Болезни Военный билет Призыв

Лизирующие ферменты. Биохимия ферментов. Строение, свойства и функции. Как работают в организме

Введение к работе

Состояние вопроса и актуальность проблемы

Литические ферменты*, разрушающие клеточные оболочки бактерий, были впервые обнаружены в слюне человека и описаны Александром Флемингом в 1922 году (Fleming, 1922). Вещество назвали лизоцимом, что означает «фермент, растворяющий бактерии». В 1929 г. Флеминг впервые описал антибактериальные свойства гриба Penicillum notatum - продуцента первого промышленного антибиотика пенициллина, за что в 1945 г. в соавторстве с Эрнестом Чейном и Говардом Флори был награжден Нобелевской премией. После выпуска пенициллина и до настоящего времени проводится постоянная работа по созданию и производству новых антибиотиков, что вызвано не только необходимостью получать вещества требуемой специфичности и лучшего качества, но также постоянным появлением патогенных микробов, устойчивых к любому, даже самому новому антибиотику (). Сложившаяся в связи с этим неблагоприятная ситуация в терапии инфекционных заболеваний заставляет искать новые эффективные антимикробные средства. Многие исследователи указывают на перспективность использования в этих целях литических ферментов, так как способ их воздействия на микробы, а именно растворение микробной клетки, позволяет надеяться на отсутствие появления устойчивых к ним патогенов.

* Термином «литические ферменты» сейчас обозначают гидролазы, разрушающие структурные полимеры клеточных стенок различных микроорганизмов. В зависимости от того, какие именно микроорганизмы они разрушают, литические ферменты разделяют на бактериолитические, дрожжелитические, миколитические. По субстратной специфичности они могут быть подразделены на хитиназы, протеазы, пептидогликангидролазы, глюканазы. Это зависит от того, какие полимеры, входящие в состав клеточных оболочек разных микроорганизмов, разрушают литические ферменты. В свою очередь, например, пептидогликангидролазы, разрушающие пептидогликан - структурный компонент клеточных стенок бактерий, в зависимости от того, какую связь в молекуле пептидогликана они гидролизуют, разделяются на гликозидазы (N-ацетилглюкозаминидазы и N-ацетилмурамидазы (лизоцимы)), амидазы и эндопептидазы. Следует особо отметить бактериолитические протеазы. Среди большого количества известных в настоящее время протеаз бактериолитических совсем немного. Но именно эти ферменты в группе литических обладают самым широким спектром действия в отношении микроорганизмов. Они способны разрушать клеточные оболочки бактерий, дрожжей, мицелиальных грибов, простейших.

В зависимости от контекста в настоящей работе будут использованы термины «литические ферменты», «бактериолитические ферменты», «пептидогликангидролазы», «дрожжелитические ферменты», «литические протеазы».

В период 5 Ох - 70х годов 20 века проводилась интенсивная работа по поиску продуцентов таких ферментов, их выделению и изучению свойств. Сейчас известно, что многие живые организмы - от вирусов до человека - продуцируют литические ферменты. Среди бактерий обнаружены продуценты ферментов, активно лизирующих не только клетки бактерий-конкурентов, но и клетки микроорганизмов других систематических групп - дрожжей, мицелиальных грибов, простейших. Для таких бактерий в 1978 году был сформирован порядок Lysobacterales, включающий семейство Lysobacteraceae и род Lysobacter, объединяющий четыре вида (Christensen and Cook, 1978). В эту систематическую группу были переведены бактерии, ранее относившиеся к другим родам, но по ряду свойств, а главное по литической способности, отличающиеся от их типичных представителей. В дальнейшем интерес к лизирующим бактериям несколько ослаб, однако сейчас они вновь стали интересовать исследователей. В период первого десятилетия 21 века выявлено одиннадцать новых видов рода Lysobacter. В результате постоянно ведущейся работы по систематизации известных микроорганизмов было скорректировано и систематическое положение рода Lysobacter. Сейчас он включен в семейство Xanthomonadaceae (Bergey"s Manual of Systematic Bacteriology, 2001). В литературе же до сих пор можно наблюдать очевидную путаницу в систематическом положении описываемых продуцентов литических ферментов. Например, продуцент ферментов, по всем свойствам аналогичных ферментам типового вида рода Lysobacter - Lysobacter enzymogenes - обозначается авторами как Achromobacter lyticus (Shiraki et ah, 2002, Lief or/., 1997).

Для бактерий, продуцирующих внеклеточные литические ферменты, как для

любой бактерии, жизненно необходимы внутриклеточные автолитические ферменты, разрушающие ковалентные связи в пептидогликане - основном структурном компоненте их клеточной стенки, и играющие таким образом главную роль в процессах роста и деления. В клетках бактерий-продуцентов внеклеточных литических ферментов идет параллельный синтез и передвижение через цитоплазматическую мембрану к месту своего действия как автолитических ферментов, которые могут локализоваться в мембране, периплазме и клеточной стенке, так и внеклеточных бактериолитических ферментов, секретируемых в окружающую среду. В связи с этим логичен вопрос о механизме и регуляции процесса одновременного функционирования этих ферментов, о том могут ли автолитические ферменты являться предшественниками внеклеточных бактериолитических ферментов? К настоящему времени опубликовано большое количество работ, посвященных выделению и характеристике как внеклеточных, так и внутриклеточных бактериолитических ферментов бактерий. Однако до сих

пор нет сведений по сравнительному изучению у одной и той же бактерии вне- и внутриклеточных литических систем. Автолитические ферменты хорошо изучены у многих представителей грамположительных бактерий (Shockman, Holtje, 1994), у грамотрицательных, за исключением Escherichia coli (Holtje, Tuomanen, 1991), их подробно не изучали.

В 1973 году в ИБФМ АН СССР (ИБФМ РАН) по распоряжению Академии наук была начата работа по теме «Создание эффективных средств борьбы с патогенными множественно устойчивыми к антибиотикам микроорганизмами». Культуральная жидкость грамотрицательной бактерии, выделенной в 1976 году из воды реки Оки в районе очистных сооружений г. Пущино, Московской области, явилась основой препарата, названного лизоамидаза и обладающего бактериолитической и протеолитической активностями. Успешные клинические испытания лизоамидазы позволили зарегистрировать ее в качестве лекарственного средства для лечения наружных инфекций, вызванных грамположительной микрофлорой. По ряду морфологических и биохимических признаков бактерия-продуцент была предположительно отнесена к роду Xanthomonas. Однако по ряду существенных свойств, например, по отсутствию подвижности, продуцент лизоамидазы отличался от бактерий этого рода.

