценить общее состояние. Это «селфи» составлено из снимков, сделанных камерой MAHLI. Она расположена на трехсуставном манипуляторе, который при объединении снимков оказался почти не виден. В кадр не попали находящиеся на нем ударная дрель, ковшик для сбора рыхлых образцов, сито для их просеивания и металлические щеточки для очистки камней от пыли. Не видны также камера для макросъемки MAHLI и рентгеновский спектрометр APXS для анализа химического состава образцов.
1. Мощным системам ровера солнечных батарей не хватит, и питание ему обеспечивает радиоизотопный термоэлектрогенератор (РИТЭГ). 4,8 кг диоксида плутония-238 под кожухом ежедневно поставляют 2,5 КВт·ч. Видны лопасти охлаждающего радиатора.
2. Лазер прибора ChemCam выдает по 50−75 наносекундных импульсов, которые испаряют камень на расстоянии до 7 м и позволяют анализировать спектр получившейся плазмы, чтобы установить состав цели.
3. Пара цветных камер MastCam ведет съемку через различные ИК-светофильтры.
4. Метеостанция REMS следит за давлением и ветром, температурой, влажностью и уровнем ультрафиолетового излучения.
5. Манипулятор с комплексом инструментов и приборов (не виден).
6. SAM - газовый хроматограф, масс-спектрометр и лазерный спектрометр
для установления состава летучих веществ в испаряемых образцах и в атмосфере.
7. CheMin выясняет состав и минералогию измельченных образцов по картине дифракции рентгеновских лучей.
8. Детектор радиации RAD заработал еще на околоземной орбите и собирал данные на протяжении всего перелета к Марсу.
9. Детектор нейтронов DAN позволяет обнаруживать водород, связанный в молекулах воды. Это российский вклад в работу марсохода.
10. Кожух антенны для связи со спутниками Mars Reconnaissance Orbiter (около 2 Мбит/с) и Mars Odyssey (около 200 Мбит/с).
11. Антенна для прямой связи с Землей в Х-диапазоне (0,5−32 кбит/с).
12. Во время спуска камера MARDI вела цветную съемку с высоким разрешением, позволив детально рассмотреть место посадки.
13. Правая и левая пары черно-белых камер Navcams для построения 3D-моделей ближайшей местности.
14. Панель с чистыми образцами позволяет проверить работу химических анализаторов марсохода.
15. Запасные биты для дрели.
16. В этот лоток ссыпаются подготовленные образцы из ковшика для изучения макрокамерой MAHLI или спектрометром APXS.
17. 20-дюймовые колеса с независимыми приводами, на титановых пружинящих спицах. По следам, оставленным рифлением, можно оценить свойства грунта и следить за движением. Рисунок включает буквы азбуки Морзе - JPL.

Начало экспедиции

Свирепый Марс - несчастливая цель для космонавтики. Начиная с 1960-х к нему отправилось почти полсотни аппаратов, большинство из которых разбилось, отключилось, не сумело выйти на орбиту и навсегда сгинуло в космосе. Однако усилия не были напрасны, и планету изучали не только с орбиты, но даже с помощью нескольких планетоходов. В 1997 году по Марсу проехался 10-килограммовый Sojourner. Легендой стали близнецы Spirit и Opportunity: второй из них героически продолжает работу уже больше 12 лет подряд. Но Curiosity - самый внушительный из них, целая роботизированная лаборатория размером с автомобиль.

6 августа 2012 года спускаемый модуль Curiosity выбросил систему парашютов, которые позволили ему замедлиться в разреженной атмосфере. Сработали восемь реактивных двигателей торможения, и система тросов осторожно опустила марсоход на дно кратера Гейла. Место посадки было выбрано после долгих споров: по словам Санджева Гупты, именно здесь нашлись все условия для того, чтобы лучше узнать геологическое - видимо, весьма бурное - прошлое Марса. Орбитальные съемки указали на наличие глин, появление которых требует присутствия воды и в которых на Земле неплохо сохраняется органика. Высокие склоны горы Шарпа (Эолиды) обещали возможность увидеть слои древних пород. Довольно ровная поверхность выглядела безопасной. Curiosity успешно вышел на связь и обновил программное обеспечение. Часть кода, использовавшегося при перелете и посадке, заменилась новой - из космонавта марсоход окончательно стал геологом.
Год первый: cледы воды

