Болезни Военный билет Призыв

Квадратные уравнения теорема виета. Доказательство обратной теоремы Виета. Замечание по поводу кратных корней

При изучении способов решения уравнений второго порядка в школьном курсе алгебры, рассматривают свойства полученных корней. Они в настоящее время известны под названием теоремы Виета. Примеры использования ее приводятся в данной статье.

Квадратное уравнение

Уравнение второго порядка представляет собой равенство, которое показано на фото ниже.

Здесь символы a, b, c являются некоторыми числами, носящими название коэффициентов рассматриваемого уравнения. Чтобы решить равенство, необходимо найти такие значения x, которые делают его истинным.

Заметим, что поскольку максимальное значение степени, в которую возводится икс, равно двум, тогда число корней в общем случае также равно двум.

Для решения этого типа равенств существует несколько способов. В данной статье рассмотрим один из них, который предполагает использование так называемой теоремы Виета.

Формулировка теоремы Виета

В конце XVI известный математик Франсуа Виет (француз) заметил, анализируя свойства корней различных квадратных уравнений, что определенные их комбинации удовлетворяют конкретным соотношениям. В частности, этими комбинациями является их произведение и сумма.

Теорема Виета устанавливает следующее: корни квадратного уравнения при их сумме дают отношение коэффициентов линейного к квадратичному взятое с обратным знаком, а при их произведении приводят к отношению свободного члена к квадратичному коэффициенту.

Если общий вид уравнения записан так, как это представлено на фото в предыдущем разделе статьи, тогда математически эту теорему можно записать в виде двух равенств:

  • r 2 + r 1 = -b / a;
  • r 1 х r 2 = c / a.

Где r 1 , r 2 - это значение корней рассматриваемого уравнения.

Приведенные два равенства можно использовать для решения ряда самых разных математических задач. Использование теоремы Виета в примерах с решением приведены в следующих разделах статьи.

В этой лекции мы познакомимся с любопытными соотношениями между корнями квадратного уравнения и его коэффициентами. Эти соотношения впервые обнаружил французский математик Франсуа Виет (1540—1603).

Например, для уравнения Зx 2 - 8x - 6 = 0, не находя его корней, можно, воспользовавшись теоремой Виета, сразу сказать, что сумма корней равна , а произведение корней равно
т. е. - 2. А для уравнения х 2 - 6х + 8 = 0 заключаем: сумма корней равна 6, произведение корней равно 8; между прочим, здесь нетрудно догадаться, чему равны корни: 4 и 2.
Доказательство теоремы Виета. Корни х 1 и х 2 квадратного уравнения ах 2 + bх + с = 0 находятся по формулам

Где D = b 2 — 4ас — дискриминант уравнения. Сложив эти корни,
получим


Теперь вычислим произведение корней х 1 и х 2 Имеем

Второе соотношение доказано:
Замечание. Теорема Виета справедлива и в том случае, когда квадратное уравнение имеет один корень (т. е. когда D = 0), просто в этом случае считают, что уравнение имеет два одинаковых корня, к которым и применяют указанные выше соотношения.
Особенно простой вид принимают доказанные соотношения для приведенного квадратного уравнения х 2 + рх + q = 0. В этом случае получаем:

x 1 = x 2 = -p, x 1 x 2 =q
т.е. сумма корней приведенного квадратного уравнения равна второму коэффициенту, взятому с противоположным знаком, а произведение корней равно свободному члену.
С помощью теоремы Виета можно получить и другие соотношения между корнями и коэффициентами квадратного уравнения. Пусть, например, х 1 и х 2 — корни приведенного квадратного уравнения х 2 + рх + q = 0. Тогда

Однако основное назначение теоремы Виета не в том, что она выражает некоторые соотношения между корнями и коэффициентами квадратного уравнения. Гораздо важнее то, что с помощью теоремы Виета выводится формула разложения квадратного трехчлена на множители, без которой мы в дальнейшем не обойдемся.