Цель и задачи работы

Цель работы - исследование биохимических и генетических особенностей функционирования и взаимосвязи внутриклеточной и внеклеточной литических систем бактерии-продуцента препарата лизоамидаза для создания на основе полученной информации нового поколения антимикробных лекарственных средств.

Основные задачи:

уточнение таксономического положения бактерии-продуцента;

установление структуры пептидогликана бактерии-продуцента - субстрата автолитических ферментов;

выделение и характеристика внеклеточных литических ферментов бактерии-продуцента;

выделение и характеристика внутриклеточных (автолитических) ферментов продуцента;

установление структуры генов внеклеточных литических ферментов

продуцента;

исследование особенностей взаимодействия литических ферментов с
различными микроорганизмами-мишенями;

получение рекомбинантных литических ферментов продуцента и изучение
их свойств для оценки возможности использования таких ферментов в качестве
основы новых антимикробных препаратов;

изучение возможности использования лизоамидазы и различных форм литических ферментов продуцента для лечения «внутренних» инфекций на примере сибирской язвы.

Научная новизна работы

На основании установленных морфологических, биохимических и генетических свойств бактерия-продуцент антимикробного препарата лизоамидаза отнесена к роду Lysobacter. Исследуемый в настоящей работе штамм Lysobacter sp. XL1 был получен путем селекции из исходной культуры и депонирован во Всероссийской коллекции микроорганизмов (ВКМ В-2249Д). Установлено, что при длительном выращивании этого литически высокоактивного штамма на средах, способствующих секреции внеклеточных продуктов, в популяции возникают и накапливаются за счет большей скорости роста клетки литически низкоактивного штамма Lysobacter sp. XL2.

Впервые охарактеризованы эндоклеточная и экзоклеточная литические системы одной и той же бактерии на примере Lysobacter sp. XL1 и XL2. В составе эндоклеточной системы обоих штаммов выявлено девять ферментов разной субстратной специфичности и локализации (глюкозидазы, амидазы, эндопептидазы). В составе внеклеточной литической системы Lysobacter sp. XL1 обнаружено пять ферментов, среди которых мурамидаза (ЛЗ), амидаза (Л2), три эндопептидазы (Л1, Л4, Л5). Внеклеточная литическая система низкоактивного штамма Lysobacter sp. XL2 состоит из мурамидазы и амидазы. Свойства ферментов разных литических систем значительно отличаются друг от друга: внутриклеточные ферменты являются кислыми белками, активными при 29С -температуре оптимального роста бактерии, высоком значении ионной силы среды и щелочном значении рН; внеклеточные ферменты - щелочные белки, активные при низких значениях ионной силы, щелочном рН и высоких температурах (50-80С).

Впервые выявлено, что постсекреторное электростатическое взаимодействие высокомолекулярного кислого полисахарида и ферментов Lysobacter sp. XL1 приводит не только к значительной стабилизации ферментов, но и, в ряде случаев, к изменению их активности. Полисахарид усиливает действие мурамидазы на клетки золотистого стафилококка, а литические ферменты, связанные с полисахаридом, становятся способными разрушать покоящиеся споры бактерий рода Bacillus. Полисахарид Lysobacter sp. XL1 полностью ингибирует активность ряда литических ферментов других продуцентов. Очевидно, что образование микроорганизмами таких внеклеточных комплексов является для них экологически значимым.

Впервые показано, что внеклеточные литические ферменты Л2 и Л5 Lysobacter sp. попадают в окружающее клетку пространство внутри образуемых бактерией внешнемембранных везикул. Ферменты, заключенные в везикулы, способны лизировать живые клетки представителей различных групп микроорганизмов, например, грамотрицательных бактерий родов Pseudomonas, Proteus, Erwinia, Alcaligenes, грамположительных бактерий, относящихся к родам Bacillus, Micrococcus, Staphylococcus, Rothayibacter, дрожжей рода Candida, мицелиального гриба Sclerotinia sclerotiorum, в отличие от литических ферментов, находящихся вне везикул. Таким образом, подобный путь секреции литических ферментов имеет для клетки-продуцента важное биологическое значение, так как расширяет спектр микроорганизмов, с которыми она может конкурировать в природе.

Установлены важные особенности взаимодействия внеклеточных литических ферментов Lysobacter sp. с нативными клетками-мишенями. Для эффективного гидролиза клеток грамположительных бактерий ферментам необходим предварительный контакт с отрицательно заряженным полимером клеточной стенки (тейхоевыми или тейхуроновыми кислотами), при этом химическая структура полимера не имеет решающего значения. Нативные клетки грамотрицательных бактерий литические ферменты Lysobacter sp.(3a исключением Л5) разрушают только при условии предварительной дестабилизации внешней мембраны клетки-мишени подходящим способом (температура, полимиксин В, гентамицин, амикацин). Литический фермент Л5 разрушает клетки грамотрицательных бактерий без предварительной обработки.

Практическое значение работы

На основании полученных данных разработан и масштабирован новый регламент получения препарата лизоамидаза с высоким выходом целевого продукта (до 80%).

Разработаны способы получения двух рекомбинантных литических эндопептидаз Lysobacter sp. XLl с использованием гетерологичных систем на основе Е. coli (рефолдинг из телец включения) и Pseudomonas fluorescens (очистка секретируемых белков).

Установлена возможность использования препарата лизоамидаза, а также везикул Lysobacter sp. XLl для лечения различных форм экспериментальной сибирской язвы.

На основе материалов диссертации получены патенты РФ: № 2139348 (1999), № 2193063 (2002), № 2296576 (2007), № 2407782 (2010), № 2408725 (2011), патент USA № 7,150,985 В2 (2006), патент Китая № 274608 (2006), Европейский патент № 1902719 В1 (2011).

Полученные в работе новые данные используются в курсах по биохимии на биологическом факультете МГУ им М.В. Ломоносова и биологических факультетах других высших учебных заведений.

