Болезни Военный билет Призыв

Левитация магнитная. Магнитная левитация

/ 13
ХудшийЛучший

Если мы поднесем северный полюс постоянного магнита к северному же полюсу другого такого же магнита, магниты будут отталкиваться друг от друга. (Если мы перевернем один из магнитов и поднесем его южным полюсом к северному полюсу другого, два магнита будут притягиваться.) Этот же принцип - то, что одноименные полюса магнитов отталкиваются, - можно использовать для подъема с земли огромных тяжестей. Уже сейчас в нескольких странах идет строительство технически передовых поездов на магнитной подвеске. Такие поезда проносятся не по путям, а над ними на минимальном расстоянии; на весу их удерживают обычные магниты. Поезда как бы парят в воздухе и могут благодаря нулевому трению развивать рекордные скорости.

Первая в мире коммерческая автоматизированная транспортная система на магнитной подвеске была запущена в действие в 1984 г. в британском городе Бирмингеме. Она соединила терминал международного аэропорта и расположенный неподалеку железнодорожный вокзал. Поезда на магнитной подвеске действуют также в Германии, Японии и Корее, хотя большинство из них не предназначены для высоких скоростей. Первый скоростной коммерческий поезд на магнитной подвеске начал ходить по запущенному в действие участку трассы в Шанхае; этот поезд движется по трассе со скоростью до 431 км/ч. Японский поезд на магнитной подвеске в префектуре Яманаси разогнался до скорости 581 км/ч - т. е. двигался значительно быстрее, чем обычные поезда на колесах.

Но устройства на магнитной подвеске чрезвычайно дороги. Один из путей к увеличению их эффективности - использование сверхпроводников, которые при охлаждении до температур, близких к абсолютному нулю, полностью теряют электрическое сопротивление. Явление сверхпроводимости открыл в 1911 г. Хейке Камерлинг-Оннес . Суть его состояла в том, что некоторые вещества при охлаждении до температуры ниже 20 К (20° выше абсолютного нуля) теряют всякое электрическое сопротивление. Как правило, при охлаждении металла его электрическое сопротивление постепенно уменьшается. (Дело в том, что направленному движению электронов в проводнике мешают случайные колебания атомов набор монет города воинской славы . При уменьшении температуры размах случайных колебаний уменьшается, и электричество испытывает меньшее сопротивление.) Но Камерлинг-Оннес, к собственному изумлению, обнаружил, что сопротивление некоторых материалов при определенной критической температуре резко падает до нуля.

Физики сразу поняли важность полученного результата. При передаче на большие расстояния в линиях электропередачи теряется значительное количество электроэнергии. Но если бы сопротивление удалось устранить, электроэнергию можно было бы передавать в любое место почти даром. Вообще, возбужденный в замкнутом контуре электрический ток мог бы циркулировать в нем без потерь энергии миллионы лет. Более того, из этих необычайных токов несложно было бы создать магниты невероятной мощности. А имея такие магниты, можно было бы без усилий поднимать громадные грузы.

Несмотря на чудесные возможности сверхпроводников, применять их очень непросто. Держать большие магниты в баках с чрезвычайно холодными жидкостями очень дорого. Чтобы сохранять жидкости холодными, потребуются громадные фабрики холода, которые поднимут стоимость сверхпроводящих магнитов до заоблачных высот и сделают их использование невыгодным.

Но однажды физикам, возможно, удастся создать вещество, которое сохранит сверхпроводящие свойства даже при нагреве до комнатной температуры. Сверхпроводимость при комнатной температуре - «святой Грааль» физиков-твердотельщиков. Получение таких веществ, по всей вероятности, послужит началом второй промышленной революции. Мощные магнитные поля, способные удерживать на весу машины и поезда, станут настолько дешевыми, что даже «планирующие автомобили», возможно, окажутся экономически выгодными. Очень может быть, что с изобретением сверхпроводников, сохраняющих свои свойства при комнатной температуре, фантастические летающие машины, которые мы видим в фильмах «Назад в будущее», «Особое мнение» и «Звездные войны», станут реальностью.

