Болезни Военный билет Призыв

Магниты и магнитные свойства вещества. Постоянные магниты

В самом начале работы полезно будет дать несколькоопределений ипояснений.

Если, в каком то месте, на движущиеся тела, обладающиезарядом, действует сила, которая не действует на неподвижные или лишенныезаряда тела, то говорят, что в этом месте присутствует магнитное поле – одна из форм более общего электромагнитного поля .

Есть тела, способные создавать вокруг себя магнитноеполе (и на такое тело тоже действует сила магнитного поля), про них говорят,что эти тела намагничены и обладают магнитным моментом, который и определяетсвойство тела создавать магнитное поле. Такие тела называют магнитами .

Следует отметить, что разные материалы по разномуреагируют на внешнее магнитное поле.

Есть материалы ослабляющие действие внешнего поля внутрисебяпарамагнетики и усиливающие внешнее поле внутри себядиамагнетики .

Есть материалы с огромной способностью (в тысячи раз) усиливать внешнее поле внутри себя - железо,кобальт, никель, гадолиний, сплавы и соединения этих металлов, их называют– ферромагнетики.

Есть среди ферромагнетиков материалы которыепосле воздействия на них достаточно сильного внешнего магнитного поля самистановятся магнитами – это магнитотвердые материалы.

Есть материалы концентрирующие в себе внешнее магнитное поле и, пока онодействует, ведут себя как магниты; но если внешнее поле исчезает они нестановятся магнитами – это магнитомягкие материалы

ВВЕДЕНИЕ.

Мы привыкли к магниту иотносимся к нему чуточку снисходительно как к устаревшему атрибуту школьныхуроков физики, порой даже не подозревая, сколько магнитов вокруг нас. В нашихквартирах десятки магнитов: в электробритвах, динамиках, магнитофонах, в часах,в банках с гвоздями, наконец. Сами мы – тоже магниты: биотоки, текущие в нас,рождают вокруг нас причудливый узор магнитных силовых линий. Земля, на котороймы живём, - гигантский голубой магнит. Солнце – жёлтый плазменный шар – магнитещё более грандиозный. Галактик и туманности, едва различимые телескопами, - непостижимые по размерам магниты. Термоядерный синтез, магнитодинамическоегенерирование электроэнергии, ускорение заряженных частиц в синхротронах,подъём затонувших судов – всё это области, где требуются грандиозные,невиданные раньше по размерам магниты. Проблема создания сильных, сверхсильных,ультрасильных и ещё более сильных магнитных полей стала одной из основных всовременной физике и технике.

Магнит известен человеку снезапамятных времён. До нас дошли упоминания

о магнитах и их свойствах втрудах Фалеса Милетского (прибл. 600 до н.э.) и Платона (427–347 дон.э.). Само слово «магнит» возникло в связи с тем, что природные магниты былиобнаружены греками в Магнесии (Фессалия).

Естественные (илиприродные) магниты встречаются в природе в виде залежей магнитных руд. ВТартуском университете находится самый крупный известный естественный магнит. Его масса составляет 13 кг, и он способен поднять груз в 40 кг.

Искусственные магниты - это магниты созданные человеком на основе различных ферромагнетиков . Такназываемые «порошковые» магниты (из железа, кобальта и некоторых другихдобавок) могут удержать груз более чем 5000 раз превышающий их собственнуюмассу.

Существуютискусственные магниты двух разных видов:

Одни – так называемыепостоянныемагниты ,изготовляемые из «магнитно-твердых » материалов.Их магнитные свойства не связаны с использованием внешних источников или токов.

К другому виду относятся так называемые электромагниты с сердечником из «магнитно-мягкого » железа.Создаваемые ими магнитные поля обусловлены в основном тем, что по проводуобмотки, охватывающей сердечник, проходит электрический ток.

В 1600 году в Лондоне вышла книга королевского врачаВ. Гильберта “О магните, магнитных телах и большом магните - Земле”. Этосочинение явилось первой известной нам попыткой исследования магнитных явленийс позиций науки. В этом труде собраны имевшиеся тогда сведения об электричествеи магнетизме, а также результаты собственных экспериментов автора.

Из всего, с чемсталкивается человек, он прежде всего стремится извлечь практическую пользу. Неминовал этой судьбы и магнит

В моей работе я попытаюсь проследить, как используютсямагниты человеком не для войны, а в мирных целях, в том числе применениемагнитов в биологии, медицине, в быту.

КОМПАС, прибор для определения горизонтальных направлений на местности.Применяется для определения направления, в котором движется морское, воздушноесудно, наземное транспортное средство; направления, в котором идет пешеход;направления на некоторый объект или ориентир. Компасы подразделяются на дваосновных класса: магнитные компасы типа стрелочных, которыми пользуютсятопографы и туристы, и немагнитные, такие, как гирокомпас и радиокомпас.

К 11 в. относитсясообщение китайцев Шен Куа и Чу Ю об изготовлении компасов из природныхмагнитов и использовании их в навигации.Если

длинная игла из природногомагнита уравновешена на оси, позволяющей ей свободно поворачиваться в горизонтальнойплоскости, то она всегда обращена одним концом к северу, а другим – к югу.Пометив указывающий на север конец, можно пользоваться таким компасом дляопределения направлений.

Магнитные эффектыконцентрировались у концов такой иглы, и поэтому их назвали полюсами(соответственно северным и южным).

Основное применение магнитнаходит в электротехнике, радиотехнике, приборостроении, автоматике ителемеханике. Здесь ферромагнитные материалы идут на изготовлениемагнитопроводов, реле и т.д.

В 1820 Г.Эрстед (1777–1851) обнаружил, что проводник стоком воздействует на магнитную стрелку, поворачивая ее. Буквально неделейпозже Ампер показал, что два параллельных проводника с током одного направленияпритягиваются друг к другу. Позднее он высказал предположение, что всемагнитные явления обусловлены токами, причем магнитные свойства постоянныхмагнитов связаны с токами, постоянно циркулирующими внутри этих магнитов. Этопредположение полностью соответствует современным представлениям.

Электромашинныегенераторы и электродвигатели - машинывращательного типа, преобразующие либо механическую энергию в электрическую(генераторы), либо электрическую в механическую (двигатели). Действиегенераторов основано на принципе электромагнитной индукции: в проводе,движущемся в магнитном поле, наводится электродвижущая сила (ЭДС). Действиеэлектродвигателей основано на том, что на провод с током, помещенный впоперечное магнитное поле, действует сила.

Магнитоэлектрическиеприборы. В таких приборахиспользуется сила взаимодействия магнитного поля с током в витках обмоткиподвижной части, стремящаяся повернуть последнюю

Индукционныесчетчики электроэнергии . Индукционныйсчетчик представляет собой не что иное, как маломощный электродвигательпеременного тока с двумя обмотками – токовой и обмоткой напряжения. Проводящийдиск, помещенный между обмотками, вращается под действием крутящего момента,пропорционального потребляемой мощности. Этот момент уравновешивается токами,наводимыми в диске постоянным магнитом, так что частота вращения дискапропорциональна потребляемой мощности.

Электрические наручные часы питаются миниатюрной батарейкой. Для их работытребуется гораздо меньше деталей, чем в механических часах; так, в схемутипичных электрических портативных часов входят два магнита, две катушкииндуктивности и транзистор.

Замок- механическое, электрическое или электронное устройство,ограничивающее возможность несанкционированного пользования чем-либо. Замокможет приводиться в действие устройством (ключом), имеющимся в распоряженииопределенного лица, информацией (цифровым или буквенным кодом), вводимой этимлицом, или какой либо индивидуальной характеристикой (например, рисункомсетчатки глаза) этого лица. Замок обычно временно соединяет друг с другом два узлаили две детали в одном устройстве. Чаще всего замки бывают механическими, новсе более широкое применение находят электромагнитные замки.

Магнитные замки . Вцилиндровых замках некоторых моделей применяются магнитные элементы. Замок иключ снабжены ответными кодовыми наборами постоянных магнитов. Когда в замочнуюскважину вставляется правильный ключ, он притягивает и устанавливает в нужноеположение внутренние магнитные элементы замка, что и позволяет открыть замок.

Динамометр - механический или электрический прибор для измерениясилы тяги или крутящего момента машины, станка или двигателя.