Апробация работы

Материалы диссертации были представлены на третьей и четвертой Всесоюзной конференции «Биосинтез ферментов микроорганизмами», Кобулети, 1986; Ташкент, 1988; Второй Всесоюзной конференции «Раны и раневая инфекция», Москва, 1986; 14 International Congress of Biochemistry, Prague, CSSR, 1988; Всесоюзной конференции «Регуляция микробного метаболизма», Пущино, 1989; Пятой международной конференции по химии и биотехнологии активных природных соединений, Варна, Болгария, 1989; 1 International symposium «Molecular organization of biological structures», Moscow, 1989; 5 European congress on Biotechnology, Copenhagen, 1990; International conference on antimicrobial activity of nonantibiotices, Copenhagen, 1990; Коференции «Биосинтез и деградация микробных полимеров. Фундаментальные и прикладные аспекты», Пущино, 1995; International Conferense «Microbial polysaccharide», Canada, 1995; First International Conference «Polysaccharide Engineering» Trondheim , Норвегия, 1995; Конференции хирургов, Калуга, 1996; IV симпозиуме «Химия протеолитических ферментов», Москва, 1997; Втором съезде биохимического общества РАН, Москва, 1997;

семинаре-презентации инновационных научно-технических проектов

«Биотехнологии Подмосковья-97», Пущино, 1997; International symposium «Modern problems of microbial biochemistry and biotechnology», Pushchino, 2000; международной конференции «Биотехнология на рубеже двух тысячелетий», Саранск, 2001; 3 Съезде биохимического общества, Санкт-Петербург, 2002; Всероссийской конференции «Проблемы медицинской энзимологии. Современные технологии лабораторной диагностики нового столетия», Москва, 2002; Втором, Пятом, Шестом московских международных конгрессах «Биотехнология: состояние и перспективы развития», Москва, 2003, 2009, 2011; Первом Всероссийском конгрессе «Успехи медицинской микологии», Москва, 2003; III Conference «Biotechnology: State and Perspective of Investigation», Moscow, 2005; Третьей Всероссийской школе-конференции «Химия и биохимия углеводов», Саратов, 2004; Конференции «Фундаментальные науки-медицине», Москва, 2005; конференции «Результаты фундаментальных и прикладных исследований для создания новых лекарственных средств», Москва, 2008; Всероссийской конференции «Экотоксикология-2010», Тула, 2010; Конференции «Фундаментальные науки - медицине», Москва, 2010, Всероссийском симпозиуме с международным участием «Биологически активные вещества микроорганизмов: прошлое, настоящее, будущее», Москва, 2011.

Публикации

Структура и объем работы

Ферменты – это особый вид протеинов, которым природой отведена роль катализаторов разных химических процессов.

Этот термин постоянно на слуху, правда, далеко не все понимают, что такое фермент или энзим, какие функции выполняет это вещество, а также чем отличаются ферменты от энзимов и отличаются ли вообще. Все это сейчас и узнаем.

Без этих веществ ни люди, ни животные не смогли бы переваривать пищу. А впервые к применению ферментов в быту человечество прибегло более 5 тысяч лет тому назад, когда наши предки научились хранить молоко в «посуде» из желудков животных. В таких условиях под воздействием сычужного фермента превращалось в сыр. И это только один из примеров работы энзима в качестве катализатора, ускоряющего биологические процессы. Сегодня ферменты незаменимы в промышленности, они важны для производства , кожи, текстиля, спирта и даже бетона. В моющих средствах и стиральных порошках также присутствуют эти полезные вещества – помогают выводить пятна при низких температурах.

История открытия

Энзим в переводе с греческого означает «закваска». А открытию этого вещества человечество обязано голландцу Яну Баптисту Ван-Гельмонту, жившему в XVI веке. В свое время он весьма заинтересовался спиртовым брожением и в ходе исследования нашел неизвестное вещество, ускоряющее этот процесс. Голландец назвал его fermentum, что в переводе означает «брожение». Затем, почти тремя веками позже, француз Луи Пастер, также наблюдая за процессами брожения, пришел к выводу, что ферменты – не что иное, как вещества живой клетки. А через некоторое время немец Эдуард Бухнер добыл фермент из дрожжей и определил, что это вещество не является живым организмом. Он также дал ему свое название – «зимаза». Еще несколькими годами позже другой немец Вилли Кюне предложил все белковые катализаторы разделить на две группы: ферменты и энзимы. Причем вторым термином он предложил называть «закваску», действия которой распространяются вне живых организмов. И лишь 1897 год положил конец всем научным спорам: оба термины (энзим и фермент) решено использовать как абсолютные синонимы.

Структура: цепь из тысяч аминокислот

Все ферменты являются белками, но не все белки – ферменты. Как и другие протеины, энзимы состоят из . И что интересно, на создание каждого фермента уходит от ста до миллиона аминокислот, нанизанных, словно жемчуг на нить. Но эта нить не бывает ровной – обычно изогнута в сотни раз. Таким образом, создается трехмерная уникальная для каждого фермента структура. Меж тем, молекула энзима – сравнительно крупное образование, и лишь небольшая часть его структуры, так называемый активный центр, участвует в биохимических реакциях.

Каждая аминокислота соединена с другой определенным типом химической связи, а каждый фермент имеет свою уникальную последовательность аминокислот. Для создания большинства из них используются примерно по 20 видов. Даже незначительные изменения последовательности аминокислот могут кардинально менять внешний вид и «таланты» фермента.

Биохимические свойства

Хотя при участии ферментов в природе происходит огромное количество реакций, но все они могут быть разделены на 6 категорий. Соответственно, каждая из этих шести реакций протекает под влиянием определенного типа ферментов.

Реакции при участии энзимов:

  1. Окисление и восстановление.

Ферменты, участвующие в этих реакциях, называются оксидоредуктазами. В качестве примера можно вспомнить как, алкогольдегидрогеназы преобразуют первичные спирты в альдегид.

  1. Реакция переноса группы.

Ферменты, благодаря которым происходят эти реакции, называются трансферазами. Они обладают умением перемещать функциональные группы от одной молекулы к другой. Так происходит, например, когда аланинаминотрансферазы перемещают альфа-аминогруппы между аланином и аспартатом. Также трансферазы перемещают фосфатные группы между АТФ и другими соединениями, а из остатков создают .

  1. Гидролиз.

Гидролазы, участвующие в реакции, умеют разрывать одинарные связи, добавляя элементы воды.

  1. Создание или удаление двойной связи.

Этот вид реакций негидролитическим путем происходит при участии лиазы.

  1. Изомеризация функциональных групп.

Во многих химических реакциях положение функциональной группы изменяется в пределах молекулы, но сама молекула состоит из того же количества и типов атомов, что были до начала реакции. Иными словами, субстрат и продукт реакции являются изомерами. Такого типа трансформации возможны под влиянием ферментов изомеразы.

  1. Образование одинарной связи с устранением элемента воды.

Гидролазы разрушают связь, добавляя в молекулу элементы воды. Лиазы осуществляют обратную реакцию, удаляя водную часть из функциональных групп. Таким образом, создают простую связь.

Как работают в организме

Ферменты ускоряют практически все химические реакции, происходящие в клетках. Они имеют жизненно важное значение для человека, облегчают пищеварение и ускоряют метаболизм.