В принципе вполне представимо, что человек сможет надевать специальный пояс из сверхпроводящих магнитов, который позволит ему свободно левитировать над землей. С таким поясом можно было бы летать по воздуху, подобно Супермену. Вообще, сверхпроводимость при комнатной температуре явление настолько замечательное, что изобретение и использование таких сверхпроводников описано во множестве научно-фантастических романов.

Десятки лет физики безуспешно искали вещества, которые обладали бы сверхпроводимостью при комнатной температуре. Это был утомительный скучный процесс - искали методом проб и ошибок, испытывая один материал за другим. Но в 1986 г. был открыт новый класс веществ, получивших название «высокотемпературные сверхпроводники»; эти вещества обретали сверхпроводимость при температурах порядка 90° выше абсолютного нуля, или 90 К. Это открытие стало настоящей сенсацией в мире физики. Казалось, распахнулись ворота шлюза. Месяц за месяцем физики соревновались друг с другом, стремясь установить новый мировой рекорд сверхпроводимости. Какое-то время даже казалось, что сверхпроводимость при комнатной температуре вот-вот сойдет со страниц научно-фантастических романов и станет реальностью. Но после нескольких лет бурного развития исследования в области высокотемпературных сверхпроводников начали замедляться.

В настоящее время мировой рекорд для высокотемпературных сверхпроводников принадлежит веществу, представляющему собой сложный оксид меди, кальция, бария, таллия и ртути, которое становится сверхпроводящим при 138 К (-135 °С). Эта относительно высокая температура все еще очень далека от комнатной. Но и это - важный рубеж. Азот становится жидким при температуре 77 К, а жидкий азот стоит примерно столько же, сколько обычное молоко. Поэтому для охлаждения высокотемпературных сверхпроводников можно использовать обычный жидкий азот, это недорого. (Разумеется, сверхпроводники, остающиеся таковыми и при комнатной температуре, совсем не потребуют охлаждения.)

Неприятно другое. В настоящее время не существует теории, которая объясняла бы свойства высокотемпературных сверхпроводников. Более того, предприимчивого физика, который сумеет объяснить, как они работают, ждет Нобелевская премия. (В известных высокотемпературных сверхпроводниках атомы организованы в четко выраженные слои. Многие физики предполагают, что именно слоистость керамического материала дает возможность электронам свободно передвигаться внутри каждого слоя, создавая таким образом сверхпроводимость. Но как именно и почему это происходит - по-прежнему загадка.)

Недостаток знаний вынуждает физиков искать новые высокотемпературные сверхпроводники по старинке, методом проб и ошибок. Это означает, что пресловутая сверхпроводимость при комнатной температуре может быть открыта когда угодно - завтра, через год, или вообще никогда. Никто не знает, когда будет найдено вещество с такими свойствами и будет ли оно найдено вообще.

Но если сверхпроводники при комнатной температуре будут открыты, их открытие, скорее всего, породит громадную волну новых изобретений и коммерческих приложений. Обычными, возможно, станут магнитные поля, в миллион раз более сильные, чем магнитное поле Земли (которое составляет 0,5 Гс).

Одно из свойств, присущих всем сверхпроводникам, носит название эффекта Мейснера . Если поместить магнит над сверхпроводником, магнит зависнет в воздухе, как будто поддерживаемый некой невидимой силой. (Причина эффекта Мейснера заключается в том, что магнит обладает свойством создавать внутри сверхпроводника собственное «зеркальное отражение», так что настоящий магнит и его отражение начинают отталкиваться друг от друга. Еще одно наглядное объяснение этого эффекта - в том, что сверхпроводник непроницаем для магнитного поля. Он как бы выталкивает магнитное поле. Поэтому, если поместить магнит над сверхпроводником, силовые линии магнита при контакте со сверхпроводником исказятся. Эти силовые линии и будут выталкивать магнит вверх, заставляя его левитировать.)

Если человечество получит возможность использовать эффект Мейснера, то можно вообразить шоссе будущего с покрытием из такой специальной керамики. Тогда при помощи магнитов, размещенных у нас на поясе или на днище автомобиля, мы сможем волшебным образом парить над дорогой и нестись к месту назначения без всякого трения или потерь энергии.