Вскоре геолог «размял ноги» - шесть алюминиевых колес, проверил многочисленные камеры и протестировал оборудование. Его коллеги на Земле рассмотрели точку посадки со всех сторон и выбрали направление. Путь до горы Шарпа должен был занять около года, и за это время предстояло немало работы. Прямой канал связи с Землей не отличается хорошей пропускной способностью, но каждый марсианский день (сол) над марсоходом пролетают орбитальные аппараты. Обмен с ними происходит в тысячи раз быстрее, позволяя ежедневно передавать сотни мегабит данных. Ученые анализируют их в Обсерватории данных, рассматривают снимки на экранах компьютеров, выбирают задачи на следующий сол или сразу на несколько и отправляют код обратно на Марс.
Работая практически на другой планете, многие из них вынуждены сами жить по марсианскому календарю и подстраиваться под чуть более длинные сутки. Сегодня для них - «солдня» (tosol), завтра - «солвтра» (solmorrow), а сутки - просто сол. Так, спустя 40 солов Санджев Гупта выступил с презентацией, на которой объявил: Curiosity движется по руслу древней реки. Мелкая, обточенная водой каменная галька указывала на течение со скоростью около 1 м/с и глубину «по щиколотку или по колено». Позднее были обработаны и данные с прибора DAN, который для Curiosity изготовила команда Игоря Митрофанова из Института космических исследований РАН. Просвечивая грунт нейтронами, детектор показал, что до сих пор на глубине в нем сохраняется до 4% воды. Это, конечно, суше, чем даже в самой сухой из земных пустынь, но в прошлом Марс все-таки был полон влаги, и марсоход мог вычеркнуть этот вопрос из своего списка.

В центре кратера
64 экрана высокого разрешения создают панораму охватом 313 градусов: Обсерватория данных KPMG в Имперском колледже Лондона позволяет геологам перенестись прямо в кратер Гейла и работать на Марсе почти так же, как на Земле. «Посмотрите поближе, вот здесь тоже следы воды: озеро было довольно глубоким. Конечно, не таким, как Байкал, но достаточно глубоким», - иллюзия была настолько реальной, что казалось, будто профессор Санджев Гупта перепрыгивал с камня на камень. Мы посетили Обсерваторию данных и пообщались с ученым в рамках мероприятий Года науки и образования Великобритании и России - 2017, организованного Британским советом и посольством Великобритании.
Год второй: cтановится опаснее

Свой первый юбилей на Марсе Curiosity встретил празднично и сыграл мелодию «С днем рожденья тебя», меняя частоту вибраций ковшика на своем тяжелом 2,1-метровом манипуляторе. Ковшиком «роборука» набирает рыхлый грунт, ровняет, просеивает и ссыпает немного в приемники своих химических анализаторов. Бур с полыми сменными битами позволяет работать с твердыми породами, а податливый песок марсоход может разворошить прямо колесами, открыв для своих инструментов внутренние слои. Именно такие эксперименты вскоре принесли довольно неприятный сюрприз: в местном грунте обнаружилось до 5% перхлоратов кальция и магния.

Вещества это не только ядовитые, но и взрывчатые, а перхлорат аммония и вовсе используется как основа твердого ракетного топлива. Перхлораты уже обнаруживались в месте посадки зонда Phoenix, однако теперь выходило, что эти соли на Марсе - явление глобальное. В ледяной бескислородной атмосфере перхлораты стабильны и неопасны, да и концентрации не слишком высоки. Для будущих колонистов перхлораты могут стать полезным источником топлива и серьезной угрозой здоровью. Но для геологов, работающих с Curiosity, они способны поставить крест на шансах обнаружить органику. Анализируя образцы, марсоход нагревает их, а в таких условиях перхлораты быстро разлагают органические соединения. Реакция идет бурно, с горением и дымом, не оставляя различимых следов исходных веществ.

