Болезни Военный билет Призыв

Лабораторная измерение длины световой волны. Измерение длины световой волны с помощью. Выполнение лабораторной работы

Лабораторная работа № 43

Раздел 5. Оптика

Тема 5.2. Волновые свойства света

Название лабораторной работы: определение длины световой волны с помощью дифракционной решётки

Учебная цель: получить дифракционный спектр, определить длины световых волн разного цвета

Учебные задачи: наблюдать интерференционную картину, получить спектры первого и второго порядков, определить видимые границы спектра фиолетового света и красного света, вычислить их длины волн.

Правила безопасности: правила проведения в кабинете во время выполнения практического занятия

Норма времени: 2 часа

Образовательные результаты, заявленные во ФГОС третьего поколения:

Студент должен

уметь: измерять длину световой волны, делать выводы на основе экспериментальных данных

знать: устройство дифракционной решётки, период решётки, условия образования максимумов

Обеспеченность занятия

Методические указания по выполнению лабораторного занятия

Лабораторная тетрадь, карандаш, линейка, прибор для определения длины световой волны, подставка для прибора, дифракционная решётка, источник света.

Порядок проведения занятия: работа индивидуальная

Теоретическое обоснование

Параллельный пучок света, проходя через дифракционную решётку, вследствие дифракции за решёткой, распространяется по всевозможным направлениям и интерферирует. На экране, установленном на пути интерферирующего света, можно наблюдать интерференционную картину. Максимумы света наблюдаются в точках экрана. Для которых выполняется условие: = n (1)

 - разность хода волн;  - длина световой волны, n – номер максимума. Центральный максимум называют нулевым: для него  = 0. Слева и справа от него располагаются максимумы высших порядков.

Условие возникновения максимума (1) можно записать иначе: n = d Sin

Рисунок 1

Здесь d – период дифракционной решётки,  - угол, под которым виден

световой максимум (угол дифракции). Так как углы дифракции малы, то для них можно принять Sin  = tg , а tg  = a/b рисунок 1, поэтому n = d а/ b (2)

Эту формулу используют для определения длины световой волны.

В результате измерений было установлено, что для красного света λкр = 8 10-7 м, а для фиолетового - λф = 4 10-7 м.

В природе нет никаких красок, есть лишь волны разных длин волн

Анализ формулы (1) показывает, сто положение световых максимумов зависит от длины волны монохроматического света: чем больше длина волны. Тем дальше максимум от нулевого.

Белый свет по составу – сложный. Нулевой максимум для него - белая полоса, а максимумы высших порядков представляют собой набор цветных

полос, совокупность которых называют спектром  и  рисунок 2


Рисунок 2

Прибор состоит из бруска со шкалой 1, стержнем 2, винта 3 (можно регулировать брусок под разными углами). Вдоль бруска в боковых пазах можно перемещать ползунок 4 с экраном 5. К концу бруска прикреплена рамка 6, в которую вставляют дифракционную решётку, рисунок 3

Рисунок 4


Рисунок 3 дифракционная решётка

Дифракционная решётка разлагает свет в спектр и позволяет точно определить длины световых волн


Рисунок 5

Порядок выполнения работы

    Собрать установку, рисунок 6

    Установить источник света, включить его.

    Смотря через дифракционную решётку, направить прибор на лампу так, чтобы через окно экрана прибора была видна нить лампы

    Экран установить на возможно большем расстоянии от дифракционной решётки.

    Измерить по шкале бруска расстояние «b от экрана прибора до дифракционной решётки.

    Определить расстояние от нулевого деления (0) шкалы экрана до середины фиолетовой полосы как слева «а л », так и справа «а п » для спектров  порядка, рисунок 4 и вычислить среднее значение, а ср

    Опыт повторить со спектром  порядка.

    Такие же измерения выполнить для красных полос дифракционного спектра.

    Вычислить по формуле (2) длину волны фиолетового света для спектров  и  порядков, длину волны красного света  и  порядков.