Эффект Мейснера работает только с магнитными материалами, такими как металлы. Но можно использовать сверхпроводниковые магниты и для левитирования немагнитных материалов, известных как парамагнетики или диамагнетики. Эти вещества сами по себе не обладают магнитными свойствами; они обретают их только в присутствии и под воздействием внешнего магнитного поля. Парамагнетики притягиваются внешним магнитом, диамагнетики отталкиваются.

Вода, к примеру, диамагнетик. Поскольку все живые существа состоят из воды, они тоже могут левитировать в присутствии мощного магнитного поля. В поле с магнитной индукцией около 15 Т (в 30 000 раз более мощном, чем магнитное поле Земли) ученым уже удалось заставить левитировать небольших животных, таких как лягушки. Но если сверхпроводимость при комнатной температуре станет реальностью, можно будет поднимать в воздух и крупные немагнитные объекты, пользуясь их диамагнитными свойствами.

В заключение отметим, что силовые поля в том виде, в каком их обычно описывает фантастическая литература, не согласуются с описанием четырех фундаментальных взаимодействий в нашей Вселенной. Но можно предположить, что человеку удастся имитировать многие свойства этих выдуманных полей при помощи многослойных щитов, включающих в себя плазменные окна, лазерные завесы, углеродные нанотрубки и вещества с переменной прозрачностью. Но реально такой щит может быть разработан лишь через несколько десятилетий, а то и через столетие. И в случае, если сверхпроводимость при комнатной температуре будет обнаружена, у человечества появится возможность использовать мощные магнитные поля; возможно, с их помощью удастся поднять в воздух автомобили и поезда, как мы видим в фантастических фильмах.

На идею этого урока натолкнул проект краудфандинговой платформы Kickstarter под названием "Air Bonsai", действительно красивый и загадочный, который сделали японцы.

Но любая загадка может быть объяснена, если посмотреть внутрь. Фактически это магнитная левитация, когда есть объект, левитирующий сверху, и электромагнит, контролируемый схемой. Давайте попробуем вместе реализовать этот загадочный проект.

Мы выяснили, что схема устройства на Кикстартере была довольно сложной, без какого-либо микроконтроллера. Не было возможности найти её аналоговую схему. На самом деле, если посмотреть более внимательно, принцип левитации довольно прост. Нужно сделать магнитную деталь, "плавающую" над другой магнитной деталью. Основная дальнейшая работа заключалась в том, чтобы левитирующий магнит не падал.

Было также предположение, что сделать это с Arduino на самом деле намного проще, чем пытаться понять схему японского устройства. На самом деле всё оказалось намного проще.

Магнитная левитация состоит из двух частей: базовой части и плавающей (левитирующей) части.

Основание

Эта часть находится внизу, которая состоит из магнита для создания круглого магнитного поля и электромагнитов для управления этим магнитным полем.

Каждый магнит имеет два полюса: север и юг. Эксперименты показывают, что противоположности притягиваются и одинаковые полюса отталкиваются. Четыре цилиндрических магнита помещаются в квадрат и имеют одинаковую полярность, образуя круглое магнитное поле вверх, чтобы вытолкнуть любой магнит, который имеет один и тот же полюс между ними.

Есть четыре электромагнита вообще, они помещены в квадрат, два симметричных магнита - пара, и их магнитное поле всегда противоположно. Датчик Холла и цепь управляют электромагнитами. Создаем противоположные полюса на электромагнитах током через них.

Плавающая деталь

Деталь включает в себя магнит, плавающий над основанием, который может нести небольшой горшок с растением или другие предметы.

Магнит сверху поднимается магнитным полем нижних магнитов, потому что они с одинаковыми полюсами. Однако, как правило, он склоняется к падению и притягиванию друг к другу. Чтобы предотвратить переворот и падение верхней части магнита, электромагниты создадут магнитные поля, чтобы толкать или тянуть, дабы сбалансировать плавающую часть, благодаря датчику Холла. Электромагниты управляются двумя осями X и Y, в результате чего верхний магнит поддерживается сбалансированным и плавающим.