Тормозные динамометры бывают самых различныхконструкций; к ним относятся, например, тормоз Прони, гидравлический иэлектромагнитный тормоза.

Электромагнитный динамометр может бытьвыполнен в виде миниатюрного прибора, пригодного для измерений характеристикмалогабаритных двигателей.

Гальванометр –чувствительный прибор для измерения слабых токов. В гальванометре используетсявращающий момент, возникающий при взаимодействии подковообразного постоянногомагнита с небольшой токонесущей катушкой (слабым электромагнитом), подвешеннойв зазоре между полюсами магнита. Вращающий момент, а следовательно, иотклонение катушки пропорциональны току и полной магнитной индукции в воздушномзазоре, так что шкала прибора при небольших отклонениях катушки почти линейна.Приборы на его базе - самый распространенный вид приборов.

Спектр выпускаемых приборов широк иразнообразен: приборы щитовые постоянного и переменного тока(магнитоэлектрической, магнитоэлектри- ческой с выпрямителем и электромагнитнойсистем), комбинированные приборы ампервольтомметры, для диагностирования ирегулировки электрооборудования автомашин, измерения температуры плоскихповерхностей, приборы для оснащения школьных учебных кабинетов, тестеры иизмерители всевозможных электрических параметров

Производство абразивов- мелких, твердых, острых частиц, используемых в свободном или связанномвиде для механической обработки (в т.ч. для придания формы, обдирки,шлифования, полирования) разнообразных материалов и изделий из них (от большихстальных плит до листов фанеры, оптических стекол и компьютерных микросхем).Абразивы бывают естественные или искусственные. Действие абразивов сводится кудалению части материала с обрабатываемой поверхности. Впроцессе производства искусственных абразивов ферросилиций, присутствующий всмеси, оседает на дно печи, но небольшие его количества внедряются в абразив ипозже удаляются магнитом.

Магнитные свойства вещества находят широкое применение внауке и технике как средство изучения структуры различных тел. Так возникли науки:

Магнетохимия (магнитохимия) - раздел физической химии, в которомизучается связь между магнитными и химическими свойствами веществ; кроме того,магнитохимия исследует влияние магнитных полей на химические процессы.магнитохимия опирается на современную физику магнитных явлений. Изучение связимежду магнитными и химическими свойствами позволяет выяснить особенностихимического строения вещества.

Магнитная дефектоскопия , методпоиска дефектов, основанный на исследовании искажений магнитного поля,возникающих в местах дефектов в изделиях из ферромагнитных материалов.

. Техника сверхвысокочастотного диапазона

Сверхвысокочастотный диапазон (СВЧ)- частотный диапазон электромагнитногоизлучения (100¸300 000 млн. герц), расположенный в спектре между ультравысокимителевизионными частотами и частотами дальней инфракрасной области

Связь. Радиоволны СВЧ-диапазона широкоприменяются в технике связи. Кроме различных радиосистем военного назначения,во всех странах мира имеются многочисленные коммерческие линии СВЧ-связи.Поскольку такие радиоволны не следуют за кривизной земной поверхности, араспространяются по прямой, эти линии связи, как правило, состоят изретрансляционных станций, установленных на вершинах холмов или на радиобашнях синтервалами около 50 км.

Термообработка пищевых продуктов. СВЧ-излучениеприменяется для термообработки пищевых продуктов в домашних условиях и в пищевойпромышленности. Энергия, генерируемая мощными электронными лампами, может бытьсконцентрирована в малом объеме для высокоэффективной тепловой обработкипродуктов в т.н. микроволновых или СВЧ-печах, отличающихся чистотой,бесшумностью и компактностью. Такие устройства применяются на самолетныхбортовых кухнях, в железнодорожных вагонах-ресторанах и торговых автоматах, гдетребуются быстрые подготовка продуктов и приготовление блюд. Промышленностьвыпускает также СВЧ-печи бытового назначения.

Быстрый прогресс в области СВЧ-техники в значительной мересвязан с изобретением специальных электровакуумных приборов – магнетрона иклистрона, способных генерировать большие количества СВЧ-энергии. Генератор наобычном вакуумном триоде, используемый на низких частотах, в СВЧ-диапазонеоказывается весьма неэффективным.

Магнетрон. В магнетроне, изобретенном в Великобританииперед Второй мировой войной, эти недостатки отсутствуют, поскольку за основувзят совершенно иной подход к генерации СВЧ-излучения – принцип объемногорезонатора

В магнетроне предусмотрено несколько объемных резонаторов,симметрично расположенных вокруг катода, находящегося в центре. Прибор помещаютмежду полюсами сильного магнита.

Лампа бегущей волны (ЛБВ). Еще одинэлектровакуумный прибор для генерации и усиления электромагнитных волнСВЧ-диапазона – лампа бегущей волны. Она представляет собой тонкую откачаннуютрубку, вставляемую в фокусирующую магнитную катушку.

Ускоритель частиц , установка, в которой с помощью электрических и магнитных полейполучаются направленные пучки электронов, протонов, ионов и других заряженныхчастиц с энергией, значительно превышающей тепловую энергию.

В современных ускорителях используются многочисленные иразнообразные виды техники, в т.ч. мощные прецизионные магниты.

В медицинскойтерапии и диагностике у скорители играют важную практическую роль. Многиебольничные учреждения во всем мире сегодня имеют в своем распоряжении небольшиеэлектронные линейные ускорители, генерирующие интенсивное рентгеновскоеизлучение, применяемое для терапии опухолей. В меньшей мере используютсяциклотроны или синхротроны, генерирующие протонные пучки. Преимущество протоновв терапии опухолей перед рентгеновским излучением состоит в болеелокализованном энерговыделении. Поэтому протонная терапия особенно эффективнапри лечении опухолей мозга и глаз, когда повреждение окружающих здоровых тканейдолжно быть по возможности минимальным.

Представители различных наук учитывают магнитные поля всвоих исследованиях. Физик измеряет магнитные поля атомов и элементарныхчастиц, астроном изучает роль космических полей в процессе формирования новыхзвёзд, геолог по аномалиям магнитного поля Земли отыскивает залежи магнитныхруд, с недавнего времени биология тоже активно включилась в изучение ииспользование магнитов.

Биологическая наука первой половины XX века уверенно описывала жизненные функции, вовсе неучитывая существования каких-либо магнитных полей. Более того, некоторыебиологи считали нужным подчеркнуть, что даже сильное искусственное магнитноеполе не оказывает никакого влияния на биологические объекты.

В энциклопедиях о влияниимагнитных полей на биологические процессы ничего не говорилось. В научнойлитературе всего мира ежегодно появлялись единичные позитивные соображения отом или ином биологическом эффекте магнитных полей. Однако этот слабый ручеёкне мог растопить айсберг недоверия даже к постановке самой проблемы… И вдругручеёк превратился в бурный поток. Лавина магнитобиологических публикаций,словно сорвавшись с какой – то вершины, с начала 60 – х годов непрестанноувеличивается и заглушает скептические высказывания.

От алхимиков XVIвека и до наших дней биологическое действие магнита много раз находилопоклонников и критиков. Неоднократно в течение нескольких веков наблюдалисьвсплески и спады интереса к лечебному действию магнита. С его помощью пыталисьлечить (и не безуспешно) нервные болезни, зубную боль, бессонницу, боли впечени и в желудке – сотни болезней.

Для лечебных целей магнитстал употребляться, вероятно, раньше, чем для определения сторон света.

Как местное наружноесредство и в качестве амулета магнит пользовался большим успехом у китайцев,индусов, египтян, арабов. ГРЕКОВ, римлян и т.д. О его лечебных свойствахупоминают в своих трудах философ Аристотель и историк Плиний.

Во второй половине XXвека широко распространились магнитные браслеты, благотворно влияющие набольных с нарушением кровяного давления (гипертония и гипотония).

Кроме постоянных магнитовиспользуются и электромагниты. Их также применяют для широкого спектра проблемв науке, технике, электронике, медицине (нервные заболевания, заболеваниясосудов конечностей, сердечно – сосудистые заболевания, раковыезаболевания).

Более всего учёныесклоняются к мысли, что магнитные поля повышают сопротивляемость организма.