    Результаты измерений и вычислений занести в таблицу 1

    Сделать вывод

Таблица №1

Период дифракционной

решётки d мм

Порядок спектра

Расстояние от

дифракционной

решётки до экрана

Границы спектра фиолетового

Границы спектра красного

Длина световой

Красного

Излучения

Фиолетового

Излучения

Вопросы для закрепления теоретического материала к лабораторному занятию

    Почему нулевой максимум дифракционного спектра белого света – белая полоса, а максимум высших порядков – набор цветных полос?

    Почему максимумы располагаются как слева, так и справа от нулевого максимума?

    В каких точках экрана получаются , ,  максимумы?

    Какой вид имеет интерференционная картина в случае монохроматического света?

    В каких точках экрана получается световой минимум?

    Чему равна разность хода светового излучения (= 0,49 мкм), дающего 2-й максимум в дифракционном спектре? Определите частоту этого излучения

    Дифракционная решётка и её параметры.

    Определения интерференции и дифракции света.

    Условия максимумов света от дифракционной решётки.

    По окончанию практической работы студент должен представить: - Выполненную в лабораторной тетради работу в соответствии с вышеуказанными требованиями.
    Список литературы:

    В. Ф. Дмитриева Физика для профессий и специальностей технического профиля М.: ИД Академия – 2016

    Р. А. Дондукова Руководство по проведению лабораторных работ по физике для СПО М.: Высшая школа,2000

    Лабораторные работы по физике с вопросами и заданиями

О. М. Тарасов М.: ФОРУМ-ИНФА-М, 2015

РАБОТА № 2

ИЗМЕРЕНИЕ ДЛИНЫ СВЕТОВОЙ ВОЛНЫ

Цель работы : ознакомиться с явлением дифракции света, произвести измерения и вычислить длины волн основных линий излучения паров ртути в видимой части спектра.

Оборудование : осветители, блоки питания , шкала с щелью, дифракционная решетка.

Описание метода

Дифракцией называется огибание световой волной границ непрозрачных тел с образованием интерференционного перераспределения энергии по различным направлениям.

Пользуясь явлением дифракции света, можно с помощью дифракционной решетки измерить длину световой волны. Дифракционная решетка представляет собой систему параллельных друг другу щелей равной ширины, расположенных на равном расстоянии друг от друга. Расстояние между серединами соседних щелей, равное ( a + b ) = d , где b – ширина щели, a – ширина непрозрачного промежутка между щелями, называется периодом дифракционной решетки (рис. 1).

При падении на решетку плоской монохроматической световой волны каждая точка щелей становиться источником вторичных сферичных когерентных волн, распространяющихся от решетки во всех направлениях. Плоской называется волна, фронт которой представляет собой плоскость, отделяющая область, вовлеченную проходящей волной в колебательный процесс, от области пространства, до которой еще не дошла волна и не начались колебания. Если на пути волн за решеткой поставить собирающую линзу, то на экране, расположенном в фокальной плоскости линзы, будет наблюдаться дифракционная картина: 100%">


Если складываются лучи, идущие от разных, но не от соседних щелей, и при этом возникает разность хода, равная нечетному числу полудлин волн, то возникают добавочные минимумы. Их условие имеет вид

где N – общее число щелей дифракционной решетки,

m ¢ = 1, 2, 3,…,N 1.

Внешне появление дополнительных минимумов проявляется в том, что дифракционная картина представляет собой широкие темные полосы, разделенные светлыми узкими линиями главных максимумов. Чем больше штрихов содержит дифракционная решетка, тем уже получаются дифракционные максимумы, тем выше разрешающая способность решетки

https://pandia.ru/text/80/046/images/image006_17.gif" width="628" height="260">

Если на решетку падает не монохроматический, а белый свет, то все главные максимумы, кроме центрального, разлагаются в спектр, и картина приобретает вид, представленный на рис. 2. Из (2) видно, что в этих спектрах красные лучи более удалены от центра, чем фиолетовые, т. к. l к > l ф .

Описание установки

https://pandia.ru/text/80/046/images/image008_12.gif" width="393" height="290">
Схема установки показана на рис. 3. Свет от источника 1, пройдя узкую щель 2 в кожухе лампы 3, падает практически параллельным пучком на дифракционную решетку 5. Наблюдается дифракционная картина глазом. При этом глаз проецирует светлые линии на шкалу 4, на которой видна дифракционная картина.