Некоторые из этих веществ помогают разрушать слишком большие молекулы на более мелкие «куски», которые организм сможет переварить. Другие наоборот связывают мелкие молекулы. Но ферменты, говоря научным языком, обладают высокой селективностью. Это значит, что каждое из этих веществ способно ускорять только определенную реакцию. Молекулы, с которыми «работают» ферменты, называются субстратами. Субстраты в свою очередь создают связь с частью фермента, именуемой активным центром.

Существуют два принципа, объясняющие специфику взаимодействия ферментов и субстратов. В так называемой модели «ключ-замок» активный центр фермента занимает в субстрате место строго определенной конфигурации. Согласно другой модели, оба участника реакции, активный центр и субстрат, меняют свои формы, чтобы соединиться.

По какому бы принципу ни происходило взаимодействие результат всегда одинаковый – реакция под воздействием энзима протекает во много раз быстрее. Вследствие такого взаимодействия «рождаются» новые молекулы, которые потом отделяются от фермента. А вещество-катализатор продолжает выполнять свою работу, но уже при участии других частиц.

Гипер- и гипоактивность

Бывают случаи, когда энзимы выполняют свои функции с неправильной интенсивностью. Чрезмерная активность вызывает чрезмерное формирование продукта реакции и дефицит субстрата. В результате – ухудшение самочувствия и серьезные болезни. Причиной гиперактивности энзима может быть как генетическое нарушение, так и избыток витаминов или , используемых в реакции.

Гипоактивность ферментов может даже стать причиной смерти, когда, например, энзимы не выводят из организма токсины либо возникает дефицит АТФ. Причиной такого состояния также могут быть мутированные гены или, наоборот, гиповитаминоз и дефицит других питательных веществ. Кроме того, пониженная температура тела аналогично замедляет функционирование энзимов.

Катализатор и не только

Сегодня можно часто услышать о пользе ферментов. Но что такое эти вещества, от которых зависит работоспособность нашего организма?

Энзимы – это биологические молекулы, жизненный цикл которых не определяется рамками от рождения и смерти. Они просто работают в организме до тех пор, пока не растворятся. Как правило, это происходит под воздействием других ферментов.

В процессе биохимической реакции они не становятся частью конечного продукта. Когда реакция завершена, фермент покидает субстрат. После этого вещество готово снова приступить к работе, но уже на другой молекуле. И так продолжается столько, сколько необходимо организму.

Уникальность ферментов в том, что каждый из них выполняет только одну, ему отведенную функцию. Биологическая реакция происходит только тогда, когда фермент находит правильный для него субстрат. Это взаимодействие можно сравнить с принципом работы ключа и замка – только правильно подобранные элементы смогут «сработаться». Еще одна особенность: они могут работать при низких температурах и умеренном рН, а в роли катализаторов являются более стабильными, чем любые другие химические вещества.

Ферменты в качестве катализаторов ускоряют процессы метаболизма и другие реакции.

Как правило, эти процессы состоят из определенных этапов, каждый из которых требует работы определенного энзима. Без этого цикл преобразования или ускорения не сможет завершиться.

Пожалуй, из всех функций ферментов наиболее известна – роль катализатора. Это значит, что энзимы комбинируют химические реагенты таким образом, чтобы снизить энергетические затраты, необходимые для более быстрого формирования продукта. Без этих веществ химические реакции протекали бы в сотни раз медленнее. Но на этом способности энзимов не исчерпываются. Все живые организмы содержат энергию, необходимую им для продолжения жизни. Аденозинтрифосфат, или АТФ, это своего рода заряженная батарейка, которая снабжает клетки энергией. Но функционирование АТФ невозможно без ферментов. И главный энзим, производящий АТФ, – синтаза. Для каждой молекулы глюкозы, которая трансформируется в энергию, синтаза производит около 32-34 молекул АТФ.

Помимо этого, энзимы (липаза, амилаза, протеаза) активно применяются в медицине. В частности, служат компонентом ферментативных препаратов, таких как «Фестал», «Мезим», «Панзинорм», «Панкреатин», применяемых для лечения несварения желудка. Но некоторые энзимы способны также влиять на кровеносную систему (растворяют тромбы), ускорять заживление гнойных ран. И даже в противораковой терапии также прибегают к помощи ферментов.

Факторы, определяющие активность энзимов

Поскольку энзим способен ускорять реакции во много раз, его активность определяется так называемым числом оборотов. Этот термин обозначает количество молекул субстрата (реагирующего вещества), которую способна трансформировать 1 молекула фермента за 1 минуту. Однако существует ряд факторов, определяющих скорость реакции:

  1. Концентрация субстрата.

Увеличение концентрации субстрата ведет к ускорению реакции. Чем больше молекул действующего вещества, тем быстрее протекает реакция, поскольку задействовано больше активных центров. Однако ускорения возможно только до тех пор, пока не задействуются все молекулы фермента. После этого, даже повышение концентрации субстрата не приведет к ускорению реакции.

  1. Температура.

Обычно повышение температуры ведет к ускорению реакций. Это правило работает для большинства ферментативных реакций, но только до тех пор, пока температура не поднимется выше 40 градусов по Цельсию. После этой отметки скорость реакции, наоборот, начинает резко снижаться. Если температура опустится ниже критической отметки, скорость ферментативных реакций повысится снова. Если температура продолжает расти, ковалентные связи рушатся, а каталитическая активность фермента теряется навсегда.

  1. Кислотность.

На скорость ферментативных реакций также влияет показатель рН. Для каждого фермента существует свой оптимальный уровень кислотности, при котором реакция проходит наиболее адекватно. Изменение уровня рН сказывается на активности фермента, а значит, и скорости реакции. Если изменения слишком велики, субстрат теряет способность связываться с активным ядром, а энзим больше не может катализировать реакцию. С восстановлением необходимого уровня рН, активность фермента также восстанавливается.

Ферменты, присутствующие в человеческом организме, можно разделить на 2 группы:

  • метаболические;
  • пищеварительные.

Метаболические «работают» над нейтрализацией токсических веществ, а также способствуют выработке энергии и белков. Ну и, конечно, ускоряют биохимические процессы в организме.

За что отвечают пищеварительные – понятно из названия. Но и здесь срабатывает принцип селективности: определенный тип ферментов влияет только на один вид пищи. Поэтому для улучшения пищеварения можно прибегнуть к маленькой хитрости. Если организм плохо переваривает что-то из еды, значит надо дополнить рацион продуктом, содержащим фермент, который способен расщепить трудно перевариваемую пищу.