Существуют электромагнитныеизмерители скорости движения крови, миниатюрные капсулы, которые с помощью внешнихмагнитных полей можно перемещать по кровеносным сосудам чтобы расширять их,брать пробы на определённых участках пути или, наоборот, локально выводить изкапсул различные медикаменты.

Широко распространёнмагнитный метод удаления металлических частиц из глаза.

Большинству из нас известноисследование работы сердца с помощью электрических датчиков –электрокардиограмма. Электрические импульсы, вырабатываемые сердцем, создаютмагнитное поле сердца, которое в max значениях составляет 10-6 напряжённостимагнитного поля Земли. Ценность магнитокардиографии в том, что она позволяетполучить сведения об электрически “немых” областях сердца.

Надо отметить, что биологисейчас просят физиков дать теорию первичного механизма биологического действиямагнитного поля, а физики в ответ требуют от биологов побольше проверенныхбиологических фактов. Очевидно, что успешным будет тесное сотрудничестворазличных специалистов.

Важным звеном, объединяющиммагнитобиологические проблемы, является реакция нервной системы на магнитныеполя. Именно мозг первым реагирует на любые изменения во внешней среде. Именноизучение его реакций будет ключём к решению многих задач магнитобиологии.

Самый простой вывод, которыйможно сделать из выше сказанного – нет области прикладной деятельностичеловека, где бы не применялись магниты.

Использованная литература:

1) БСЭ, второе издание, Москва, 1957г.

2) Холодов Ю.А. “Человек в магнитнойпаутине”, “Знание”, Москва, 1972 г.

3) Материалы из интернет - энциклопедии

4) Путилов К.А. «Курс физики»,«Физматгиз», Москва, 1964г.

КОМПАС  Ко́ мпас - устройство, облегчающее ориентирование на местности. Предположительно, компас был изобретён в Китае. В Европе изобретение компаса относят к XII-XIII вв., однако устройство его оставалось очень простым - магнитная стрелка, укрепленная на пробке и опущенная в сосуд с водой. Принцип действия магнитного компаса основан на притяжении-отталкивании двух магнитов. Противоположные полюса магнитов притягиваются, одноименные - отталкиваются.

  • 3. ПРИМЕНЕНИЕ МАГНИТОВ ВНУТРИ ЖИЛИЩА
  • 4. ПРИМЕНЕНИЕ МАГНИТОВ ВНУТРИ ЖИЛИЩА  Наушники  Стереоколонки  Телефонная трубка  Электрозвонок  Держатель по периметру дверцы холодильника  Записывающие и воспроизводящие головки аудио- и видеоаппаратуры  Записывающие и воспроизводящие головки дисковода и жесткого диска компьютера  Магнитная полоска на банковской карте  Управляющие и размагничивающие магнитные системы в телевизоре  Вентиляторы  Трансформаторы  Магнитные замки  Игрушки  Магнитные носители информации
  • 5. МАГНИТНЫЕ НОСИТЕЛЬ ИНФОРМАЦИИ  · Жесткие диски ПК (винчестеры) · Видеокассеты (любых форматов, в том числе Betacam) · Аудиокассеты · Стримерные кассеты · Дискеты, ZIP-диски
  • 6. МАГНИТНЫЕ ЗАМКИ.  Магнитный замок – это особое запорное устройство, принцип работы которого базируется на магнитном взаимодействии. Магнитный замок может функционировать как с дополнительным питанием, так и без него. Магнитный замок, работающий без дополнительного питания - это упрощенная конструкция, обладающая меньшей рабочей силой. Подобные магнитные замки используются для закрывания дверей шкафов, на женских сумочках, одежде и пр. Магнитный замок, работающий под подачей электрического тока получил широкое распространение в качестве запирающего и отпирающего оборудования дверей в помещениях, с ограниченным доступом и контролем посещений. Основное техническое преимущество магнитного замка заключается в том, что конструкция не предусматривает наличия движущихся механизмов и деталей. Это является одним из факторов, обеспечивающих высокую надежность и долговечность работы. При всем при этом, магнитный замок не слишком трудоемок в монтаже и прост в эксплуатации. Замкам другого типа магнитный замок проигрывает только в одном – он абсолютно недееспособен при отсутствии электропитания.
  • 7. ИГРУШКИ 
  • 8. НАУШНИКИ  Наушники - устройство для персонального прослушивания музыки, речи или иных звуковых сигналов.
  • 9. КРЕДИТНЫЕ КАРТОЧКИ  Креди́ тная ка́рта (разг. креди́ тка) - банковская платёжная карта, предназначенная для совершения операций, расчёты по которым осуществляются исключительно за счёт денежных средств.
  • 10. ТЕЛЕФОННАЯ ТРУБКА
  • 11. СТЕРЕОКОЛОНКИ
  • 12. ЭЛЕКТРОЗВОНОК
  • 13. ДЕРЖАТЕЛЬ ПО ПЕРИМЕТРУ ДВЕРЦЫ ХОЛОДИЛЬНИКА
  • 14. ТРАНСФОРМАТОРЫ
  • 15. ВЕНТИЛЯТОРЫ
  • 16. УПРАВЛЯЮЩИЕ И РАЗМАГНИЧИВАЮЩИЕ МАГНИТНЫЕ СИСТЕМЫ В ТЕЛЕВИЗОРЕ
  • 17. СВЕРХВЫСОКО ЧАСТОТНЫЙ ДИАПАЗОН (СВЧ)  Сверхвысоко частотный диапазон (СВЧ) - частотный диапазон электромагнитного излучения (100ч300 000 млн. герц), расположенный в спектре между ультравысокими телевизионными частотами и частотами дальней инфракрасной области. Радиоволны СВЧ-диапазона широко применяются в технике связи. СВЧ- излучение применяется для термообработки пищевых продуктов в домашних условиях и в пищевой промышленности.
  • 18. В МЕДИЦИНЕ  Кардиостимуляторы  Томографы  Тонометры
  • 19. КАРДИОСТИМУЛЯТОРЫ
  • 20. ТОМОГРАФЫ  Магни́ тно-резона́нсный томо́ граф (МРТ), ядерно магнитно-резонансный томограф (ЯМРТ) или магнитно-резонансная томография(МРТ), является основным инструментом медицинской техники для создания изображений, используемых в радиологии для подробной визуализации внутренних структур и органов человека. Томограф обеспечивает хороший контраст между различными мягкими тканями тела, что делает его особенно полезным при исследованиях мозга, мышц, сердца и диагностики рака по сравнению с другими медицинскими методами визуализации
  • Существуют магниты двух разных видов. Одни – так называемые постоянные магниты, изготовляемые из «магнитно-твердых» материалов. Их магнитные свойства не связаны с использованием внешних источников или токов. К другому виду относятся так называемые электромагниты с сердечником из «магнитно-мягкого» железа. Создаваемые ими магнитные поля обусловлены в основном тем, что по проводу обмотки, охватывающей сердечник, проходит электрический ток.

    Магнитные полюса и магнитное поле.

    Магнитные свойства стержневого магнита наиболее заметны вблизи его концов. Если такой магнит подвесить за среднюю часть так, чтобы он мог свободно поворачиваться в горизонтальной плоскости, то он займет положение, примерно соответствующее направлению с севера на юг. Конец стержня, указывающий на север, называют северным полюсом, а противоположный конец – южным полюсом. Разноименные полюса двух магнитов притягиваются друг к другу, а одноименные взаимно отталкиваются.

    Если к одному из полюсов магнита приблизить брусок ненамагниченного железа, то последний временно намагнитится. При этом ближний к полюсу магнита полюс намагниченного бруска будет противоположным по наименованию, а дальний – одноименным. Притяжением между полюсом магнита и индуцированным им в бруске противоположным полюсом и объясняется действие магнита. Некоторые материалы (например, сталь) сами становятся слабыми постоянными магнитами после того, как побывают около постоянного магнита или электромагнита. Стальной стержень можно намагнитить, просто проведя по его торцу концом стержневого постоянного магнита.

    Итак, магнит притягивает другие магниты и предметы из магнитных материалов, не находясь в соприкосновении с ними. Такое действие на расстоянии объясняется существованием в пространстве вокруг магнита магнитного поля. Некоторое представление об интенсивности и направлении этого магнитного поля можно получить, насыпав на лист картона или стекла, положенный на магнит, железные опилки. Опилки выстроятся цепочками в направлении поля, а густота линий из опилок будет соответствовать интенсивности этого поля. (Гуще всего они у концов магнита, где интенсивность магнитного поля наибольшая.)