Из треугольника ABC видно, что угол дифракции j для отдельных полос можно найти из равенства

где L – расстояние от щели до дифракционной решетки; l – расстояние от максимума нулевого порядка (от щели) до интересующей нас полосы спектра.

Выполнение измерений

1. Включить осветитель с ртутной лампой, имеющей линейчатый спектр.

2. Установить дифракционную решетку по возможности дальше от щели так, чтобы отчетливо были видны спектры первого и второго порядков. Измерить расстояние L от щели до решетки. Плоскость решетки необходимо располагать перпендикулярно к световым лучам.

3. Глядя через решетку на щель, измерить по шкале расстояние от середины щели до фиолетовой линии в спектрах первого и второго порядков. Следует измерить l и l (вправо и влево от щели). Результаты измерений занесите в таблицу.

4. Используя формулы (2) и (5), определить длину волны фиолетовых лучей. Значение периода решетки d указано на установке.

0 " style="border-collapse:collapse;border:none">

Порядок спектра

Влево l ¢ , мм

Вправо l ¢¢ ,мм

sin j

l i , мм

<l > , мм

Фиолетовый

Оранжевый


7. Записать окончательный результат для каждого цвета:

8. Сделать вывод, считая d l для всех цветов одинаковой. Сравнить полученные длины волн с табличными.

Контрольные вопросы

1. Что представляет собой дифракционная решетка?

2. Чему равен период дифракционной решетки, у которой на 1 мм нанесено 1000 штрихов?

3. Каково условие получения главных максимумов при дифракции плоских волн на дифракционной решетке?

4. Каково условие получения главных минимумов при дифракции плоских волн на дифракционной решетке?

5. Что представляют собой зоны Френеля и от чего зависит число зон Френеля, укладывающихся на плоской щели?

6. Каков наибольший порядок спектра от дифракционной решетки с периодом d = 3,5 мкм, если длина волны света l = 600 нм?

7. Как изменяется интенсивность главных максимумов с увеличением числа щелей N при дифракции от многих щелей?

8. В чем заключается дифракция света?

Дифракционной решетки

Цель работы

С помощью дифракционной решетки получить спектр, изучить его. Определить длину волны фиолетовых, зеленых и красных лучей

Теоретическая часть работы

Параллельный пучок света, проходя через дифракционную решетку, вследствие дифракции за решеткой распространяется по все возможным направлениям и интерферирует. На экране, установленном на пути интерферирующего света, можно наблюдать интерференционную картину. В точке О поставленного за решеткой экрана разность хода лучей любой цветности будет равна нулю, здесь будет центральный нулевой максимум – белая полоса. В точке экрана, для которой разность хода фиолетовых лучей будет равна длине волны этих лучей, лучи будут иметь одинаковые фазы; здесь будет максимум – фиолетовая полоса – Ф. В точке экрана, для которой разность хода красных лучей будет равна длине их волны, будет максимум для лучей красного света – К. Между точками Ф и К расположатся максимумы всех остальных составляющих белого цвета в порядке возрастания длины волны. Образуется дифракционный спектр. Сразу за первым спектром расположен спектр второго порядка. Длину волны можно определить по формуле:

Где λ- длина волны, м

φ – угол, под которым наблюдается максимум для данной длины волны,

d – период дифракционной решетки d= 10 -5 м,

k – порядок спектра.

Поскольку углы, под которыми наблюдаются максимумы первого и второго порядков не превышают 5 0 , можно вместо синусов углов использовать их тангенсы:

где a – расстояние от центра окна до середины лучей спектра, м;

ℓ - расстояние от дифракционной решетки до экрана, м

Тогда длина волны может быть определена по формуле:

Оборудование

Прибор для определения длины световой волны, дифракционная решетка, лампа накаливания.

Ход работы

1. Установите экран на расстоянии 40-50 см от решетки (ℓ).

2. Глядя сквозь решетку и щель в экране на источник света, добейтесь, чтобы по обе стороны от щели были четко видны дифракционные спектры.

3. По шкале на экране, определите расстояние от центра окна до середины фиолетовых, зеленых и красных лучей (a), вычислить длину световой волны по формуле: ,

4. Изменив расстояние от решетки до экрана (ℓ), опыт повторите для спектра второго порядка для лучей того же цвета.