Доказательство. Имеем


Пример 1 . Разложить на множители квадратный трехчлен Зх 2 - 10x + 3.
Решение. Решив уравнение Зх 2 - 10x + 3 = 0, найдем корни квадратного трехчлена Зх 2 - 10x + 3: х 1 = 3, х2 = .
Воспользовавшись теоремой 2, получим

Есть смысл вместо написать Зx - 1. Тогда окончательно получим Зх 2 - 10x + 3 = (х - 3)(3х - 1).
Заметим, что заданный квадратный трехчлен можно разложить на множители и без применения теоремы 2, использовав способ группировки:

Зх 2 - 10x + 3 = Зх 2 - 9х - х + 3 =
= Зх (х - 3) - (х - 3) = (х - 3) (Зx - 1).

Но, как видите, при этом способе успех зависит от того, сумеем ли мы найти удачную группировку или нет, тогда как при первом способе успех гарантирован.
Пример 1 . Сократить дробь

Решение. Из уравнения 2х 2 + 5х + 2 = 0 находим х 1 = - 2,


Из уравнения х2 - 4х - 12 = 0 находим х 1 = 6, х 2 = -2. Поэтому
х 2 - 4х - 12 = (х- 6) (х - (- 2)) = (х - 6) (х + 2).
А теперь сократим заданную дробь:

Пример 3 . Разложить на множители выражения:
а)x4 + 5x 2 +6; б)2x+-3
Р е ш е н и е. а) Введем новую переменную у = х 2 . Это позволит переписать заданное выражение в виде квадратного трехчлена относительно переменной у, а именно в виде у 2 + bу + 6.
Решив уравнение у 2 + bу + 6 = 0, найдем корни квадратного трехчлена у 2 + 5у + 6: у 1 = - 2, у 2 = -3. Теперь воспользуемся теоремой 2; получим

у 2 + 5у + 6 = (у + 2) (у + 3).
Осталось вспомнить, что у = x 2 , т. е. вернуться к заданному выражению. Итак,
x 4 + 5х 2 + 6 = (х 2 + 2)(х 2 + 3).
б) Введем новую переменную у = . Это позволит переписать заданное выражение в виде квадратного трехчлена относительно переменной у, а именно в виде 2у 2 + у - 3. Решив уравнение
2у 2 + у - 3 = 0, найдем корни квадратного трехчлена 2у 2 + у - 3:
y 1 = 1, y 2 = . Далее, используя теорему 2, получим:

Осталось вспомнить, что у = , т. е. вернуться к заданному выражению. Итак,

В заключение параграфа — некоторые рассуждения, опятьтаки связанные с теоремой Виета, а точнее, с обратным утверждением:
если числа х 1 , х 2 таковы, что х 1 + х 2 = - р, x 1 x 2 = q, то эти числа — корни уравнения
С помощью этого утверждения можно решать многие квадратные уравнения устно, не пользуясь громоздкими формулами корней, а также составлять квадратные уравнения с заданными корнями. Приведем примеры.

1) х 2 - 11х + 24 = 0. Здесь x 1 + х 2 = 11, х 1 х 2 = 24. Нетрудно догадаться, что х 1 = 8, х 2 = 3.

2) х 2 + 11х + 30 = 0. Здесь x 1 + х 2 = -11, х 1 х 2 = 30. Нетрудно догадаться, что х 1 = -5, х 2 = -6.
Обратите внимание: если свободный член уравнения — положительное число, то оба корня либо положительны, либо отрицательны; это важно учитывать при подборе корней.

3) х 2 + х - 12 = 0. Здесь x 1 + х 2 = -1, х 1 х 2 = -12. Легко догадаться, что х 1 = 3, х2 = -4.
Обратите внимание: если свободный член уравнения — отрицательное число, то корни различны по знаку; это важно учитывать при подборе корней.

4) 5х 2 + 17x - 22 = 0. Нетрудно заметить, что х = 1 удовлетворяет уравнению, т.е. х 1 = 1 — корень уравнения. Так как х 1 х 2 = -, а х 1 = 1, то получаем, что х 2 = - .