    М.Фарадей (1791–1867) ввел для магнитов понятие замкнутых линий индукции. Линии индукции выходят в окружающее пространство из магнита у его северного полюса, входят в магнит у южного полюса и проходят внутри материала магнита от южного полюса обратно к северному, образуя замкнутую петлю. Полное число линий индукции, выходящих из магнита, называется магнитным потоком. Плотность магнитного потока, или магнитная индукция (В ), равна числу линий индукции, проходящих по нормали через элементарную площадку единичной величины.

    Магнитной индукцией определяется сила, с которой магнитное поле действует на находящийся в нем проводник с током. Если проводник, по которому проходит ток I , расположен перпендикулярно линиям индукции, то по закону Ампера сила F , действующая на проводник, перпендикулярна и полю, и проводнику и пропорциональна магнитной индукции, силе тока и длине проводника. Таким образом, для магнитной индукции B можно написать выражение

    где F – сила в ньютонах, I – ток в амперах, l – длина в метрах. Единицей измерения магнитной индукции является тесла (Тл) .

    Гальванометр.

    Гальванометр – чувствительный прибор для измерения слабых токов. В гальванометре используется вращающий момент, возникающий при взаимодействии подковообразного постоянного магнита с небольшой токонесущей катушкой (слабым электромагнитом), подвешенной в зазоре между полюсами магнита. Вращающий момент, а следовательно, и отклонение катушки пропорциональны току и полной магнитной индукции в воздушном зазоре, так что шкала прибора при небольших отклонениях катушки почти линейна.

    Намагничивающая сила и напряженность магнитного поля.

    Далее следует ввести еще одну величину, характеризующую магнитное действие электрического тока. Предположим, что ток проходит по проводу длинной катушки, внутри которой расположен намагничиваемый материал. Намагничивающей силой называется произведение электрического тока в катушке на число ее витков (эта сила измеряется в амперах, так как число витков – величина безразмерная). Напряженность магнитного поля Н равна намагничивающей силе, приходящейся на единицу длины катушки. Таким образом, величина Н измеряется в амперах на метр; ею определяется намагниченность, приобретаемая материалом внутри катушки.

    В вакууме магнитная индукция B пропорциональна напряженности магнитного поля Н :

    где m 0 – т.н. магнитная постоянная, имеющая универсальное значение 4p Ч 10 –7 Гн/м. Во многих материалах величина B приблизительно пропорциональна Н . Однако в ферромагнитных материалах соотношение между B и Н несколько сложнее (о чем будет сказано ниже).

    На рис. 1 изображен простой электромагнит, предназначенный для захвата грузов. Источником энергии служит аккумуляторная батарея постоянного тока. На рисунке показаны также силовые линии поля электромагнита, которые можно выявить обычным методом железных опилок.

    Крупные электромагниты с железными сердечниками и очень большим числом ампер-витков, работающие в непрерывном режиме, обладают большой намагничивающей силой. Они создают магнитную индукцию до 6 Тл в промежутке между полюсами; эта индукция ограничивается лишь механическими напряжениями, нагреванием катушек и магнитным насыщением сердечника. Ряд гигантских электромагнитов (без сердечника) с водяным охлаждением, а также установок для создания импульсных магнитных полей был сконструирован П.Л.Капицей (1894–1984) в Кембридже и в Институте физических проблем АН СССР и Ф.Биттером (1902–1967) в Массачусетском технологическом институте. На таких магнитах удавалось достичь индукции до 50 Тл. Сравнительно небольшой электромагнит, создающий поля до 6,2 Тл, потребляющий электрическую мощность 15 кВт и охлаждаемый жидким водородом, был разработан в Лосаламосской национальной лаборатории. Подобные поля получают при криогенных температурах.

    Магнитная проницаемость и ее роль в магнетизме.

    Магнитная проницаемость m – это величина, характеризующая магнитные свойства материала. Ферромагнитные металлы Fe, Ni, Co и их сплавы обладают очень высокими максимальными проницаемостями – от 5000 (для Fe) до 800 000 (для супермаллоя). В таких материалах при сравнительно малых напряженностях поля H возникают большие индукции B , но связь между этими величинами, вообще говоря, нелинейна из-за явлений насыщения и гистерезиса, о которых говорится ниже. Ферромагнитные материалы сильно притягиваются магнитами. Они теряют свои магнитные свойства при температурах выше точки Кюри (770° С для Fe, 358° С для Ni, 1120° С для Co) и ведут себя как парамагнетики, для которых индукция B вплоть до очень высоких значений напряженности H пропорциональна ей – в точности так же, как это имеет место в вакууме. Многие элементы и соединения являются парамагнитными при всех температурах. Парамагнитные вещества характеризуются тем, что намагничиваются во внешнем магнитном поле; если же это поле выключить, парамагнетики возвращаются в ненамагниченное состояние. Намагниченность в ферромагнетиках сохраняется и после выключения внешнего поля.

    На рис. 2 представлена типичная петля гистерезиса для магнитно-твердого (с большими потерями) ферромагнитного материала. Она характеризует неоднозначную зависимость намагниченности магнитоупорядоченного материала от напряженности намагничивающего поля. С увеличением напряженности магнитного поля от исходной (нулевой) точки (1 ) намагничивание идет по штриховой линии 1 2 , причем величина m существенно изменяется по мере того, как возрастает намагниченность образца. В точке 2 достигается насыщение, т.е. при дальнейшем увеличении напряженности намагниченность больше не увеличивается. Если теперь постепенно уменьшать величину H до нуля, то кривая B (H ) уже не следует по прежнему пути, а проходит через точку 3 , обнаруживая как бы «память» материала о «прошлой истории», откуда и название «гистерезис». Очевидно, что при этом сохраняется некоторая остаточная намагниченность (отрезок 1 3 ). После изменения направления намагничивающего поля на обратное кривая В (Н ) проходит точку 4 , причем отрезок (1 )–(4 ) соответствует коэрцитивной силе, препятствующей размагничиванию. Дальнейший рост значений (- H ) приводит кривую гистерезиса в третий квадрант – участок 4 5 . Следующее за этим уменьшение величины (- H ) до нуля и затем возрастание положительных значений H приведет к замыканию петли гистерезиса через точки 6 , 7 и 2 .

    Магнитно-твердые материалы характеризуются широкой петлей гистерезиса, охватывающей значительную площадь на диаграмме и потому соответствующей большим значениям остаточной намагниченности (магнитной индукции) и коэрцитивной силы. Узкая петля гистерезиса (рис. 3) характерна для магнитно-мягких материалов – таких, как мягкая сталь и специальные сплавы с большой магнитной проницаемостью. Такие сплавы и были созданы с целью снижения обусловленных гистерезисом энергетических потерь. Большинство подобных специальных сплавов, как и ферриты, обладают высоким электрическим сопротивлением, благодаря чему уменьшаются не только магнитные потери, но и электрические, обусловленные вихревыми токами.

    Магнитные материалы с высокой проницаемостью изготовляются путем отжига, осуществляемого выдерживанием при температуре около 1000° С, с последующим отпуском (постепенным охлаждением) до комнатной температуры. При этом очень существенны предварительная механическая и термическая обработка, а также отсутствие в образце примесей. Для сердечников трансформаторов в начале 20 в. были разработаны кремнистые стали, величина m которых возрастала с увеличением содержания кремния. Между 1915 и 1920 появились пермаллои (сплавы Ni с Fe) с характерной для них узкой и почти прямоугольной петлей гистерезиса. Особенно высокими значениями магнитной проницаемости m при малых значениях H отличаются сплавы гиперник (50% Ni, 50% Fe) и му-металл (75% Ni, 18% Fe, 5% Cu, 2% Cr), тогда как в перминваре (45% Ni, 30% Fe, 25% Co) величина m практически постоянна в широких пределах изменения напряженности поля. Среди современных магнитных материалов следует упомянуть супермаллой – сплав с наивысшей магнитной проницаемостью (в его состав входит 79% Ni, 15% Fe и 5% Mo).

    Теории магнетизма.