Контролировать электромагниты нелегко, требуется ПИД-регулятор, который подробно обсуждается на следующем шаге.

Шаг 2: ПИД-регулятор (PID)

Из Википедии: "Пропорционально-интегрально-дифференцирующий (ПИД) регулятор - устройство в управляющем контуре с обратной связью. Используется в системах автоматического управления для формирования управляющего сигнала с целью получения необходимых точности и качества переходного процесса. ПИД-регулятор формирует управляющий сигнал, являющийся суммой трёх слагаемых, первое из которых пропорционально разности входного сигнала и сигнала обратной связи (сигнал рассогласования), второе - интеграл сигнала рассогласования, третье - производная сигнала рассогласования."

В простом понимании: «ПИД-регулятор вычисляет значение «ошибки» как разность между измеренным [Входом] и желаемой установкой. Контроллер пытается свести к минимуму ошибку, отрегулировав [выход]».

Итак, вы указываете PID, что измерить (Вход), какое значение вы хотите и переменную, которая поможет иметь это значение на выходе. Далее ПИД-регулятор настраивает выходной сигнал, чтобы сделать вход равным установке.

Для примера : в автомобиле у нас три значения (Вход, Установка, выход) будут - скорость, желаемая скорость и угол педали газа, соответственно.

В данном проекте:

  1. Вход представляет собой текущее значение в реальном времени от датчика холла, которое обновляется непрерывно, поскольку положение плавающего магнита будет меняться в реальном времени.
  2. Заданное значение - это значение от датчика холла, которое измеряется, когда плавающий магнит находится в положении баланса, в центре основания магнитов. Этот индекс фиксирован и со временем не изменяется.
  3. Выходной сигнал - скорость для управления электромагнитами.

Стоит поблагодарить сообщество любителей Arduino, которое написало PID-библиотеку и которая очень проста в использовании. Дополнительная информация об Arduino PID есть на официальном сайте Arduino . Нам нужно использовать пару ПИД-регуляторов под Arduino, один для оси X и другой для оси Y.

Шаг 3: Комплектующие

Список комплектующих для урока получается приличным. Ниже приведен список компонентов, которые вы должны купить для этого проекта, убедитесь, что у вас есть все перед запуском. Некоторые из компонентов очень популярны, и, вероятно, вы найдете их на своем собственном складе или дома.


Шаг 4: Инструменты

Вот список инструментов, наиболее часто используемых:

  • Паяльник
  • Ручная пила
  • Мультиметр
  • Дрель
  • Осциллограф (по желанию, можете использовать мультиметр)
  • Настольное сверло
  • Горячий клей
  • Плоскогубцы

Шаг 5: LM324 Op-amp, L298N драйвер и SS495a

LM324 Op-amp

Операционные усилители (op-amp) являются одними из наиболее важных, широко используемых и универсальных схем, используемых сегодня.

Мы используем операционный усилитель для усиления сигнала от датчика Холла, цель которого - увеличить чувствительность, чтобы ардуино легко распознало изменение магнитного поля. Изменение нескольких мВ на выходе датчика холла, после прохождения усилителя может измениться на несколько сотен единиц в Arduino. Это необходимо для обеспечения плавного и стабильного функционирования ПИД-регулятора.

Обычным операционным усилителем, который мы выбрали, является LM324, это дешево, и вы можете купить его в любом магазине электроники. LM324 имеет 4 внутренних усилителя, которые позволяют гибко его использовать, однако в этом проекте нужны только два усилителя: один для оси X, а другой для оси Y.

Модуль L298N

Двойной H-мост L298N обычно используется для управления скоростью и направлением двух двигателей постоянного тока или с легкостью управляет одним биполярным шаговым двигателем. L298N может использоваться с двигателями с напряжением от 5 до 35 В постоянного тока.

Существует также встроенный регулятор 5V, поэтому, если напряжение питания до 12 В, вы также можете подключить источник питания 5 В от платы.

В этом проекте использован L298N для управления двумя парами катушек электромагнита и использован выход 5 В для питания Arduino и датчика холла.