Год третий: у подножия

Однако и органику Curiosity обнаружил - об этом было объявлено позже, после того как на 746-й сол, покрыв в общей сложности 6,9 км, марсоход-геолог добрался до подножия горы Шарпа. «Получив эти данные, я сразу подумал, что нужно все обязательно перепроверить», - сказал Джон Грётцингер. В самом деле, уже когда Curiosity работал на Марсе, выяснилось, что некоторые земные бактерии - такие как Tersicoccus phoenicis - устойчивы к методам уборки чистых комнат. Подсчитали даже, что к моменту запуска на марсоходе должно было остаться от 20 до 40 тыс. устойчивых спор. Никто не может поручиться, что какие-то из них не добрались с ним до горы Шарпа.

Для проверки датчиков имеется на борту и небольшой запас чистых образцов органических веществ в запаянных металлических контейнерах - можно ли стопроцентно уверенно сказать, что они остались герметичными? Однако графики, которые предъявили на пресс-конференции в NASA, сомнений не вызывали: за время работы марсианский геолог зафиксировал несколько резких - сразу в десять раз - скачков содержания метана в атмосфере. Этот газ вполне может иметь и небиологическое происхождение, но главное - когда-то он мог стать источником более сложных органических веществ. Следы их, прежде всего хлорбензол, обнаружились и в грунте Марса.
Годы четвертый и пятый: живые реки

К этому времени Curiosity пробурил уже полтора десятка отверстий, оставив вдоль своего пути идеально круглые 1,6-сантиметровые следы, которые когда-нибудь обозначат туристический маршрут, посвященный его экспедиции. Электромагнитный механизм, заставлявший дрель совершать до 1800 ударов в минуту для работы с самой твердой породой, вышел из строя. Однако изученные выходы глин и кристаллы гематита, слои силикатных шпатов и прорезанные водой русла открывали уже однозначную картину: некогда кратер был озером, в которое спускалась ветвящаяся речная дельта.

Камерам Curiosity теперь открывались склоны горы Шарпа, сам вид которых оставлял мало сомнений в их осадочном происхождении. Слой за слоем, сотнями миллионов лет вода то прибывала, то отступала, нанося породы и оставляя выветриваться в центре кратера, пока не ушла окончательно, собрав целую вершину. «Там, где сейчас возвышается гора, когда-то был бассейн, время от времени заполнявшийся водой», - пояснил Джон Грётцингер. Озеро стратифицировалось по высоте: условия на мелководье и на глубине различались и температурой, и составом. Теоретически это могло обеспечить условия для развития разнообразных реакций и даже микробных форм.

Цвета на трехмерной модели кратера Гейла соответствуют высоте. В центре расположена гора Эолида (Aeolis Mons, 01), которая на 5,5 км возвышается над одноименной равниной (Aeolis Palus, 02) на дне кратера. Отмечено место посадки Curiosity (03), а также долина Фарах (Farah Vallis, 04) - одно из предполагаемых русел древних рек, впадавших в ныне исчезнувшее озеро.
Путешествие продолжается

Экспедиция Curiosity далеко не закончена, да и энергии бортового генератора должно хватить на 14 земных лет работы. Геолог остается в пути уже почти 1750 солов, преодолев больше 16 км и поднявшись по склону на 165 м. Насколько могут заглянуть его инструменты, выше по‑прежнему видны следы осадочных пород древнего озера, но как знать, где они кончаются и на что еще укажут? Робот-геолог продолжает восхождение, а Санджев Гупта и его коллеги уже выбирают место для посадки следующего. Несмотря на гибель спускаемого зонда Schiaparelli, орбитальный модуль TGO в прошлом году благополучно вышел на орбиту, запустив первый этап европейско-российской программы «Экзомарс». Марсоход, который должен стартовать в 2020 году, станет следующим.