5. Найдите среднее значение длины волны для каждого из монохроматических лучей и сравните с табличными данными.

Таблица Значения длин волн для некоторых цветов спектра



Таблица Результаты измерений и вычислений

Вычисления

1. Для спектра первого порядка: k=1 , d= , ℓ 1 =

а ф1 = , а з1 = , а кр1 =

Длина волны для спектра первого порядка:

- фиолетового цвета: , λ ф1 =

- зеленого цвета: , λ з1 =

- красного цвета: , λ кр1 =

2. Для спектра второго порядка: k=2 , d= , ℓ 2 =

а ф2 = , а з2 = , а кр2 =

Длина волны для спектра второго порядка:

- фиолетового цвета: , λ ф2 =

- зеленого цвета: , λ з2 =

- красного цвета: , λ кр2 =

3. Среднее значение длин волн:

- фиолетового цвета: , λ фср =

- зеленого цвета: , λ зср =

- красного цвета: , λ крср =

Вывод

Записать ответы на вопросы полными предложениями

1. Что называется дифракцией света?

2. Что называется дифракционной решеткой?

3. Что называется периодом решетки?

4. Записать формулу периода решетки и комментарии к ней

Тема: « Измерение длины световой волны с помощью дифракционной решетки».

Цели урока: экспериментально получить дифракционный спектр и определить длину световой волны с помощью дифракционной решетки;

воспитывать внимательность, доброжилательность, толерантность в процессе работи в малых группах;

развивать интерес к изучению физики.

Тип урока: урок формирования умений и навыков.

Оборудование: длины световой волны, инструкция по ОТ, инструкции по выполнению лабораторной работы, компьютеры.

Методы проведения: лабораторная работа, работа в группах.

Межпредметные связи: математика, информатика ИКТ.

Все познание реального мира

исходит из опыта и завершается им

А. Эйнштейн.

Ход урока

І. Организационный момент.

    Сообщение темы и цели урока.

ІІ. 1. Актуализация опорных знаний. Опрос обучающихся (Дополнение 1).

    Выполнение лабораторной работы.

Обучающимся предлагается измерять длину световой волны с помощью дифракционной решетки.

Обучающиеся объединяются в малые группы (по 4-5 человек) и вместе выполняют лабораторную работу согласно инструкции. С помощью компьютерной программы Excel делают вычисления и результаты работы заносят в таблицу (в программе Word).

Критерии оценивания:

Команда, выполнившая задание первой, получает – оценку 5;

второй – оценку 4;

третьей – оценку 3

    Правила безопасности жизнедеятельности во время выполнения работы.

    Работа в группах под руководством преподавателя.

    Обобщение и систематизация обучающимися результатов работы.

Результат работы заносится в таблицу на компьютере (Дополнение 2) .

ІІІ.

    Подведение итогов. Сравнить полученные результаты с табличными данными. Сделать выводы.

    Рефлексия.

    Всё ли получилось так, как я задумывал?

    Что было сделано хорошо?

    Что было сделано плохо?

    Что было выполнить легко, а что оказалось неожиданно трудно?

    Работа в малой группе мне помогла или создала дополнительные трудности?

VI. Домашнее задание.

    Оформить работу.

    Повторить теоретический материал по теме «Интерференция и дифракция света» .

    Составить кроссворд по теме «Свойства электромагнитных волн».

Дополнение 1

1. Что такое свет?

2. Из чего состоит белый свет?

3. Почему свет называется видимым излучением?

4. Как разложить белый свет в цветной спектр?

5. Что такое дифракционная решетка?

6. Что можно измерить с помощью дифракционной решетки?

7. Могут ли две разноцветные световые волны, например красного и зеленого излучений, иметь одинаковые длины волн?

8. А в одной среде?

Дополнение 2

Красный

10 -7 м

Оранжевый

10 -7 м

Желтый

10 -7 м

Зеленый

10 -7 м

Голубой

10 -7 м

Синий

10 -7 м

Фиолетовый

10 -7 м

Лабораторная работа

Тема: Измерение длины световой волны.

Цель работы: измерить длину волны красного и фиолетового цветов, сравнить полученные значения с табличными.