Распиновка модулей:

  • Out 2: пара электромагнитов X
  • Out 3: пара электромагнитов Y
  • Входное питание: вход постоянного тока 12 В
  • GND: Земля
  • Выход 5v: 5v для датчиков Arduino и холла
  • EnA: Включает сигнал PWM для выхода 2
  • In1: Включить для выхода 2
  • In2: Enable for Out 2
  • In3: Включить для выхода 3
  • In4: Включить для выхода 3
  • EnB: Включает PWM-сигнал для Out3

Подключение к Arduino: нам нужно удалить 2 перемычки в контактах EnA и EnB, затем подключить 6 контактов In1, In2, In3, In4, EnA, EnB к Arduino.

SS495a Датчик Холла

SS495a - это линейный датчик Холла с аналоговым выходом. Обратите внимание на разницу между аналоговым выходом и цифровым выходом, вы не можете использовать датчик с цифровым выходом в этом проекте, он имеет только два состояния 1 или 0, поэтому вы не можете измерить выход магнитных полей.

Аналоговый датчик приведет к диапазону напряжений от 250 до Vcc, который вы можете прочитать с помощью аналогового входа Arduino. Для измерения магнитного поля в обеих осях X и Y требуются два датчика холла.

Шаг 6: Неодимовые магниты NdFeB (неодим-железо-бор)

Из Википедии: "Неодим - химический элемент, редкоземельный металл серебристо-белого цвета с золотистым оттенком. Относится к группе лантаноидов. Легко окисляется на воздухе. Открыт в 1885 году австрийским химиком Карлом Ауэром фон Вельсбахом. Используется как компонент сплавов с алюминием и магнием для самолёто- и ракетостроения."

Неодим - это металл, который является ферромагнитным (в частности, он показывает антиферромагнитные свойства), что означает, что подобно железу его можно намагнитить, чтобы он стал магнитом. Но его температура Кюри составляет 19К (-254 ° С), поэтому в чистом виде его магнетизм проявляется только при чрезвычайно низких температурах. Однако соединения неодима с переходными металлами, такими как железо, могут иметь температуры Кюри значительно выше комнатной температуры, и они используются для изготовления неодимовых магнитов.

Сильный - это слово, которое используют для описания неодимового магнита. Вы не можете использовать ферритовые магниты, потому что их магнетизм слишком слаб. Неодимовые магниты намного дороже ферритовых магнитов. Маленькие магниты используются для основы, большие магниты для плавающей/левитирующей части.

Внимание ! Вам нужно быть осторожным при использовании неодимовых магнитов, так как их сильный магнетизм может навредить вам, или они могут сломать данные вашего жесткого диска или других электронных устройств, на которые влияют магнитные поля.

Совет ! Вы можете отделить два магнита, потянув их в горизонтальное положение, вы не сможете отделить их в противоположном направлении, потому что их магнитное поле слишком сильное. Они также очень хрупкие и легко ломаются.

Шаг 7: Готовим основание

Использовали небольшой терракотовый горшок, который обычно используется для выращивания суккулента или кактуса. Вы также можете использовать керамический горшок или деревянный горшок, если они подходят. Используйте сверло диаметром 8 мм, чтобы создать отверстие в нижней части горшка, которое используется для удерживания гнезда постоянного тока.

Шаг 8: 3D-печать плавающей части

Если у вас есть 3D-принтер - здорово. У вас есть возможность сделать все с помощью него. Если принтера нет - не отчаивайтесь, т.к. вы можете использовать дешевую услугу 3D-печати, которая сейчас очень популярна.

Для лазерной резки файлы также в архиве выше - файл AcrylicLaserCut.dwg (это autocad). Акриловая деталь используется для поддержки магнитов и электромагнитов, остальные - для покрытия поверхности терракотового горшка.

Шаг 9: Подготовка SS495a модуля датчика Холла

Вырежьте макет PCB на две части, одну часть, чтобы прикрепить датчик холла, а другой - к цепи LM324. Прикрепите два магнитных датчика перпендикулярно печатной плате. Используйте тонкие провода для соединения двух штырей датчиков VCC вместе, сделайте то же самое с контактами GND. Выходные контакты отдельно.