Российских приборов в нем будет уже два. Сам робот примерно вдвое легче Curiosity, зато его бур сможет забирать пробы с глубины уже до 2 м, а комплекс приборов Pasteur включит инструменты для прямого поиска следов прошлой - или даже сохранившейся до сих пор - жизни. «У вас есть заветное желание, находка, о которой вы особенно мечтаете?» - спросили мы профессора Гупту. «Безусловно, есть: окаменелость, - ученый ответил не раздумывая. - Но это, конечно, вряд ли произойдет. Если жизнь там и была, то только какие-нибудь микробы… Но ведь, согласитесь, это стало бы чем-то невероятным».

На расчетной орбите, все системы работают штатно. Космос-журнал уже описал задачи марсохода и второго проекта NASA по исследованию Марса , и основные вопросы, которые ставит перед человечеством красная планета . Сконцентрируемся теперь на самом марсоходе.

Цели миссии

Основная задача Curiosity - определить, была ли когда-то красная планета способна поддерживать микробную жизнь . Марсоход не рассчитан на прямой ответ на вопрос, существовала ли жизнь на Марсе, это вне способности его приборов. Но он позволит оценить возможность прошлой и текущей обитаемости планеты. Для этого были сформулированы четыре основных научных цели марсохода.

  1. Оценка биологического потенциала планеты за счет поиска органических углеродсодержащих соединений и других химических компонентов, необходимых для жизни, таких как азот, фосфор, сера и кислород.
  2. Анализ геологии места посадки марсохода, кратера Галле, для поиска наметок относительно источников энергии на Марсе.
  3. Описание эволюции атмосферы Марса (эту задачу более детально решит зонд ), ее ткущего распределения по планете, и циркуляции воды и углекислого газа.
  4. Характеристика радиационного фона на поверхности планеты, его опасности для жизни и возможности по разрушению органических молекул.

Хронология миссии

Ракета-носитель Атлас 5 вывела марсоход на расчетную орбиту в субботу. О программе перелета на эту орбиту мы уже писали ранее . Поскольку запуск произошел в запланированное время (запуск был перенесен всего на один день, хотя пусковое окно открыто до 18 декабря), марсоход достигнет цели 6 августа 2012 года. После посадки он должен проработать как минимум один марсианский год (98 земных недель). Если все пойдет так же хорошо, как с марсоходами Spirit и Opportunity , то первоначальная научная программа может быть расширена.

Параметры марсохода

Curiosity - крупнейший марсоход за всю историю исследования планеты. Его масса - 900 килограмм, длина - около 3 метров, ширина - 2.8, высота - 2.1 метра (с учетом мачты крепления камеры). Марсоход оснащен роботизированной рукой длиной 2.1 метра и имеющей пять степеней свободы.

Диаметр колес марсохода - 0.5 метра, двигательная установка позволит разгоняться до 3.5 сантиметров в секунду. При этом каждое колесо имеет независимый мотор, а пары передних и задних колес также независимое рулевое управление. Подвесная система обеспечит постоянный контакт всех колес с поверхностью планеты.

В отличие от своих предшественников, полагавшихся на солнечные панели, Curiosity оснащен ядерным источником питания. Источника хватит как минимум на один марсианский год, а может, и дольше.

Инструменты марсохода

На Curiosity установлены десять научных инструментов.

Несколько инструментов предназначены для проведения фото- и видеосъемки. MastCam предназначена для съемки панорам марсианской поверхности, MARDI предназначена исключительно для записи процесса спуска. Камера MAHLI является противоположностью MastCam, она будет снимать объекты меньше толщины человеческого волоса.

Другая группа инструментов предназначена для анализа состава поверхности Марса. Самый тяжелый из всех инструментов SAM будет искать углеродсодержащие соединения. Два инструмента будут использовать рентгеновское излучение для поверхности. CheMin будет облучать им исследуемые образцы для определения их кристаллической структуры, а APXS будет использовать рентгеновскую подсветку для спектрального анализа химического состава. При помощи бомбардировки грунта нейтронами прибор DAN будет искать воду и лед, находящиеся в подпочвенных минералах.