    Впервые догадка о том, что магнитные явления в конечном счете сводятся к электрическим, возникла у Ампера в 1825, когда он высказал идею замкнутых внутренних микротоков, циркулирующих в каждом атоме магнита. Однако без какого-либо опытного подтверждения наличия в веществе таких токов (электрон был открыт Дж.Томсоном лишь в 1897, а описание структуры атома было дано Резерфордом и Бором в 1913) эта теория «увяла». В 1852 В.Вебер высказал предположение, что каждый атом магнитного вещества представляет собой крошечный магнит, или магнитный диполь, так что полная намагниченность вещества достигается, когда все отдельные атомные магниты оказываются выстроенными в определенном порядке (рис. 4,б ). Вебер полагал, что сохранять свое упорядочение вопреки возмущающему влиянию тепловых колебаний этим элементарным магнитам помогает молекулярное или атомное «трение». Его теория смогла объяснить намагничивание тел при соприкосновении с магнитом, а также их размагничивание при ударе или нагреве; наконец, объяснялось и «размножение» магнитов при разрезании намагниченной иглы или магнитного стержня на части. И все же эта теория не объясняла ни происхождения самих элементарных магнитов, ни явлений насыщения и гистерезиса. Теория Вебера была усовершенствована в 1890 Дж.Эвингом, заменившим его гипотезу атомного трения идеей межатомных ограничивающих сил, помогающих поддерживать упорядочение элементарных диполей, которые составляют постоянный магнит.

    Подход к проблеме, предложенный когда-то Ампером, получил вторую жизнь в 1905, когда П.Ланжевен объяснил поведение парамагнитных материалов, приписав каждому атому внутренний нескомпенсированный электронный ток. Согласно Ланжевену, именно эти токи образуют крошечные магниты, хаотически ориентированные, когда внешнее поле отсутствует, но приобретающие упорядоченную ориентацию после его приложения. При этом приближение к полной упорядоченности соответствует насыщению намагниченности. Кроме того, Ланжевен ввел понятие магнитного момента, равного для отдельного атомного магнита произведению «магнитного заряда» полюса на расстояние между полюсами. Таким образом, слабый магнетизм парамагнитных материалов обусловлен суммарным магнитным моментом, создаваемым нескомпенсированными электронными токами.

    В 1907 П.Вейс ввел понятие «домена», ставшее важным вкладом в современную теорию магнетизма. Вейс представлял домены в виде небольших «колоний» атомов, в пределах которых магнитные моменты всех атомов в силу каких-то причин вынуждены сохранять одинаковую ориентацию, так что каждый домен намагничен до насыщения. Отдельный домен может иметь линейные размеры порядка 0,01 мм и соответственно объем порядка 10 –6 мм 3 . Домены разделены так называемыми блоховскими стенками, толщина которых не превышает 1000 атомных размеров. «Стенка» и два противоположно ориентированных домена схематически изображены на рис. 5. Такие стенки представляют собой «переходные слои», в которых происходит изменение направления намагниченности доменов.

    В общем случае на кривой первоначального намагничивания можно выделить три участка (рис. 6). На начальном участке стенка под действием внешнего поля движется сквозь толщу вещества, пока не встретит дефект кристаллической решетки, который ее останавливает. Увеличив напряженность поля, можно заставить стенку двигаться дальше, через средний участок между штриховыми линиями. Если после этого напряженность поля вновь уменьшить до нуля, то стенки уже не вернутся в исходное положение, так что образец останется частично намагниченным. Этим объясняется гистерезис магнита. На конечном участке кривой процесс завершается насыщением намагниченности образца за счет упорядочения намагниченности внутри последних неупорядоченных доменов. Такой процесс почти полностью обратим. Магнитную твердость проявляют те материалы, у которых атомная решетка содержит много дефектов, препятствующих движению междоменных стенок. Этого можно достичь механической и термической обработкой, например путем сжатия и последующего спекания порошкообразного материала. В сплавах алнико и их аналогах тот же результат достигается путем сплавления металлов в сложную структуру.

    Кроме парамагнитных и ферромагнитных материалов, существуют материалы с так называемыми антиферромагнитными и ферримагнитными свойствами. Различие между этими видами магнетизма поясняется на рис. 7. Исходя из представления о доменах, парамагнетизм можно рассматривать как явление, обусловленное наличием в материале небольших групп магнитных диполей, в которых отдельные диполи очень слабо взаимодействуют друг с другом (или вообще не взаимодействуют) и потому в отсутствие внешнего поля принимают лишь случайные ориентации (рис. 7,а ). В ферромагнитных же материалах в пределах каждого домена существует сильное взаимодействие между отдельными диполями, приводящее к их упорядоченному параллельному выстраиванию (рис. 7,б ). В антиферромагнитных материалах, напротив, взаимодействие между отдельными диполями приводит к их антипараллельному упорядоченному выстраиванию, так что полный магнитный момент каждого домена равен нулю (рис. 7,в ). Наконец, в ферримагнитных материалах (например, ферритах) имеется как параллельное, так и антипараллельное упорядочение (рис. 7,г ), итогом чего оказывается слабый магнетизм.

    Имеются два убедительных экспериментальных подтверждения существования доменов. Первое из них – так называемый эффект Баркгаузена, второе – метод порошковых фигур. В 1919 Г.Баркгаузен установил, что при наложении внешнего поля на образец из ферромагнитного материала его намагниченность изменяется небольшими дискретными порциями. С точки зрения доменной теории это не что иное, как скачкообразное продвижение междоменной стенки, встречающей на своем пути отдельные задерживающие ее дефекты. Данный эффект обычно обнаруживается с помощью катушки, в которую помещается ферромагнитный стерженек или проволока. Если поочередно подносить к образцу и удалять от него сильный магнит, образец будет намагничиваться и перемагничиваться. Скачкообразные изменения намагниченности образца изменяют магнитный поток через катушку, и в ней возбуждается индукционный ток. Напряжение, возникающее при этом в катушке, усиливается и подается на вход пары акустических наушников. Щелчки, воспринимаемые через наушники, свидетельствует о скачкообразном изменении намагниченности.

    Для выявления доменной структуры магнита методом порошковых фигур на хорошо отполированную поверхность намагниченного материала наносят каплю коллоидной суспензии ферромагнитного порошка (обычно Fe 3 O 4). Частицы порошка оседают в основном в местах максимальной неоднородности магнитного поля – на границах доменов. Такую структуру можно изучать под микроскопом. Был предложен также метод, основанный на прохождении поляризованного света сквозь прозрачный ферромагнитный материал.

    Первоначальная теория магнетизма Вейса в своих основных чертах сохранила свое значение до настоящего времени, получив, однако, обновленную интерпретацию на основе представления о нескомпенсированных электронных спинах как факторе, определяющем атомный магнетизм. Гипотеза о существовании собственного момента у электрона была выдвинута в 1926 С.Гаудсмитом и Дж.Уленбеком, и в настоящее время в качестве «элементарных магнитов» рассматриваются именно электроны как носители спина.

    Для пояснения этой концепции рассмотрим (рис. 8) свободный атом железа – типичного ферромагнитного материала. Две его оболочки (K и L ), ближайшие к ядру, заполнены электронами, причем на первой из них размещены два, а на второй – восемь электронов. В K -оболочке спин одного из электронов положителен, а другого – отрицателен. В L -оболочке (точнее, в двух ее подоболочках) у четырех из восьми электронов положительные, а у других четырех – отрицательные спины. В обоих случаях спины электронов в пределах одной оболочки полностью компенсируются, так что полный магнитный момент равен нулю. В M -оболочке ситуация иная, поскольку из шести электронов, находящихся в третьей подоболочке, пять электронов имеют спины, направленные в одну сторону, и лишь шестой – в другую. В результате остаются четыре нескомпенсированных спина, чем и обусловлены магнитные свойства атома железа. (Во внешней N -оболочке всего два валентных электрона, которые не дают вклада в магнетизм атома железа.) Сходным образом объясняется магнетизм и других ферромагнетиков, например никеля и кобальта. Поскольку соседние атомы в образце железа сильно взаимодействуют друг с другом, причем их электроны частично коллективизируются, такое объяснение следует рассматривать лишь как наглядную, но весьма упрощенную схему реальной ситуации.