Шаг 10: Цепь Op-amp

Припаяйте гнездо и резисторы к печатной плате, следуя схеме, обратив внимание на то, чтобы поместить два потенциометра в одном направлении для более легкой калибровки позже. Присоедините LM324 к гнезду, затем подключите два выхода модуля датчиков холла к цепи op-amp.

Два выходных провода LM324 подключите к Arduino. Вход 12 В с входом 12 В модуля L298N, выход 5 В модуля L298N к 5V потенциометра.

Шаг 11: Сборка электромагнитов

Соберите электромагниты на акриловый лист, они закреплены в четырех отверстиях вблизи центра. Затяните винты, чтобы избежать движения. Поскольку электромагниты симметричны по центру, они всегда находятся на полюсах напротив, так что провода на внутренней стороне электромагнитов соединены вместе, а провода на внешней стороне электромагнитов подключены к L298N.

Протяните провода под акриловым листом через соседние отверстия, чтобы подключиться к L298N. Медный провод покрыт изолированным слоем, поэтому вы должны удалить его ножом, прежде чем вы сможете припаять их вместе.

Шаг 12: Сенсорный модуль и магниты

Используйте горячий клей для фиксации модуля датчика между электромагнитами, обратите внимание, что каждый датчик должен быть квадратным с двумя электромагнитами, один на передней и другой на задней панели. Попробуйте выполнить калибровку двух датчиков как можно более централизованно, чтобы они не перекрывались, что сделает датчик наиболее эффективным.

Следующий шаг - собрать магниты на акриловой основе. Объединяя два магнита D15*4 мм и магнит D15*3 мм вместе, чтобы сформировать цилиндр, это приведет к тому, что магниты и электромагниты будут иметь одинаковую высоту. Соберите магниты между парами электромагнитов, обратите внимание, что полюса восходящих магнитов должны быть одинаковыми.

Шаг 13: Разъем питания постоянного тока и выход L298N 5V

Припаяйте гнездо питания постоянного тока двумя проводами и используйте термоусадочную трубку. Подключенный разъем питания постоянного тока к входу модуля L298N, его выход 5 В будет подавать питание на Arduino.

Шаг 14: L298N и Arduino

Подключите модуль L298N к Arduino, следуя приведенной выше схеме:

L298N → Ардуино
5V → VCC
GND → GND
EnA → 7
В1 → 6
В2 → 5
В3 → 4
В4 → 3
EnB → 2

Шаг 15: Arduino Pro Mini программер

Поскольку у Arduino pro mini нет USB-порта для последовательного порта, вам необходимо подключить внешний программатор. FTDI Basic будет использоваться для программирования (и питания) Pro Mini.

Давайте подробнее рассмотрим принцип действия левитации: создается очень мощное силовое поле, в которое помещают человека, который обладает собственным энергетическим полем, или некий предмет. Левитация не будет наблюдаться, если линии направленности энергетических полей совпадут. Если же силовые поля и линии не совпадут, то мы сможем наблюдать эффект левитации. Как результат, мы получаем предмет (или человека) опирающийся на энергетическое поле Земли. При повышении своей энергетики, мы создаем и расширяем вокруг себя дополнительное энергополе.
Существует такое понятие как «смена полярности» . Этот процесс заключается в следующем. Как давно известно, магнит имеет два противоположных полюса «+» и «-» . Так и человек имеет две стороны — духовную и материальную.

Человек, живущий материальным, никогда не сможет «парить». Потому, что у него большая сила притяжения к Земле (гравитация); то есть направленности полей совпадают. Если же в человеке превышает духовное начало, он стремиться к чему-то возвышенному, то постепенно будет «терять вес».

Многие случаи левитации были в моменты прорывов сознания, экстаза, связи с абсолютной силой.

Магнитная левитация

Ранее мы уже говорили немного о левитации магнитов. Сейчас вы узнаете об этом ещё больше.

Магнитная левитация – это метод, который состоит в том, что подъём предмета производиться с помощью только магнитного поля. Чаще всего используется в физике.
Левитация возможна при использовании диамагнетиков, сверхпроводников, сервомеханизмов, систем с вихревыми токами. Магнитные системы и материалы притягивают и отталкивают друг друга с такой силой, которая зависит от магнитного поля, а также от поверхности магнита.