ChemCam - лазерный инструмент, который будет использовать луч лазера для испарения образцов на расстоянии до 7 метров. Спектр полученной пыли затем будет анализироваться спектрометром. Это позволит марсоходу исследовать образцы, до которых не дотянется его роботизированная рука.

Оставшиеся два инструмента, RAD и REMS, предназначены соответственно для анализа радиационного фона и климатических условий.

Схема посадки

Когда на Марс прилетели два предшественника Curiosity, марсоходы Spirit и Opportunity, они спустились на поверхность по баллистической траектории. Когда Curiosity начнет спуск в атмосфере, его скорость будет постепенно замедляться из-за ее сопротивления. В это время марсоход будет использовать двигательную установку для маневрирования к нужному месту посадки. Затем он раскроет парашют для лучшего замедления. Выбор наилучшей точки посадки будет выбран при помощи специального радара.

После того, как скорость снизится до необходимого значения, а сам марсоход будет находиться довольно близко к поверхности, спускаемая капсула отделится от своей верхней части с парашютом и запустит ракетные двигатели для торможения на спуске. За несколько секунд до посадки капсулы марсоход будет вынут из нее при помощи специального крана, который опустит его на поверхность, а спускаемая капсула упадет неподалеку, но на безопасном расстоянии.

Место посадки

Кратер Галле , место посадки Curiosity, имеет диаметр 154 километра. Внутри кратера находится гора высотой около 5.5 километров. Ее склоны достаточно пологи, чтобы марсоход мог на нее взобраться. Кратер был выбран потому, что он, возможно, когда-то содержал жидкую воду. Его высота - одна из наименьших на Марсе, так что если вода когда-то текла по поверхности красной планеты, то она должна была затечь и в кратер Галле. Наблюдения с орбиты подтверждают это предположение, так как там были найдены глины и сульфатные минералы, которые формируются при наличии воды. В кратере можно изучить различные слои геологических отложений и составить картину его эволюции.

6 августа 2012 года на поверхность Марса десантировался аппарат «Любопытство» (Curiosity). В следующие 23 месяца марсоход будет изучать поверхность планеты, её минералогический состав и спектр излучения, искать следы жизни, а также оценит возможность высадки человека.

Основная тактика исследований состоит в поиске интересных пород камерами высокого разрешения. Если таковые появляются, то марсоход издалека облучает лазером исследуемую породу. Результат спектрального анализа определяет, нужно ли доставать манипулятор с микроскопом и рентгеновским спектрометром. Далее «Кьюриосити» может извлечь и загрузить образец во одну из 74 чашечек внутренней лаборатории для дальнейшего анализа.

При всем своем большом обвесе и внешней легкости аппарат имеет массу легкового автомобиля (900 кг) и весит на поверхности Марса 340 кг. Для запитывания всего оборудоваения используется энергия распада плутония-238 от радиоизотопного термоэлектрического генератора компании «Боинг», ресурс которого составляет как минимум 14 лет. На данный момент он вырабатывает 2,5 квт·ч тепловой энергии и 125 Вт электрической, со временем выход электричества будет снижаться до 100 Вт.

На марсоходе установлено сразу несколько различных типов камер . Mast Camera - это система из двух неодинаковых камер обычной цветопередачи, которые могут делать снимки (в том числе стереоскопические) разрешением 1600×1200 пикселов и, что ново для марсоходов, записывать аппаратно сжатый 720p-видеопоток (1280×720). Для хранения полученного материала система имеет 8 гигабайт флэш-памяти для каждой из камер - этого достаточно, чтобы уместить несколько тысяч снимков и пару часов видеозаписи. Обработка фотографий и видеороликов идет без нагрузки на управляющую электронику «Кьюриосити». Несмотря на наличие у производителя конфигурации с трансфокатором, камеры не имеют зума, поскольку времени для тестирования не оставалось.


Иллюстрация изображений от MastCam. Красочные панорамы поверхности Марса получаются путем склейки уже нескольких изображений. Камеры MastCam будут использоваться не только для развлечения публики погодой красной планеты, но и в качестве помощи при извлечении образцов манипулятором и при перемещении.