Пищевые ферменты – катализаторы, которые расщепляют продукты питания до состояния, в котором организм способен поглощать из них полезные вещества. Пищеварительные энзимы бывают нескольких типов. В человеческом организме разные виды ферментов содержатся на разных участках пищеварительного тракта.

Ротовая полость

На этом этапе на пищу воздействует альфа-амилаза. Она расщепляет углеводы, крахмалы и глюкозу, которые содержатся в картофеле, фруктах, овощах и других продуктах питания.

Желудок

Здесь пепсин расщепляет белки до состояния пептидов, а желатиназа – желатин и коллаген, содержащиеся в мясе.

Поджелудочная железа

На этом этапе «работают»:

  • трипсин – отвечает за расщепление белков;
  • альфа-химотрипсин – помогает усвоению протеинов;
  • эластазы – расщепляют некоторые виды белков;
  • нуклеазы – помогают расщеплять нуклеиновые кислоты;
  • стеапсин – способствует усвоению жирной пищи;
  • амилаза – отвечает за усвоение крахмалов;
  • липаза – расщепляет жиры (липиды), содержащиеся в молочных продуктах, орехах, маслах и мясе.

Тонкая кишка

Над пищевыми частицами «колдуют»:

  • пептидазы – расщепляют пептидные соединения к уровню аминокислот;
  • сахараза – помогает усваивать сложные сахара и крахмалы;
  • мальтаза – расщепляет дисахариды к состоянию моносахаридов (солодовый сахар);
  • лактаза – расщепляет лактозу (глюкозу, содержащуюся в молочных продуктах);
  • липаза – способствует усвоению триглицеридов, жирных кислот;
  • эрепсин – воздействует на протеины;
  • изомальтаза – «работает» с мальтозой и изомальтозой.

Толстый кишечник

Здесь функции ферментов выполняют:

  • кишечная палочка – отвечает за переваривание ;
  • лактобактерии – влияют на лактозу и некоторые другие углеводы.

Кроме названных энзимов, существуют еще:

  • диастаза – переваривает растительный крахмал;
  • инвертаза – расщепляет сахарозу (столовый сахар);
  • глюкоамилаза – превращает в глюкозу;
  • альфа-галактозидаза – способствует перевариванию бобов, семян, соевых продуктов, корневых овощей и листовых;
  • бромелайн – фермент, полученный из , способствует расщеплению разных видов белков, эффективен при разных уровнях кислотности среды, обладает противовоспалительными свойствами;
  • папаин – фермент, выделенный из сырой папайи, способствует расщеплению мелких и крупных протеинов, эффективен в широком диапазоне субстратов и кислотности.
  • целлюлаза – расщепляет целлюлозу, растительные волокна (в человеческом организме не обнаружена);
  • эндопротеаза – расщепляет пептидные связи;
  • экстракт бычьей желчи – энзим животного происхождения, стимулирует моторику кишечника;
  • панкреатин – фермент животного происхождения, ускоряет переваривание и белков;
  • панкрелипаза – животный фермент, способствует усвоению

    Ферментированные продукты являются практически идеальным источником полезных бактерий, необходимых для правильного пищеварения. И в то время, когда аптечные пробиотики «работают» только в верхнем отделе пищеварительной системы и часто не добираются до кишечника, эффект от ферментативных продуктов ощущается во всем желудочно-кишечном тракте.

    Например, абрикосы содержат в себе смесь полезных энзимов, в том числе инвертазу, которая отвечает за расщепление глюкозы и способствует быстрому высвобождению энергии.

    Натуральным источником липазы (способствует более быстрому перевариванию липидов) может послужить . В организме это вещество производит поджелудочная железа. Но дабы облегчить жизнь этому органу, можно побаловать себя, например, салатом с авокадо – вкусно и полезно.

    Кроме того, что , пожалуй, самый известный источник , он также поставляет в организм амилазу и мальтазу. Амилаза содержится также в хлебе, крупах. Мальтаза способствует расщеплению мальтозы, так называемого солодового сахара, который в обилии представлен в пиве и кукурузном сиропе.

    Другой экзотический фрукт – ананас содержит в себе целый набор энзимов, в том числе и бромелайн. А он, согласно некоторым исследованиям, еще и обладает противораковыми и противовоспалительными свойствами.

    Экстремофилы и промышленность

    Экстремофилы – это вещества, способны сохранять жизнедеятельность в экстремальных условиях.

    Живые организмы, а также ферменты, позволяющие им функционировать, были найдены в гейзерах, где температура близка к точке кипения, и глубоко во льдах, а также в условиях крайней солености (Долина Смерти в США). Кроме того, ученые находили энзимы, для которых уровень рН, как оказалось, также не принципиальное требование для эффективной работы. Исследователи с особым интересом изучают ферменты-экстремофилы, как вещества, которые могут быть широко использованы в промышленности. Хотя и сегодня энзимы уже нашли свое применение в индустрии как биологически и экологически чистые вещества. К применению энзимов прибегают в пищевой промышленности, косметологии, производстве бытовой химии.

    Извозчикова Нина Владиславовна

    Специальность: инфекционист, гастроэнтеролог, пульмонолог .

    Общий стаж: 35 лет .

    Образование: 1975-1982, 1ММИ, сан-гиг, высшая квалификация, врач-инфекционист .

    Научная степень: врач высшей категории, кандидат медицинских наук.

Экология здоровья: Каждый день мы употребляем определенное количество ратительной и животной пищи для того, чтобы усвоить из нее лишь мельчайшие частицы минералов, витаминов, клетчатки, строительных блоков для построения белков - аминокислот, и энергии. Это принципиально важно.

Каждый день мы употребляем определенное количество ратительной и животной пищи для того, чтобы усвоить из нее лишь мельчайшие частицы минералов, витаминов, клетчатки, строительных блоков для построения белков - аминокислот, и энергии. Это принципиально важно.

Если мы съедаем кусок мяса, то мы должны понимать, что прежде чем взять из него всю энергию, витамины, минералы и аминокислоты, мы должны будем этот кусок переработать, усвоить, привести в состояние, которое доступно нашему организму для усваивания. Эту роль в нашем организме выполняют ферменты.

Ферменты (энзимы) - это белковые вещества, играющие очень важную роль в различных биохимических процессах в организме.Они необходимы для переваривания пищевых продуктов, стимуляции деятельности головного мозга, процессов энергообеспечения клеток, восстановления органов и тканей.

Наиболее важной функцией ферментов является ускорение и запуск биохимических реакций в организме, многие, если не большинство, из которых, идут только в присутствии соответствующих энзимов. Функция каждого из ферментов уникальна, т.е. каждый фермент активизирует только один биохимический процесс. В связи с этим в организме существует огромное количество энзимов - более 3000, которые делятся на 7 групп.