Магнитная левитация используется в транспорте. Её ещё называют маглев.

Маглев — способ транспортирования, который направляет, приводит и подвешивает в движение транспортные средства, при этом используя магнитную левитацию. Такой способ тихий и быстрый. Максимальная скорость, которая была зафиксирована у Маглева, равна 581 км/ч (Япония, 2003 г.).

Магнитная левитация была продемонстрирована на живых объектах и подтверждена опытами.

Впервые на себе испытала эффект левитации мышь. Учёные из NASA заставили лабораторную мышь левитировать над поверхностью благодаря созданному магнитному полю достаточной силы. То есть F >P, где F – это сила поля, а P – вес мыши. Созданный магнит работает при комнатной температуре. Это удивительный факт, ведь раньше такого добиться не удавалось. До этого такие опыты проводились на меньших животных (лягушках, жуках).

Исследователи из США, Университет Райса зашли ещё дальше. Они утверждают, что при помощи магнитной левитации можно вырастить искусственные органы. Ведь тогда они имели бы трехмерную структуру. Это помогло б проводить разные эксперименты. И был создан «воздушный капилляр».

Акустическая левитация

Ещё один эксперимент левитации человека основывается на помощи звука, эффекте стоячих волн.

Акустическая левитация – феномен, при котором силе тяжести противодействуют звуковые волны, это позволяет предмету парить в воздухе. Образуются стоячие волны с помощью звуковых разрядов. Подъём произойдёт тогда, когда частота волн совпадёт с частотой объекта.

Может казаться, что это невероятно, ведь как звук может поднять предмет. Но это очень реальное явление, известное ещё в древности.
Исследованиями акустических возможностей человека занимается Институт Ксана. Они основаны на знаниях о воздухе, свойствах звука и гравитации.

Звук – это вибрации; они происходят во всякой среде (газ, жидкость, твердой). Звуковые волны идут от источника, который может менять форму. Пример: от удара заставляет колокол вибрировать в воздухе. Звук не будет распространяться, если нет молекул (как в вакууме).

Акустическая левитация состоит из двух частей:

  1. Преобразователь (поверхность, производит волны);
  2. Отражатель (пластина, отражает волну).

Если правильно использовать стоячие звуковые волны, то можно подвесить каплю воды прямо в воздухе.
Принцип действия такой левитации: звуковые волны производится в закрытой области; за счёт этого образуются области разного уровня давления.

В чём же всё-таки состоит секрет левитации? Тут точки зрения расходятся, и точный ответ не найден. Одни говорят, что люди неким образом умеют уменьшать вес своего тела; другие объясняют этот феномен существованием в человеке сил «подъёма», они действуют только в состоянии транса (йоги).

Но существует ещё и такая теория: человек – это потомок инопланетных существ; от них мы получили способность преодолевать гравитацию. Нужно, чтобы у каждого человека просто проснулась генная память, тогда все мы сможем летать, и левитация не будет чем-то необычным и загадочным.

Сейчас существует масса фокусов, секретов, которые нам показывают на сцене. Крис Энджел – и фокусник, и иллюзионист, и каскадёр – проделал такой трюк, в котором он показывает свою способность левитировать (пролетает над домами). Такой известный иллюзионист как Дэвид Коперфильд неоднократно показывал полет над сценой, во время своих блестящих выступлений. Секрет их выступлений довольно простой. Много кто думал о магнитном поле, которое образовано с помощью огромных магнитов, которые находятся под сценой. Но всё оказалось ещё проще. Коперфильд летает благодаря проволке; металлические нити тонкие и их очень трудно заметить, особенно из зала.

Тема левитации стала очень популярной. Её описывают в литературе, снимают фильмы об этом феномене. Например, сериал «Зачарованные» — Фиби, младшая из сестёр, обладает левитацией; сериал «Kyle XY» — левитирует сам главный герой; сериал «Герои» — этим феноменом одарены братья Петрелли, Вест Розен и Сайлар.