    Теорию атомного магнетизма, основанную на учете спина электрона, подкрепляют два интересных гиромагнитных эксперимента, один из которых был проведен А.Эйнштейном и В.де Гаазом, а другой – С.Барнеттом. В первом из этих экспериментов цилиндрик из ферромагнитного материала подвешивался так, как показано на рис. 9. Если по проводу обмотки пропустить ток, то цилиндрик поворачивается вокруг своей оси. При изменении направления тока (а следовательно, и магнитного поля) он поворачивается в обратном направлении. В обоих случаях вращение цилиндрика обусловлено упорядочением электронных спинов. В эксперименте Барнетта, наоборот, так же подвешенный цилиндрик, резко приведенный в состояние вращения, в отсутствие магнитного поля намагничивается. Этот эффект объясняется тем, что при вращении магнетика создается гироскопический момент, стремящийся повернуть спиновые моменты по направлению собственной оси вращения.

    За более полным объяснением природы и происхождения короткодействующих сил, упорядочивающих соседние атомные магнитики и противодействующих разупорядочивающему влиянию теплового движения, следует обратиться к квантовой механике. Квантово-механическое объяснение природы этих сил было предложено в 1928 В.Гейзенбергом, который постулировал существование обменных взаимодействий между соседними атомами. Позднее Г.Бете и Дж.Слэтер показали, что обменные силы существенно возрастают с уменьшением расстояния между атомами, но по достижении некоторого минимального межатомного расстояния падают до нуля.

    МАГНИТНЫЕ СВОЙСТВА ВЕЩЕСТВА

    Одно из первых обширных и систематических исследований магнитных свойств вещества было предпринято П.Кюри. Он установил, что по своим магнитным свойствам все вещества можно разделить на три класса. К первому относятся вещества с резко выраженными магнитными свойствами, подобными свойствам железа. Такие вещества называются ферромагнитными; их магнитное поле заметно на значительных расстояниях (см . выше ). Во второй класс попадают вещества, называемые парамагнитными; магнитные свойства их в общем аналогичны свойствам ферромагнитных материалов, но гораздо слабее. Например, сила притяжения к полюсам мощного электромагнита может вырвать из ваших рук железный молоток, а чтобы обнаружить притяжение парамагнитного вещества к тому же магниту, нужны, как правило, очень чувствительные аналитические весы. К последнему, третьему классу относятся так называемые диамагнитные вещества. Они отталкиваются электромагнитом, т.е. сила, действующая на диамагнетики, направлена противоположно той, что действует на ферро- и парамагнетики.

    Измерение магнитных свойств.

    При изучении магнитных свойств наиболее важное значение имеют измерения двух типов. Первый из них –измерения силы, действующей на образец вблизи магнита; так определяется намагниченность образца. Ко второму относятся измерения «резонансных» частот, связанных с намагничением вещества. Атомы представляют собой крошечные «гироскопы» и в магнитном поле прецессируют (как обычный волчок под влиянием вращающего момента, создаваемого силой тяжести) с частотой, которая может быть измерена. Кроме того, на свободные заряженные частицы, движущиеся под прямым углом к линиям магнитной индукции, действует сила, как и на электронный ток в проводнике. Она заставляет частицу двигаться по круговой орбите, радиус которой дается выражением

    R = mv /eB ,

    где m – масса частицы, v – ее скорость, e – ее заряд, а B – магнитная индукция поля. Частота такого кругового движения равна

    где f измеряется в герцах, e – в кулонах, m – в килограммах, B – в теслах. Эта частота характеризует движение заряженных частиц в веществе, находящемся в магнитном поле. Оба типа движений (прецессию и движение по круговым орбитам) можно возбудить переменными полями с резонансными частотами, равными «естественным» частотам, характерным для данного материала. В первом случае резонанс называется магнитным, а во втором – циклотронным (ввиду сходства с циклическим движением субатомной частицы в циклотроне).

    Говоря о магнитных свойствах атомов, необходимо особо остановиться на их моменте импульса. Магнитное поле действует на вращающийся атомный диполь, стремясь повернуть его и установить параллельно полю. Вместо этого атом начинает прецессировать вокруг направления поля (рис. 10) с частотой, зависящей от дипольного момента и напряженности приложенного поля.

    Прецессия атомов не поддается непосредственному наблюдению, поскольку все атомы образца прецессируют в разной фазе. Если же приложить небольшое переменное поле, направленное перпендикулярно постоянному упорядочивающему полю, то между прецессирующими атомами устанавливается определенное фазовое соотношение и их суммарный магнитный момент начинает прецессировать с частотой, равной частоте прецессии отдельных магнитных моментов. Важное значение имеет угловая скорость прецессии. Как правило, это величина порядка 10 10 Гц/Тл для намагниченности, связанной с электронами, и порядка 10 7 Гц/Тл для намагниченности, связанной с положительными зарядами в ядрах атомов.

    Принципиальная схема установки для наблюдения ядерного магнитного резонанса (ЯМР) представлена на рис. 11. В однородное постоянное поле между полюсами вводится изучаемое вещество. Если затем с помощью небольшой катушки, охватывающей пробирку, возбудить радиочастотное поле, то можно добиться резонанса на определенной частоте, равной частоте прецессии всех ядерных «гироскопов» образца. Измерения сходны с настройкой радиоприемника на частоту определенной станции.

    Методы магнитного резонанса позволяют исследовать не только магнитные свойства конкретных атомов и ядер, но и свойства их окружения. Дело в том, что магнитные поля в твердых телах и молекулах неоднородны, поскольку искажены атомными зарядами, и детали хода экспериментальной резонансной кривой определяются локальным полем в области расположения прецессирующего ядра. Это и дает возможность изучать особенности структуры конкретного образца резонансными методами.

    Расчет магнитных свойств.

    Магнитная индукция поля Земли составляет 0,5Ч 10 –4 Тл, тогда как поле между полюсами сильного электромагнита – порядка 2 Тл и более.

    Магнитное поле, создаваемое какой-либо конфигурацией токов, можно вычислить, пользуясь формулой Био – Савара – Лапласа для магнитной индукции поля, создаваемого элементом тока. Расчет поля, создаваемого контурами разной формы и цилиндрическими катушками, во многих случаях весьма сложен. Ниже приводятся формулы для ряда простых случаев. Магнитная индукция (в теслах) поля, создаваемого длинным прямым проводом с током I

    Поле намагниченного железного стержня сходно с внешним полем длинного соленоида с числом ампер-витков на единицу длины, соответствующим току в атомах на поверхности намагниченного стержня, поскольку токи внутри стержня взаимно компенсируются (рис. 12). По имени Ампера такой поверхностный ток называется амперовским. Напряженность магнитного поля H a , создаваемая амперовским током, равна магнитному моменту единицы объема стержня M .

    Если в соленоид вставлен железный стержень, то кроме того, что ток соленоида создает магнитное поле H , упорядочение атомных диполей в намагниченном материале стержня создает намагниченность M . В этом случае полный магнитный поток определяется суммой реального и амперовского токов, так что B = m 0(H + H a ), или B = m 0(H + M ). Отношение M /H называется магнитной восприимчивостью и обозначается греческой буквой c ; c – безразмерная величина, характеризующая способность материала намагничиваться в магнитном поле.

    Величина B /H , характеризующая магнитные свойства материала, называется магнитной проницаемостью и обозначается через m a , причем m a = m 0m , где m a – абсолютная, а m – относительная проницаемости,

    В ферромагнитных веществах величина c может иметь очень большие значения –до 10 4 ё 10 6 . Величина c у парамагнитных материалов немного больше нуля, а у диамагнитных – немного меньше. Лишь в вакууме и в очень слабых полях величины c и m постоянны и не зависят от внешнего поля. Зависимость индукции B от H обычно нелинейна, а ее графики, т.н. кривые намагничивания, для разных материалов и даже при разных температурах могут существенно различаться (примеры таких кривых приведены на рис. 2 и 3).

    Магнитные свойства вещества весьма сложны, и для их глубокого понимания необходим тщательный анализ строения атомов, их взаимодействий в молекулах, их столкновений в газах и их взаимного влияния в твердых телах и жидкостях; магнитные свойства жидкостей пока наименее изучены.

    Основное применение магнит находит в электротехнике, радиотехнике, приборостроении, автоматике и телемеханике. Здесь ферромагнитные материалы идут на изготовление магнитопроводов, реле и т.д. .