В зависимости от того, какие виды реакций организма катализируют ферменты, ферменты выполняют различные функции.

Чаще всего их подразделяют на три основные группы: пищевые ферменты, пищеварительные ферменты и метаболические ферменты.

Пищеварительные ферменты выделяются в желудочно-кишечном тракте, разрушают питательные вещества, способствуя их абсорбции в системный кровоток. Различают три основные категории таких ферментов: амилаза, протеазы, липаза. Амилаза расщепляет углеводы и находятся в слюне, панкреатическом секрете и в содержимом кишечника. Различные виды амилазы расщепляют различные сахара. Протеазы, находящиеся в желудочном соке, панкреатическом секрете и в содержимом кишечника, помогают переваривать белки. Липаза, находящаяся в желудочном соке и панкреатическом секрете, расщепляет жиры.

Метаболические ферменты катализируют биохимические процессы внутри клеток. Каждый орган или ткань организма имеет свою сеть ферментов.

Пищевые ферменты содержатся (должны содержаться) в продуктах питания. Некоторые виды пищевых продуктов содержат ферменты – это так называемая «живая еда». К сожалению, ферменты очень чувствительны к высокой температуре и легко разрушаются при нагревании. Для того, чтобы организм получил дополнительное количество ферментов, следует или есть продукты, содержащие их, в сыром виде.

Ферментами богаты продукты растительного происхождения: авокадо, папайя, ананасы, бананы, манго, ростки.

«Живая еда» обязательно содержит в себе вещества (ферменты), которые позволят этой еде самой разложиться на простые составляющие этой еды: белки до аминокислот, жиры до жирных кислот, сложные сахара до простых сахаров.

Но если «живую еду» обработать термически (варить, жарить, кипятить) или добавить к такой еде консерванты, то она превращается в «мертвую пищу». Эту пищу наш организм вынужден «переваривать» используя свои пищеварительные ферменты (энзимы), а для этого организм будет тратить много энергии и элементов питания для их синтеза (слюна, желудочный сок, ферменты поджелудочной железы и т.д.).

Если организм в состоянии выработать весь спектр пищеварительных ферментов, то процесс пищеварения идет нормально. А если не может (состояние ферментопатии), то в организм попадают и там накапливаются (в виде шлаков и отложений) недопереваренные вещества.

Если организм больше не в состоянии вырабатывать собственные ферменты в нужных объемах, т.е. вариант - принимать пищеварительные ферменты животного происхождения (таких препаратов большинство в аптеках). Но при этом нужно помнить, что ферменты животного происхождения наш организм идентифицирует как собственные, и постепенно прекращает их выработку (зачем самому трудится если секрет поступает).

При этом теряется способность вырабатывать секрет самостоятельно, в нужном объеме и в нужный момент. Орган, ответственный за выработку секрета (фермента, инсулина, гормона и т.д.), становится функционально не способным.

Тогда без поступления секрета из вне, организм не сможет правильно функционировать. Так человек может выработать зависимость от принимаемого продукта. И будет вынужден его принимать постоянно.

Некоторые болезни, связанные с дефицитом ферментов.

Д-р Д.Галтон и количества присутствующего фермента. Эти величины определяют, сколько молекул фермента соединится с субстратом, и именно от содержания фермент-субстратного комплекса зависит скорость реакции, катализируемой данным ферментом. Зависимость скорости (v) ферментативного превращения субстрата от его концентрации [S] описывается уравнением Михаэлиса – Ментен:

где K M – константа Михаэлиса, характеризующая активность фермента, V – максимальная скорость реакции при данной суммарной концентрации фермента. Из этого уравнения следует, что при малых [S] скорость реакции возрастает пропорционально концентрации субстрата. Однако при достаточно большом увеличении последней эта пропорциональность исчезает: скорость реакции перестает зависеть от [S] – наступает насыщение, когда все молекулы фермента оказываются занятыми субстратом.

Ферменты выполняют множество функций в организме. Они катализируют разнообразные реакции синтеза, включая образование тканевых белков, жиров и углеводов. Для синтеза всего огромного множества химических соединений, обнаруженных в сложных организмах, используются целые ферментные системы. Для этого нужна энергия, и во всех случаях ее источником служат фосфорилированные соединения, такие, как АТФ.

Все ферменты, образующиеся в организме были классифицированы на 6 классов в зависимости от того, какую реакцию они катализируют: оксидоредуктазы, трансферазы, гидролазы, лиазы, изомеразы, лигазы.

Ферменты и пищеварение. Ферменты – необходимые участники процесса пищеварения. Только низкомолекулярные соединения могут проходить через стенку кишечника и попадать в кровоток, поэтому компоненты пищи должны быть предварительно расщеплены до небольших молекул. Это происходит в ходе ферментативного гидролиза (расщепления) белков до аминокислот, крахмала до сахаров, жиров до жирных кислот и глицерина. Гидролиз белков катализирует фермент пепсин, содержащийся в желудке. Ряд высокоэффективных пищеварительных ферментов секретирует в кишечник поджелудочная железа. Это трипсин и химотрипсин, гидролизующие белки; липаза, расщепляющая жиры; амилаза, катализирующая расщепление крахмала. Пепсин, трипсин и химотрипсин секретируются в неактивной форме, в виде т.н. зимогенов (проферментов), и переходят в активное состояние только в желудке и кишечнике. Это объясняет, почему указанные ферменты не разрушают клетки поджелудочной железы и желудка. Стенки желудка и кишечника защищает от пищеварительных ферментов и слой слизи. Некоторые важные пищеварительные ферменты секретируются клетками тонкого кишечника.

Большая часть энергии, запасенной в растительной пище, такой, как трава или сено, сосредоточена в целлюлозе, которую расщепляет фермент целлюлаза. В организме травоядных животных этот фермент не синтезируется, и жвачные, например крупный рогатый скот и овцы, могут питаться содержащей целлюлозу пищей только потому, что целлюлазу вырабатывают микроорганизмы, заселяющие первый отдел желудка – рубец.

Ферменты и их препараты очень широко используют в ветеринарной медицине не только в качестве средств, улучшающих пищеварение, но и как средства вспомогательного и самостоятельного назначения при многих болезнях. Синтетическим путём были получены ферменты протеолитического действия:

    улучшающие пищеварение (пепсин, химотрипсин, абомин) при заболеваниях ЖКТ

    обладающие фибринолитическими свойствами (фибринолизин, стрептолиаза) применяют при тромбозах и тромбофлебитах

    вещества, уменьшающие вязкость гиалуроновой кислоты (лидаза, ронидаза) применяют при контрактурах сухожилий, рубцах после ожогов, операций, при гематомах. При пониженной подвижности суставов после воспалений;

    литические (антимикробные препараты)) лизосубтилин, лизоцим), лизирующие стенки бактерий и вызывающие их гибель

    Препараты, применяемые при гнойно-некротичеких процессах (трипсин, коллагеназа) – ируксол, олазоль.