Как говорят многие учёные «Рождённый ползать – летать не будет». Вы можете верить в магическую левитацию или наоборот доказывать, что возможна лишь магнитная левитация. Но вывод один – этот феномен действительно реален и его стоит исследовать глубже.

Наука не стоит на месте, эксперименты будут продолжаться.

Но каждый из вас должен помнить, что первый шаг к левитации – это повышение собственной энергетики! Пусть духовное начало превышает над материальным, умейте владеть своими эмоциями, стремитесь освободиться от земной суеты, если хотите лететь ввысь.

arky_titan в Магнитная левитация

Вот этот эффект я просто обожаю. На днях откопали среди шурушков застарелую таблетку иттрий-бариевого оксидного купрата (YBCO), которая, несмотря на ужасные условия хранения, сохранила немного сверхпроводящих свойств.

В связи с этим я незамедлительно провел серию экспериментов по подвешиванию магнитиков в воздухе (магнитной сверхпроводниковой левитации).

Зависает магнит следующим образом. Берётся тёплый сверхпроводник, находящийся при температуре выше критической. То есть выше той, при которой он переходит в состояние сверхпроводимости.

В этом состоянии он является очень плохим проводником тока с невероятно-слабыми магнитными свойствами. Силовые линии магнитного поляв внешнего магнита проходит через него практически без искажения.

Берутся так же магнитик и пласмасска определенной толщины. Магнит кладется на сверхпроводник (или наоборот), а между ними пластмасска. Затем сверхпроводник охлаждается жидким азотом. Температура кипения жидкого азота -195.8°С, а критическая температура YBCO около -184°C.

Сверхпроводимость характеризуется так назыаемым эффектом Мейснера - полным выталкиванием магнитного поля из толщи сверхпроводника. Так что магнитный поток, который до этого свободно проходил через сверхпроводник оказывается в необычном положении. Он достаточно силён, чтобы немного помешать полному переходу сверхпроводника в сверхпроводящее состояния при данной темепературе и не вытесниться из обёма полностью. Но недостаточно силён, чтобы разрушить сверхпроводимость полностью.

И тут происходит чудо. Внутри сверхпрводника возникает множество крохотных участков, которые не являются сверхпроводящими. В них стягиваются магнитные линии внешнего магнита. Но так как вокруг них весь остальной материал сверхпроводящий, вокруг этих зон начинают циркулировать токи, создающие точно такое же поле, только обратного направления, чтобы скомпенсировать внешнее поле и не позоволить ему проникнуть вглубь.

Силовые линии при этом стягиваются в эти точки, каждая из которых может пропустить через себя не какое-то произвольную, а строго квантованную величину магнитного потока. Квант магнитного потока - фундаментальная постоянная, определяемая постоянной Планка и зарядом электрона. Через каждую такую зону может проходить только кратное количество квантов. А из энергетических соображений в данном случае может проходить только один квант через каждый.

Эти структуры - с крохотной нормальной зоной, несущей квант магнитного потока и циркулирующий вокруг него незатухающий ток называются вихрями Абрикосова.

Чудо заключается в том, что т.к. токи незатухающие, то сверхпроводник "запоминает" профиль поля магнита и в точности его копирует. В силу сверхпроводимости, единожды образовавшись ток уже не затухает, поэтому сверхпроводник будет препятствовать изменению магнитного потока.

Иначе говоря, если вы придвините магнит ближе и попробуете вдавить больше силовых линий, он будет отталкиваться. Если же начнете удалять и, таким образом уменьшать магнитный поток, он будет притягиваться. Даже если с силой удалить магнит в который "вморозился" поток постоянного магнита, то когда вы вернете его на место, он впрыгнет туда же, где он изначально стоял.

Если же приблизить магнит достаточно близко и с силой, то можно "вдавить" немного магнитного поля в сверхпроводник, разрушив чуть больше сверхпроводимости. Тогда вихрей Абрикосова в объёме добавится и высота будет чуть ниже.

Когда вихрей абрикосова становится так много, что они оначинают перекрываться, это момент полного разрушения сверхпроводимости в сверхпроводнике второго рода внешним магнитным полем.

Церковные низкотехнологичные чудеса отдыхают:)