Оборудование: электрическая лампочка с прямой нитью накаливания, прибор для определения длины световой волны.

Теоретическая часть

В работе для определения длины световой волны используется дифракционная решетка с периодом 1/100 мм или 1/50 мм (период указан на решетке). Она является основной частью измерительной установки, показанной на рисунке. Решетка 1 устанавливается в держателе 2, который прикреплен к концу линейки 3. На линейке же располагается черный экран 4 с узкой вертикальной щелью 5 посредине. Экран может перемещаться вдоль линейки, что позволяет изменять расстояние между ним и дифракционной решеткой. На экране и линейке имеются миллиметровые шкалы. Вся установка крепится на штативе 6.

Если смотреть сквозь решетку и прорезь на источник света (лампу накаливания или свечу), то на черном фоне экрана молено наблюдать по обе стороны от щели дифракционные спектры 1-го, 2-го и т. д. порядков.

Рис. 1

Длина волны λ определяется по формуле λ = dsinφ/k , где d - период решетки; k - порядок спектра; φ - угол, под которым наблюдается максимум света соответствующего цвета.

Поскольку углы, под которыми наблюдаются максимумы 1-го и 2-го порядков, не превышают 5°, можно вместо синусов углов использовать их тангенсы. Из рисунка видно, что tgφ = b/a . Расстояние а отсчитывают по линейке от решетки до экрана, расстояние Ь - по шкале экрана от щели до выбранной линии спектра.

Рис. 2

Окончательная формула для определения длины волны имеет вид λ = db/ka

В этой работе погрешность измерений длин волн не оценивается из-за некоторой неопределенности выбора середины части спектра данного цвета.

Работу можно выполнять используя инструкции №2 или №2

Инструкция №1

Ход работы

1. Подготовьте бланк отчета с таблицей для записи результатов измерений и вычислений.

2. Соберите измерительную установку, установите экран на расстоянии 50 см от решетки.

3. Глядя сквозь дифракционную решетку и щель в экране на источник света и перемещая решетку в держателе, установите ее так, чтобы дифракционные спектры располагались параллельно шкале экрана.

4. Вычислите длину волны красного цвета в спектре 1-го порядка справа и слева от щели в экране, определите среднее значение результатов измерения.

5. Проделайте то же для других цвет ов .

6. Сравните полученные результаты с табличными длинами волн.

Инструкция № 2

Ход работы

    Измерьте расстояние b до соответствующего цвета в спектре первого по строке влево и вправо от центрального максимума. Измерьте от-стань а от дифракционной решетки до экрана (см.рисунок 2).

    Определите или рассчитайте период решетки d.

    Вычислите длину света для каждого из семи цветов спектра.

    Результаты измерений и вычислений занесите в таблицу:

Цвет

b ,слева,м

b ,справа,м

b ,среднее,м

а

Порядок

спектра k

Период решетки

d

Измеренное λ , нм

Фи олетовый

Син ий

Голубой

Зелен ый

Жёлтый

Оранжев ый

Красный

4. Вычислите относительную погрешность эксперимента для каждого цвета по формуле

Цель работы : Определить длину световой волны, используя дифракционную решетку .

Оборудование:

1. Прибор для определения длины световой волны, состоящий из линейки, пластины с дифракционной решеткой и движка со щелью.

2. Штатив.

3. Электрическая лампочка на напряжение 42 В в патроне.

Краткая теория

Как известно, свет представляет собой электромагнитные волны , которые характеризуются длиной световой волны. Дифракционная решетка служит для выделения из света с разными длинами волн света с определенной длиной волны или, как говорят, разложения света на его спектральные компоненты . Основой работы дифракционной решетки служат явления дифракции и интерференции света, и именно волновая природа света приводит к возникновению указанных выше двух явлений.

Дифракцией называется отклонение распространения света от прямолинейного в область, где при прямолинейном распространении света должна бы была быть тень.

Интерференцией называется сложение световых пучков, ведущее к образованию светлых и темных полос.

Дифракция. Дифракция наблюдается в случаях, когда свет проходит сквозь прозрачный материал, в котором есть непрозрачные небольшие препятствия, либо через небольшие отверстия в непрозрачном материале.