Также на мачте закреплена часть системы ChemCam . Это лазерно-искровой эмиссионный спектрометр и блок формирования изображения, которые работают в паре: после испарения крошечного количества исследуемой породы 5-наносекундным импульсом лазера производится анализ спектра полученного плазменного излучения, что позволит определить элементный состав образца. При этом не нужно выдвигать манипулятор.

Разрешающая способность оборудования в 5-10 раз выше, чем у установленного на предыдущие марсоходы. С 7 метров ChemCam может определить тип изучаемой породы (например, вулканическая или осадочная), структуру грунта и камней, отследить преобладающие элементы, распознать лед и минералы с водными молекулами в кристаллической структуре, измерить следы эрозии на камнях и визуально помочь при исследовании пород манипулятором.

Стоимость ChemCam составила 10 млн. долларов (менее полупроцента всей стоимости экспедиции). Система состоит из лазера на мачте и трех спектрографов внутри корпуса, излучение к которым подводится по оптоволоконному световоду.

На манипуляторе марсохода установлена Mars Hand Lens Imager, способная получать снимки размером в 1600×1200 пикселов, на которых могут быть видны детали в 12,5 микрометров. Камера имеет белую подсветку для работы как днем, так и ночью. Ультрафиолетовая подсветка необходима для вызова излучения карбонатных и эвапоритных минералов, наличие которых позволяет говорить о том, что в формировании поверхности Марса принимала участие вода.

Для целей картографирования использовалась камера Mars Descent Imager (MARDI), которая во время спуска аппарата записывала снимки размером 1600×1200 пикселов на 8 гигабайт флэш-памяти. Как только до поверхности осталось несколько километров, камера начала делать пять цветных фотографий в секунду. Полученные данные позволят составить карту ареала обитания «Кьюриосити».

По бокам марсохода установлены две пары черно-белых камер с углом обзора 120 градусов. Система Hazcams используется при выполнении маневров и выдвижении манипулятора. На мачте расположена система Navcams, которая представляют из себя две черно-белые камеры с углом обзора 45 градусов. Программы марсохода постоянно строят клиновидную 3D-карту на основе данных этих камер, что позволяет избегать столкновений с неожиданными препятствиями. Один из первых снимков с «Кьюриосити» - это картинка именно с камеры Hazcam.

Для измерения погодных условий на марсоходе установлена станция мониторинга окружающей среды (Rover Environmental Monitoring Station), которая измеряет давление, температуры атмосферы и поверхности, скорость ветра и ультрафиолетовое излучение. REMS защищена от марсианской пыли.

6 августа 2012 назад марсоход Curiosity после восьмимесячного путешествия . Аппарат преодолел 567 миллионов километров по пути к Красной планете.

За это время марсоход Curiosity сделал открытия, которые указывают на существование благоприятных условий для жизни микробов миллиарды лет назад, сделал бесчисленное количество работ разными инструментами, сверлил, стрелял лазером, фотографировал, отправил на Землю 468 926 снимков.

Снимки марсохода Curiosity и новости с Красной планеты за последние несколько лет.

2. С дальнего расстояния поверхность Марса выглядит рыжевато-красной из-за красной пыли, которая содержится в атмосфере. Вблизи цвет - желтовато-коричневый с примесью золотистого, бурого, рыжевато-коричневого и даже зеленого, в зависимости от цвета минералов планеты. В древности люди с легкостью отличали Марс от других планет, а также ассоциировали его с войной и слагали всевозможные легенды. Египтяне называли Марс «Хар Дечер», что означало «красный». (Фото JPL-Caltech | MSSS | NASA):

3. Марсоход Curiosity очень любит делать селфи. Как он это делает, ведь снять его со стороны некому?