    Ферментные препараты микробного происхождения в основном добавляют в премиксы и комбикорма. Получают при культивировании микробов и грибов. Под их влиянием улучшается усвояемость питательных веществ, особенно кормов растительного происхождения; нормализуется состав кишечной микрофлоры, поскольку некоторые из них обладают противомикробным свойством; активизируется рост молодняка и профилактируются некоторые болезни ЖКТ. По степени очистки бактериальные ферменты делят на очищенные (спиртом и высаливанием) и технические (высушенные). Получают ферменты при глубоком или поверхностном культивировании. Препараты: Амилорозин и Пектаваморин из гриба аспергиллус; Протосубтилин бактериальная протеаза, Кислая протеаза из гриба аспиргиллус.

    Литические ферменты используют при лечении животных с инфекционными заболеваниями. Эти ферменты лизируют компоненты стенки бактерий, которая состоит в основном из (гетероизомо)пептидогликана. Лизис осуществляется с помощью ферментов амилазы, гликозидазы, протеазы.

В гинекологической практике для лечения больных фолликулярным вестибулитом, эндометритом, трихомонозом используют лизоцим. При инфекционной патологии, где этиологическим фактором является стафилококк, применяют ферментативный препарат Лизостатин, при микозных поражениях родовых путей (кандидомикоз, аспиргиллёз) назначают Копран, Болбит препараты низших грибов. При лечении гнойно-некротических процессов используют протеолитические препараты Профензим, Имозин.

Лизосубтилин – порошок, растворимый в гранулах. Литическая активность измеряется в ЕД. применяют при лечении эндометритов у коров. Растворяют в дистиллированной воде и вводят в матку. Для профилактики диареи у телят добавляют в молоко, молозиво.

Лизоцим – порошок, растворённый в воде вводят внутрь с кормом и водой. Применяют при откорме бройлеров, назначают при комплексной терапии при бронхопневмонии, диарее, остеодистрофии.

Пепсинорм – ферментно-бактериальный препарат. Выпускают как раствор, так и порошок. Нормализует пищеварение, устраняет дисбактериоз, применяют для лечения болезней ЖКТ молодняка.

    Ферменты, применяемые при гнойно-некротических процессах.

Трипсин – получают из панкреатической железы КРС. В виде порошка или раствора. Это эндогенный протеолитический фермент, расщепляющий пептидные связи в белках. Применение основано на свойстве расщепления некротизированных тканей и фибринозных образований, разжижении вязких экссудатов, сгустков крови. Применяют внутримышечно при лечении и профилактике бронхопневмоний у телят, в виде аэрозолей при болезнях дыхательных путей для разжижения экссудата. Наружно в виде капель, примочек применяют при ожогах, язвах, гнойных поражениях, пролежнях. Нельзя вводить в вену, кровоточащие полости, злокачественные опухоли.

Химотрипсин- получают из поджелудочной железы КРС, применяют как трипсин.

Коллагеназа- из поджелудочной железы КРС, имеет вид пористой массы. Обладает протеолитическим действием, осуществляя лизис коллагеновых волокон, способствует расплавлению струпов и некротизированных тканей. Применяют местно при ожогах, обморожениях, язвах с целью ускорения отторжения омертвевших участков тканей

Мазь «Ируксол»

    Ферментные препараты, улучшающие пищеварение .

Пепсин- порошок, растворимый в воде. Железами желудка продуцируется неактивная форма пепсина – пепсиноген, который превращается в желудке под действием соляной кислоты в активную форму пепсин. Выпускают таблетки ацидо-пепсин, состоящие из 1 части пепсина и 4 частей солянокислого бетаина в желудке бетаин гидролизуется с выделением соляной кислоты и активизирует пепсиноген. Назначают при расстройствах пищеварения, ахилии, гипо и анацидных гастритах. Диспепсиях.

Натуральный желудочный сок- прозрачная жидкость кислого вкуса, со специфическим запахом. Получают от собак, лошадей при мнимом кормлении по Павлову. Применяют внутрь при гипофункции желудка,ахилии.

Абомин- содержит сумму протеолитических ферментов, применяют при различных нарушениях процессов пищеварения и понижения уровня кислотности желудочного сока (гастритах, гастроэнтеритах, энтероколитах)

Панкреатин (Мезим)- получают из панкреатической железы КРС. Выпускают порошок, таблетки, растворимые в кишечнике. Основные ферменты: трипсин, амилаза, липаза, расщепляющие белки, углеводы, жиры. Применяют при нарушениях пищеварения, обусловленных гипофункцией поджелудочной железы, при ахилии, хронических панкреатитах, гастритах анацидных, гипоацидных энтероколитах. Вводят в корм и с водой, добавляют щелочной раствор (соду) Одновременно не применяют желудочный сок, не вводят соляную кислоту и пепсидил.

Ораза- содержит протеолитический и амиилолитический ферменты, порошок. В желудке не разрушается, каталитическую активность сохраняет в кишечнике. Применяют при расстройствах пищеварения, связанных с пониженной функцией пищеварительных желёз. При анацидном и гипоацидном гастрите, при гепатохолецистите, панкреатите остром и хроническом, язвенной болезни желудка, колите, сопровождающимся запором.

    Разные ферментные препараты

Лидаза – содержит гиалуронидазу. Получают из семенников КРС. Выпускают порошок и лиофилизированную массу. Вводят п/к, в\м и ингаляционно в виде аэрозолей. Субстрат для гиалуронидазы – гиалуроновая кислота, являющаяся мукополисахаридом. Она обладает высокой вязкостью и является цементирующим соединением в соединительной ткани. Гиалуронидаза вызывает распад гиалуроновой кислоты и уменьшает её вязкость с одновременным увеличением проницаемости тканей и облегчением циркуляции жидкости в межклеточном пространстве. Применяют при контрактурах сухожилий, рубцах после ожогов, операций, при гематомах. Вводят п/к с новокаином или под рубцово-измененные ткани.

Ронидаза- показания к применению те же + тугоподвижность суставов после воспалений.