    Электромашинные генераторы и электродвигатели - машины вращательного типа, преобразующие либо механическую энергию в электрическую (генераторы), либо электрическую в механическую (двигатели). Действие генераторов основано на принципе электромагнитной индукции: в проводе, движущемся в магнитном поле, наводится электродвижущая сила (ЭДС). Действие электродвигателей основано на том, что на провод с током, помещенный в поперечное магнитное поле, действует сила.

    Магнитоэлектрические приборы. В таких приборах используется сила взаимодействия магнитного поля с током в витках обмотки подвижной части, стремящаяся повернуть последнюю.

    Индукционные счетчики электроэнергии. Индукционный счетчик представляет собой не что иное, как маломощный электродвигатель переменного тока с двумя обмотками - токовой и обмоткой напряжения. Проводящий диск, помещенный между обмотками, вращается под действием крутящего момента, пропорционального потребляемой мощности. Этот момент уравновешивается токами, наводимыми в диске постоянным магнитом, так что частота вращения диска пропорциональна потребляемой мощности.

    Электрические наручные часы питаются миниатюрной батарейкой. Для их работы требуется гораздо меньше деталей, чем в механических часах; так, в схему типичных электрических портативных часов входят два магнита, две катушки индуктивности и транзистор.

    Динамометр - механический или электрический прибор для измерения силы тяги или крутящего момента машины, станка или двигателя.

    Тормозные динамометры бывают самых различных конструкций; к ним относятся, например, тормоз Прони, гидравлический и электромагнитный тормоза .

    Электромагнитный динамометр может быть выполнен в виде миниатюрного прибора, пригодного для измерений характеристик малогабаритных двигателей.

    Гальванометр - чувствительный прибор для измерения слабых токов. В гальванометре используется вращающий момент, возникающий при взаимодействии подковообразного постоянного магнита с небольшой токонесущей катушкой (слабым электромагнитом), подвешенной в зазоре между полюсами магнита. Вращающий момент, а следовательно, и отклонение катушки пропорциональны току и полной магнитной индукции в воздушном зазоре, так что шкала прибора при небольших отклонениях катушки почти линейна. Приборы на его базе - самый распространенный вид приборов .

    Магнитные свойства вещества находят широкое применение в науке и технике как средство изучения структуры различных тел. Так возникли науки:

    Магнитохимия - раздел физической химии, в котором изучается связь между магнитными и химическими свойствами веществ; кроме того, магнитохимия исследует влияние магнитных полей на химические процессы. магнитохимия опирается на современную физику магнитных явлений. Изучение связи между магнитными и химическими свойствами позволяет выяснить особенности химического строения вещества.

    Магнитная дефектоскопия, метод поиска дефектов, основанный на исследовании искажений магнитного поля, возникающих в местах дефектов в изделиях из ферромагнитных материалов.

    Ускоритель частиц, установка, в которой с помощью электрических и магнитных полей получаются направленные пучки электронов, протонов, ионов и других заряженных частиц с энергией, значительно превышающей тепловую энергию.

    В современных ускорителях используются многочисленные и разнообразные виды техники, в т.ч. мощные прецизионные магниты.

    В медицинской терапии и диагностике у скорители играют важную практическую роль. Многие больничные учреждения во всем мире сегодня имеют в своем распоряжении небольшие электронные линейные ускорители, генерирующие интенсивное рентгеновское излучение, применяемое для терапии опухолей. В меньшей мере используются циклотроны или синхротроны, генерирующие протонные пучки. Преимущество протонов в терапии опухолей перед рентгеновским излучением состоит в более локализованном энерговыделении. Поэтому протонная терапия особенно эффективна при лечении опухолей мозга и глаз, когда повреждение окружающих здоровых тканей должно быть по возможности минимальным .

    Представители различных наук учитывают магнитные поля в своих исследованиях. Физик измеряет магнитные поля атомов и элементарных частиц, астроном изучает роль космических полей в процессе формирования новых звёзд, геолог по аномалиям магнитного поля Земли отыскивает залежи магнитных руд, с недавнего времени биология тоже активно включилась в изучение и использование магнитов.

    Биологическая наука первой половины XX века уверенно описывала жизненные функции, вовсе не учитывая существования каких-либо магнитных полей. Более того, некоторые биологи считали нужным подчеркнуть, что даже сильное искусственное магнитное поле не оказывает никакого влияния на биологические объекты.

    В энциклопедиях о влиянии магнитных полей на биологические процессы ничего не говорилось. В научной литературе всего мира ежегодно появлялись единичные позитивные соображения о том или ином биологическом эффекте магнитных полей. Однако этот слабый ручеёк не мог растопить айсберг недоверия даже к постановке самой проблемы… И вдруг ручеёк превратился в бурный поток. Лавина магнитобиологических публикаций, словно сорвавшись с какой - то вершины, с начала 60 - х годов непрестанно увеличивается и заглушает скептические высказывания.

    От алхимиков XVI века и до наших дней биологическое действие магнита много раз находило поклонников и критиков. Неоднократно в течение нескольких веков наблюдались всплески и спады интереса к лечебному действию магнита. С его помощью пытались лечить (и не безуспешно) нервные болезни, зубную боль, бессонницу, боли в печени и в желудке - сотни болезней .

    Для лечебных целей магнит стал употребляться, вероятно, раньше, чем для определения сторон света.

    Как местное наружное средство и в качестве амулета магнит пользовался большим успехом у китайцев, индусов, египтян, арабов, греков, римлян и т.д. О его лечебных свойствах упоминают в своих трудах философ Аристотель и историк Плиний.

    Во второй половине XX века широко распространились магнитные браслеты, благотворно влияющие на больных с нарушением кровяного давления (гипертония и гипотония).

    Кроме постоянных магнитов используются и электромагниты. Их также применяют для широкого спектра проблем в науке, технике, электронике, медицине (нервные заболевания, заболевания сосудов конечностей, сердечно - сосудистые заболевания, раковые заболевания).

    Более всего учёные склоняются к мысли, что магнитные поля повышают сопротивляемость организма.

    Существуют электромагнитные измерители скорости движения крови, миниатюрные капсулы, которые с помощью внешних магнитных полей можно перемещать по кровеносным сосудам чтобы расширять их, брать пробы на определённых участках пути или, наоборот, локально выводить из капсул различные медикаменты.

    Широко распространён магнитный метод удаления металлических частиц из глаза.

    Большинству из нас известно исследование работы сердца с помощью электрических датчиков - электрокардиограмма. Электрические импульсы, вырабатываемые сердцем, создают магнитное поле сердца, которое в max значениях составляет 10-6 напряжённости магнитного поля Земли. Ценность магнитокардиографии в том, что она позволяет получить сведения об электрически “немых” областях сердца.

    Надо отметить, что биологи сейчас просят физиков дать теорию первичного механизма биологического действия магнитного поля, а физики в ответ требуют от биологов побольше проверенных биологических фактов. Очевидно, что успешным будет тесное сотрудничество различных специалистов .

    Важным звеном, объединяющим магнитобиологические проблемы, является реакция нервной системы на магнитные поля. Именно мозг первым реагирует на любые изменения во внешней среде. Именно изучение его реакций будет ключом к решению многих задач магнитобиологии.

    Среди технологических революций конца XX века одной из самых главных является перевод потребителей на атомное топливо. И снова магнитные поля оказались в центре внимания. Только они смогут обуздать своенравную плазму в «мирной» термоядерной реакции, которая должна прийти на смену реакциям деления радиоактивных ядер урана и тория.

    Что бы еще сжечь? - навязчивым рефреном звучит вопрос, вечно мучающий энергетиков. Довольно долго нас выручали дрова, но у них малая энергоемкость, а потому дровяная цивилизация примитивна. Сегодняшнее наше благосостояние основано на сжигании ископаемого топлива, однако легкодоступные запасы нефти, угля и природного газа медленно, но верно иссякают. Волей-неволей приходится переориентировать топливно-энергетический баланс страны на что-то другое. В будущем веке остатки органического топлива придется сохранять для сырьевых нужд химии. А основным энергосырьем, как известно, станет ядерное топливо.