Различают два типа дифракции: дифракция в параллельных пучках света или дифракция Фраунгофера и дифракция в расходящемся пучке света – дифракция Френеля . В первом случае для наблюдения дифракционной картины используют либо солнечные лучи, которые являются параллельными, либо создают параллельный пучок света, используя простейшую оптическую систему – выпуклую линзу. Во втором случае используется точечный источник света, например, лампа с малыми размерами спирали.

Схема наблюдения дифракции Фраунгофера приведена на рис. 1.

Рис.1. Дифракция Фраунгофера.

В случае прямолинейного распространения света параллельный пучок лучей, сформированный линзой 1, пройдя через круглое отверстие в непрозрачном экране 1 и через фокусирующую линзу 2, должен был бы собраться в точку. Однако, из-за дифракции на экране 2 получается сложная дифракционная картина, состоящая из чередования светлых и темных колец.

Интерференция. При интерференции волны света с одинаковыми длинами волн максимально усиливают друг друга, когда приходят в точку наблюдения в одинаковой фазе , и ослабляют друг друга, когда приходят в противофазе . Суть явления интерференции поясняет рис.2.

Рис. 2. Интерференция от 2-х источников.

Точечные источники света В 1 и В 2 расположены друг от друга на расстоянии t. Колебания электромагнитного поля совершаются в этих точках в одной и той же фазе. Интерференция (т.е. сложение или вычитание колебаний) наблюдается в точках А и С на экране, находящемся на большом расстоянии L по сравнению t и l. В оптике установлено, что для максимального усиления волн разность хода (т.е. разность расстояний от источников до точки наблюдения) должно выполняться условие:

а для максимального ослабления волн:

Где n – целое число.

Из Рис. 2 можно определить разность хода . Тогда, используя предыдущие равенства, можно получить, что светлые полосы располагаются на расстоянии от точки А, расстояние между светлыми полосами , а темные полосы располагаются между светлыми. Очевидно, что в точке А разность хода равна нулю и в этой точке наблюдается сложение колебаний от источников света В 1 и В 2

Дифракционная решетка . Ряд прозрачных щелей, разделенных непрозрачными полосами, называется дифракционной решеткой . Дифракционная картина, которая имела место на одной щели при использовании дифракционной решетки, усложняется, так как кроме дифракции на каждой щели происходит еще и интерференция световых волн от щелей, которые можно рассматривать как источники света. На экране возникают максимумы и минимумы света, причем главные максимумы возникают при значении угла j , удовлетворяющих соотношению , где - период решетки равный сумме ширины щели и полосы. Положение 1-го максимума при определяется выражением

Из (1) видно, что для данной дифракционной решетки положения 1-го максимума для различных длин волн разное: чем больше длина волны света, тем больше угол отклонения наблюдаемого максимума от направления падающего пучка света.

Программа работы

Схема прибора приведена на рис.3.

Рис.3. Прибор для определения длины волны.

1. Включить электрическую лампочку.

2. Глядя через дифракционную решетку, направить прибор на лампочку так, чтобы через щель в движке была видна нить накала лампы. На черном фоне движка по обе стороны от нуля должны быть видны дифракционные спектры, состоящие из полос разного цвета. Если полосы располагаются не параллельно шкале, то это означает, что нить накала не параллельна штрихам на решетке. В этом случае надо повернуть немного либо дифракционную решетку, либо лампочку. Закрепить прибор.

3. Определить расстояние от щели на движке (нуля) до красной полосы слева на шкале.

4. Определить расстояние от щели на движке (нуля) до красной полосы справа на шкале. Записать это значение в таблицу.

5. Определить среднее значение расстояния до красной полосы по формуле:

Записать это значение в таблицу.

6. Определить расстояние от щели на движке (нуля) до фиолетовой полосы слева на шкале. Записать это значение в таблицу.

7. Определить расстояние от щели на движке (нуля) до фиолетовой полосы справа на шкале. Записать это значение в таблицу.

8. Определить среднее значение расстояния до фиолетовой полосы по формуле:

Записать это значение в таблицу.

9. Определить расстояние от дифракционной решетки до движка. Записать это значение в таблицу.