5) х 2 - 293x + 2830 = 0. Здесь х 1 + х 2 = 293, х 1 х 2 = 2830. Если обратить внимание на то, что 2830 = 283 . 10, а 293 = 283 + 10, то становится ясно, что х 1 = 283, х 2 = 10 (а теперь представьте, какие вычисления пришлось бы выполнить для решения этого квадратного уравнения с помощью стандартных формул).

6) Составим квадратное уравнение так, чтобы его корнями служили числа х 1 = 8, х 2 = - 4. Обычно в таких случаях составляют приведенное квадратное уравнение х 2 + рх + q = 0.
Имеем х 1 + х 2 = -р, поэтому 8 - 4 = -р, т. е. р = -4. Далее, х 1 х 2 = q, т.е. 8«(-4) = q, откуда получаем q = -32. Итак, р = -4, q = -32, значит, искомое квадратное уравнение имеет вид х 2 -4х-32 = 0.

Сегодня достойна в стихах быть воспета
О свойствах корней теорема Виета.
Что лучше, скажи, постоянства такого:
Умножил ты корни – и дробь уж готова
В числителе с , в знаменателе а.
И сумма корней тоже дроби равна
Хоть с минусом дробь эта
Что за беда
В числители в , в знаменателе а .
(Из школьного фольклора)

В эпиграфе замечательная теорема Франсуа Виета приведена не совсем точно. В самом деле, мы можем записать квадратное уравнение, которое не имеет корней и записать их сумму и произведение. Например, уравнение х 2 + 2х + 12 = 0 не имеет действительных корней. Но, подойдя формально, мы можем записать их произведение (х 1 · х 2 = 12) и сумму (х 1 + х 2 = -2). Наши стихи будут соответствовать теореме с оговоркой: «если уравнение имеет корни», т.е. D ≥ 0.

Первое практическое применение этой теоремы – составление квадратного уравнения, имеющего заданные корни. Второе: она позволяет устно решать многие квадратные уравнения. На отработку этих навыков, прежде всего и обращается внимание в школьных учебниках.

Мы же здесь будем рассматривать более сложные задачи, решаемые с помощью теоремы Виета.

Пример 1.

Один из корней уравнения 5х 2 – 12х + с = 0 в три раза больше за второй. Найдите с.

Решение.

Пусть второй корень равен х 2 .

Тогда первый корень х1 = 3х 2 .

Согласно теореме Виета сумма корней равна 12/5 = 2,4.

Составим уравнение 3х 2 + х 2 = 2,4.

Отсюда х 2 = 0,6. Следовательно х 1 = 1,8.

Ответ: с = (х 1 · х 2) · а = 0,6 · 1,8 · 5 = 5,4.

Пример 2.

Известно, что х 1 и х 2 – корни уравнения х 2 – 8х + p = 0, причём 3х 1 + 4х 2 = 29. Найдите p.

Решение.

Согласно теореме Виета х 1 + х 2 = 8, а по условию 3х 1 + 4х 2 = 29.

Решив систему из этих двух уравнений найдём значение х 1 = 3, х 2 = 5.

А следовательно p = 15.

Ответ: p = 15.

Пример 3.

Не вычисляя корней уравнения 3х 2 + 8 х – 1 = 0, найдите х 1 4 + х 2 4

Решение.

Заметим, что по теореме Виета х 1 + х 2 = -8/3 и х 1 · х 2 = -1/3 и преобразуем выражение

а) х 1 4 + х 2 4 = (х 1 2 + х 2 2) 2 – 2х 1 2 х 2 2 = ((х 1 + х 2) 2 – 2х 1 х 2) 2 – 2(х 1 х 2) 2 = ((-8/3) 2 – 2 · (-1/3)) 2 – 2 · (-1/3) 2 = 4898/9

Ответ: 4898/9.

Пример 4.

При каких значениях параметра а разность наибольшего и наименьшего корней уравнения
2х 2 – (а + 1)х + (а – 1) = 0 равна их произведению.

Решение.

Это квадратное уравнение. Оно будет иметь 2 разных корня, если D > 0. Иными словами (а + 1) 2 – 8(а – 1) > 0 или (а – 3) 2 > 0. Следовательно, мы имеем 2 корня при всех а, за исключением а = 3.