Цитохром С- из сердечной мышцы КРС, раствор, таблетки, растворимые в кишечнике. Относится к антигипоксическим средствам, применяют для улучшения внутриклеточного дыхания при асфиксии новорожденных, хронической пневмонии, сердечной недостаточности, ишемической болезни сердца и других состояниях, сопровождающихся нарушением окислительных процессов в организме, при повышенных нагрузках для предупреждения недостаточности тканевого дыхания.

    Ингибиторы ферментов . Многие ингибиторы связываются с активным центром фермента – тем самым, с которым взаимодействует субстрат. У таких ингибиторов наиболее важные структурные особенности близки к структурным особенностям субстрата, и если в реакционной среде присутствуют и субстрат и ингибитор, между ними наблюдается конкуренция за связывание с ферментом; при этом чем больше концентрация субстрата, тем успешнее он конкурирует с ингибитором. Ингибиторы другого типа индуцируют в молекуле фермента конформационные изменения, в которые вовлекаются важные в функциональном отношении химические группы.

Пантрипин- из панкреатической железы КРС, порошок, растворимый в воде. Имеет полипептидную структуру, обладает антипротеолитической активностью в отношении ферментов поджелудочной железы (трипсина, химотрипсина, калликреиа. Введенный пантрипин ингибирует каталитически активные ферменты, образующиеся при остром и хроническом пакреатите и других патологиях, при которых ферменты уже в самой железе приобретают каталитическую активность и переваривают её (опухоли, травмы, инфекции новообрахзования). Вводят в/в капельно.

Ферменты микробиального синтеза, рас­щепляющие белки и углеводы

Амилоризин Ш1Х и П10Х. Высушенная культуральная масса гриба Aspergillus avamori. Содержит пектинэстеразу, декстриназу, глюкоамилазу, кислую протеазу, целлюлазу, гемицеллюлазу. До­бавляют в корм из расчета 0,015 % сухой массы.

Пектаваморин ПХ, ПЗХ, П10Х (Аваморин П). Высушенная куль­туральная масса гриба Aspergillus avamori. Содержит пектинэстера­зу, полиметилгалактэроназу, кислую протеазу, целлюлазу, геми­целлюлазу. Добавляют в корм из расчета 0,015 % сухой массы.

Протосубтилин ГЗХ. Бактериальная протеаза. Добавляют в корм крупному рогатому скоту с целью лучшего усвоения белков, угле­водов и жиров из расчета 0,01 % сухой массы.

Кислая протеаза Г10Х. Протеолитический ферментный препа­рат, получаемый при глубинном культивировании гриба As­pergillus fostidus OV-208 путем фильтрации культуральной жид­кости, осаждения фильтрата ацетоном и вакуумной сушкой. В

1 г содержится 100 ЕД. Добавляют в корм телятам из расчета
0,2 г/корм. ед.

При лечении животных с инфекционными болезнями исполь­зуют ферментные препараты, лизирующие компоненты стенки микроорганизмов, которая состоит в основном из гетероизомо-пептидогликана, которого в стенке грамположительных микроор­ганизмов (стафилококков и стрептококков) содержится 95 %, а в стенке грамнегативных бактерий - всего 10 %. Лизис стенки мик­роорганизмов осуществляют три вида ферментов: амилазы, глико-зидазы, протеазы. Протеазы одновременно с лизисом белковых компонентов стенки активизируют внутриклеточные бактериаль­ные ферменты, вызывающие внутриклеточный лизис, что усили­вает противомикробный эффект.

В гинекологической практике для лечения больных фоллику­лярным вестибулитом, эндометритом, трихомонозом используют лизоцим. При инфекционной патологии, где этиологическим фактором являются стафилококки, применяют ферментный пре­парат лизостатин, а при микозных поражениях родовых путей (кандидамикоз, аспергиллез и др.) назначают копран, болбит, по­лученные из низших грибов. Протеолитические ферменты живот­ного (трипсин, химотрипсин, пепсин и др.) и растительного про­исхождения действуют кратковременно при лечении гнойно-не­кротических процессов. Поскольку жизнеспособные клетки со­держат много противоферментных соединений, то они не подвергаются лизису.

Более эффективны иммобилизованные ферменты. Профензим иммобилизован на водорастворимых гранулах целлюлозы, а комп­лексный протеолитический препарат имозин - на водораствори­мом полимере.

Лизосубтилин Г10Х (Lysosubtilinum Г10Х). Светло-желтый мелкий порошок, хорошо растворимый в воде. Литическая ак­тивность его измеряется в ЕД (в 1 г 1 млн ЕД). Выпускают поро­шок в стеклянных пробирках по 10 г и в пакетах по 500, 1000 и 2000 г.



Применяют при лечении эндометритов у коров. Для этого

2 млн ЕД растворяют в 100 мл дистиллированной воды и вводят в
матку. Для профилактики диареи у телят препарат добавляют в
молозиво (молоко) по 20 г/л 2 раза в день на протяжении 8-10 сут. С лечебной целью добавляют в молоко 2 раза в день по 25 г до выздоровления.

Лизоцим ГЗХ (Lysocimum). Светло-серый порошок без запаха, хорошо растворяется в воде. Ферментный препарат, получаемый высушиванием культуральной жидкости продуцентов лизоцима. Содержит протеолитические ферменты.

Выпускают порошок, расфасованный в пакеты по 15 кг. Вводят внутрь. У грампозитивных и грамнегативных микроорганизмов лизирует стенку, построенную из полиаминосахаридов. Улучшает расщепление и резорбцию питательных веществ. Усиливает фаго­цитарную активность нейтрофилов и стимулирует пролифератив-ные процессы.

Применяют при откорме цыплят-бройлеров, добавляя в корм из расчета 0,3 % сухой массы.

Телятам назначают в комплексной терапии при бронхопневмо­ниях, диарее, остеодистрофии в дозе 0,15-0,2 г/кг массы живот­ного в течение 5-20 сут. При лечении телят, больных дистрофи­ей, препарат добавляют в молоко по 2-4 г/л 3 раза в день.

Пепсинорм. Ферментно-бактериальный препарат.

Выпускают в двух формах: пепсинорм-1- серовато-желтая жидкость со специфическим запахом, и пепсинорм-2 - порошко­образная масса кремового цвета, частично растворимая в воде с образованием гомогенных взвесей.

Нормализует пищеварение и устраняет дисбактериоз благодаря наличию бактериолитических и протеолитических ферментов.

Применяют для лечения и профилактики острых желудочно-кишечных болезней новорожденных телят. С лечебной целью 50- " 100 мл жидкого или 0,5-1 г сухого пепсинорма смешивают с 0,5 л молозива (молока) и выпаивают в подогретом виде. Одновремен­но можно назначать специфические терапевтические средства.