У марсохода четыре цветных камеры, все они отличаются разным набором оптики, но только одна из них подходит для . У автоматической руки под названием MAHLI 5 степеней свободы, что дает камере значительную гибкость и позволяет «облететь» марсианский ровер со всех сторон. Движением этой руки-камеры управляет специалист с Земли. Главная задача – следовать определенной последовательности перемещения автоматической руки, чтобы камера могла сделать достаточное количество снимков для последующей склейки панорамы. Сценарий подготовки каждого такого селфи отрабатывают сначала на Земле на специальном тестовом модуле, который носит название Мэгги. (Фото NASA):

4. Марсианский закат, 15 апреля 2015. В полдень небо Марса жёлто-оранжевое. Причина таких отличий от цветовой гаммы земного неба - свойства тонкой, разреженной, содержащей взвешенную пыль атмосферы Марса. На Марсе рэлеевское рассеяние лучей (которое на Земле и является причиной голубого цвета неба) играет незначительную роль, эффект его слаб, но проявляется в виде голубого свечения при восходе и закате Солнца, когда свет проходит более толстый слой воздуха. (Фото JPL-Caltech | MSSS | Texas A&M Univ via Getty | NASA):

5. Колеса марсохода 9 сентября 2012 года. (Фото JPL-Caltech | Malin Space Science Systems | NASA):

6. А это снимок 18 апреля 2016. Видно, как износилась “обувка” у трудяги. С августа 2012 года по январь прошлого года марсоход Curiosity прошёл 15.26 км. (Фото JPL-Caltech MSSS | NASA):

7. Продолжаем смотреть снимки марсохода Curiosity. Дюна Намиб - область с темным песком, состоящая из дюн на северо-западе от горы Шарп. (Фото JPL-Caltech | NASA):

8. Две трети поверхности Марса занимают светлые области, получившие название материков, около трети - тёмные участки, называемые морями. А это подножие горы Шарп.

Шарп - марсианская гора, находящаяся в кратере Гейл. Высота горы составляет около 5 километров. На Марсе же находится и самая высокая гор в Солнечной системе - потухший вулкан Олимп высотой 26 км. Диаметр Олимпа - около 540 км. (Фото JPL-Caltech | MSSS | NASA):

9. Фотография с орбитального аппарата, здесь и марсоход виден. (Фото JPL-Caltech | Univ. of Arizona | NASA):

10. Как сформировался этот необычный холм Иресон на Марсе? Его история стала предметом исследований. Его форма и двухцветная структура делают его одним из самых необычных холмов, около которых проезжал автоматический марсоход. Он достигает высоты около 5 метров, а размер его основания - около 15 метров. (Фото JPL-Caltech | MSSS | NASA0:

11. Так выглядят “следы” марсохода на Марсе. (Фото JPL-Caltech | NASA):

12. Полушария Марса довольно сильно различаются по характеру поверхности. В южном полушарии поверхность находится на 1-2 км выше среднего уровня и густо усеяна кратерами. Эта часть Марса напоминает лунные материки. На севере большая часть поверхности находится ниже среднего уровня, здесь мало кратеров и основную часть занимают относительно гладкие равнины, вероятно, образовавшиеся в результате затопления лавой и эрозии. (Фото JPL-Caltech | MSSS | NASA):

13. Еще одно мастерское селфи. (Фот JPL-Caltech | MSSS | NASA):

14. На переднем плане, примерно в трех километрах от ровера, находится длинный хребет, изобилующий оксидом железа. (Фото JPL-Caltech | MSSS | NASA):

15. Взгляд на путь, который проделал марсоход, 9 февраля 2014. (Фото JPL-Caltech | MSSS | NASA):

16. Отверстие, которое пробурил марсоход Curiosity. Такой цвет породы под красной поверхностью сразу не очевиден. Дрель марсохода способна делать в камне отверстия диаметром 1.6 см и глубиной 5 см. Добытые манипулятором образцы могут также исследоваться приборами SAM и CheMin, расположенными в передней части корпуса ровера. (Фото JPL-Caltech | MSSS | NASA):

17. Еще одно селфи, самое свежее, сделанное 23 января 2018. (Фото NASA | JPL-Caltech | MSSS):