    Идея магнитной термоизоляции плазмы основана на известном свойстве электрически заряженных частиц, движущихся в магнитном поле, искривлять свою траекторию и двигаться по спирали силовых линий поля. Это искривление траектории в неоднородном магнитном поле приводит к тому, что частица выталкивается в область, где магнитное поле более слабое. Задача состоит в том, чтобы плазму со всех сторон окружить более сильным полем. Эта задача решается во многих лабораториях мира. Магнитное удержание плазмы открыли советские ученые, которые в 1950 г. предложили удерживать плазму в так называемых магнитных ловушках (или, как часто их называют, в магнитных бутылках).

    Примером весьма простой системы для магнитного удержания плазмы может служить ловушка с магнитными пробками или зеркалами (пробкотрон). Система представляет собой длинную трубу, в которой создано продольное магнитное поле. На концах трубы намотаны более массивные обмотки, чем в середине. Это приводит к тому, что магнитные силовые линии на концах трубы расположены гуще и магнитное поле в этих областях сильнее. Таким образом, частица, попавшая в магнитную бутылку, не может покинуть систему, ибо ей пришлось бы пересекать силовые линии и вследствие лоренцевой силы «накручиваться» на них. На этом принципе была построена огромная магнитная ловушка установки «Огра-1», пущенной в Институте атомной энергии имени И.В. Курчатова в 1958 г. Вакуумная камера «Огра-1» имеет длину 19 м при внутреннем диаметре 1,4 м. Средний диаметр обмотки, создающей магнитное поле, составляет 1,8 м, напряженность поля в середине камеры 0,5 Тл, в пробках 0,8 Тл.

    Стоимость электроэнергии, получаемой от термоядерных электростанций, будет очень низкой вследствие дешевизны исходного сырья (воды). Настанет время, когда электростанции будут вырабатывать буквально океаны электроэнергии. С помощью этой электроэнергии станет возможным, быть может, не только кардинально изменить условия жизни на Земле - повернуть вспять реки, осушить болота, обводнить пустыни, - но и изменить облик окружающего космического пространства - заселить и «оживить» Луну, окружить Марс атмосферой.

    Одна из основных трудностей на этом пути - создание магнитного поля заданной геометрии и величины. Магнитные поля в современных термоядерных ловушках относительно невелики. Тем не менее, если учесть громадные объемы камер, отсутствие ферромагнитного сердечника, а также специальные требования к форме магнитного поля, затрудняющие создание таких систем, то следует признать, что имеющиеся ловушки - большое техническое достижение.

    Исходя из вышесказанного, можно сделать вывод, что в настоящее время нет отрасли, в которой бы не применялся магнит или явление магнетизма.

    С тех пор, как вначале 80-х был изобретен неодимовый магнит, применение его распространилось практически на все сферы промышленности - от швейной и пищевой до станкостроительной и космической. Сегодня практически нет отрасли, где бы ни использовались подобные устройства. Более того, в большинстве случаев они практически вытеснили традиционные ферримагниты, существенно уступающие по своим характеристикам.

    В чем причина популярности изделий из неодима?

    В нескольких словах скажем о том, что такое неодимовый магнит и где применяется

    Магнитные свойства неодима были открыты сравнительно недавно, а первая продукция из него появилась лишь в 1982 году. Несмотря на это, она тут же стала набирать популярность. Причина в потрясающих характеристиках сплава, способного притягивать железные предметы в сотни раз больше собственного веса и в десятки раз сильнее, чем ферромагнитные устройства. Благодаря этому, техника, где применяются неодимовые магниты, стала меньше по размерам, но при этом гораздо эффективнее.

    В составе сплава, помимо неодима, содержится железо и бор. Чтобы получить нужное изделие, эти вещества в виде порошка не расплавляют, а спекают, что приводит к одному существенному недостатку - хрупкости. Избавиться от сколов и коррозии помогает слой медно-никелевого сплава, благодаря которому, получается продукт готовый для полноценного использования.

    Неодимовые магниты - применение в быту

    Сегодня каждый может купить бруски, диски или кольца из неодима и использовать их в домашнем хозяйстве. В зависимости от задач, можно выбрать нужный размер, вес и форму изделия, сообразуясь со своим кошельком. Ниже мы приводим несколько вариантов использования магнитных устройств, хотя, в действительности сфера из употребления практически безгранична и ограничивается только фантазией владельца.

    Итак, где применяется неодимовый магнит в быту?

    Поиск и сбор металлических предметов

    Теперь у Вас не возникнет проблем с поиском железных вещей, закатившихся под мебель или упавших в колодец. Просто закрепите, например, магнитный диск на конце палки или привяжите его на шнур и проведите таким нехитрым приспособлением по месту, куда вероятно упал предмет. Буквально через несколько минут потерянное окажется в Ваших руках целым и невредимым.

    Применение неодимового магнита поможет также собрать металлическую стружку или рассыпавшиеся саморезы. Для удобства оберните предмет из неодима в ткань, носок или полиэтиленовый пакет. Это поможет с одной стороны защитить рабочую поверхность от налипания железного мусора, а с другой - снять разом все, что прилипло и не отделять каждый шуруп отдельно.


    Держатели

    Рассказывая о сферах, где применяются неодимовые магниты в быту, упомянем о разного рода фиксаторах. С их помощью Вы можете подвешивать на вертикальных поверхностях любые железосодержащие предметы: кухонные или слесарные принадлежности, садовый и любой другой инструмент. Просто закрепите пластинки из неодима на стенде в определенном порядке и при необходимости прикрепляйте к ним, например ножи или отвертки.

    Применение неодимового магнита в быту возможно и для подвешивания не железных предметов: картин, зеркал, полочек, антимоскитных сеток и т.д. Для этого зафиксируйте на вещи магнитную пластину, а на поверхность, куда планируете её крепить небольшой лист железа.

    Как мы уже говорили, сплав из неодима достаточно хрупкий, поэтому нежелательно нарушать его целостность сверлением или разрезанием, из-за чего свойства металла существенно пострадают. В качестве подвесов лучше выбирать неодимовые магниты, применение которых не требует дополнительной обработки. Благо интернет-магазины предлагают изделия самых разных конфигураций с отверстиями нужного диаметра, с различными креплениями и вырезами. Поэтому Вы без труда выберите устройство нужной конфигурации. С таким же успехом можно использовать магнитные элементы в качестве защелки на двери, для прикрепления бейджа или создания своими руками магнитика на холодильник. Это далеко не полный список сфер, где применяют неодимовый магнит.

    Зажимы

    Если требуется склеить две поверхности, а из-за сложности формы использовать тиски не получится, проблему опять помогут решить магнитные детали. Просто разместите между ними склеиваемые предметы, которые за счет притягивающей силы неодима будут плотно прижаты друг к другу.

    Используя такого рода зажимы, Вы легко сможете почистить или помыть поверхности, казавшиеся абсолютно недоступными. Где применяют неодимовые магниты конкретно? Для мытья внешних поверхностей стекол балкона, чистки аквариума и других труднодоступных стеклянных емкостей. Поместите магнитный брусок внутрь мочалки, которую зафиксируйте с внешней стороны балкона, удерживая её другим магнитом изнутри. Таким образом, вы можете направлять внешнюю мочалку, куда пожелаете и идеально очистить стекло.

    Авто

    От стружки и другого металлического мусора в машинном масле можно избавиться с помощью применения неодимового магнита, видео об этом есть в сети. Закрепите магнитное устройство на сливной пробке картера, неодим притянет микрочастицы железа, и они не попадут в рабочие механизмы авто.

    С помощью небольшой пластинки из неодима, можно также закрепить какие-либо предметы на кузове авто, а с помощью больших магнитных дисков или брусков можно даже выравнивать небольшие вмятины.

    Неодимовый магнит - применение в быту. Неисследованные моменты

    Многие ученые считают, что электромагнитные волны оказывают благотворное воздействие на живые организмы. В связи с этим появилось множество устройств, которые, как считается, способствуют росту растений и оздоравливают организм. Многие огородники втыкают магнитные прутки рядом с посаженными растениями, а животноводы помещают предметы в клетках с домашними животными. Кроме того, сейчас популярны различные магнитные браслеты, отделка неодимом одежды, очистка воды и многое другое.

    Безусловно, в статье мы затронули лишь малую толику сфер, где неодимовые магниты нашли применение, видео и статьи с другими способами использования этих изделий вы можете найти в сети.