Для определенности будем считать, что х 1 >х 2 и получим х 1 + х 2 = (а + 1)/2 и х 1 · х 2 = (а – 1)/2. Исходя из условия задачи х 1 – х 2 = (а – 1)/2. Все три условия должны выполняться одновременно. Рассмотрим первое и последнее уравнения как систему. Она легко решается методом алгебраического сложения.

Получаем х 1 = а/2, х 2 = 1/2. Проверим при каких а выполнится второе равенство: х 1 · х 2 = (а – 1)/2. Подставим полученные значения и будем иметь: а/4 = (а – 1)/2. Тогда, а = 2. Очевидно, что если а = 2, то все условия выполнены.

Ответ: при а = 2.

Пример 5.

Чему равно наименьшее значение а, при котором сумма корней уравнения
х 2 – 2а(х – 1) – 1 = 0 равна сумме квадратов его корней.

Решение.

Прежде всего, приведем уравнение к каноническому виду: х 2 – 2ах + 2а – 1 = 0. Оно будет иметь корни, если D/4 ≥ 0. Следовательно: а 2 – (2а – 1) ≥ 0. Или (а – 1) 2 ≥ 0. А это условие справедливо при любом а.

Применим теорему Виета: х 1 + х 2 = 2а, х 1 · х 2 = 2а – 1. Посчитаем

х 1 2 + х 2 2 = (х 1 + х 2) 2 – 2х 1 · х 2 . Или после подстановки х 1 2 + х 2 2 = (2а) 2 – 2 · (2а – 1) = 4а 2 – 4а + 2. Осталось составить равенство которое соответствует условию задачи: х 1 + х 2 = х 1 2 + х 2 2 . Получим: 2а = 4а 2 – 4а + 2. Это квадратное уравнение имеет 2 корня: а 1 = 1 и а 2 = 1/2. Наименьший из них –1/2.

Ответ: 1/2.

Пример 6.

Найти зависимость между коэффициентами уравнения ах 2 + вх + с = 0 если сумма кубов его корней равна произведению квадратов этих корней.

Решение.

Будем исходить из того, что данное уравнение имеет корни и, поэтому, к нему можно применить теорему Виета.

Тогда условие задачи запишется так: х 1 3 + х 2 3 = х 1 2 · х 2 2 . Или: (х 1 + х 2)(х 1 2 – х 1 · х 2 + х 2 2) = (х 1 х 2) 2 .

Необходимо преобразовать второй множитель. х 1 2 – х 1 · х 2 + х 2 2 = ((х 1 + х 2) 2 – 2х 1 х 2) – х 1 х 2 .

Получим (х 1 + х 2)((х 1 + х 2) 2 – 3х 1 х 2) = (х 1 х 2) 2 . Осталось заменить суммы и произведения корней через коэффициенты.

(-b/a)((b/a) 2 – 3 · c/a) = (c/a) 2 . Это выражение легко преобразуется к виду b(3ac – b 2)/a = c 2 . Соотношение найдено.

Замечание. Следует учесть, что полученное соотношение имеет смысл рассматривать лишь после того, как выполнится другое: D ≥ 0.

Пример 7.

Найдите значение переменной а, для которого сумма квадратов корней уравнения х 2 + 2ах + 3а 2 – 6а – 2 = 0 есть величина наибольшая.

Решение.

Если у этого уравнения есть корни х 1 и х 2 , то их сумма х 1 + х 2 = -2а, а произведение х 1 · х 2 = 3а 2 – 6а – 2.

Вычисляем х 1 2 + х 2 2 = (х 1 + х 2) 2 – 2х 1 · х 2 = (-2а) 2 – 2(3а 2 – 6а – 2) = -2а 2 + 12а + 4 = -2(а – 3) 2 + 22.

Теперь очевидно, что это выражение принимает наибольшее значение при а = 3.

Остается проверить, в самом ли деле у исходного квадратного уравнения существуют корни при а = 3. Проверяем подстановкой и получаем: х 2 + 6х + 7 = 0 и для него D = 36 – 28 > 0.

Следовательно, ответ: при а = 3.

Пример 8.

Уравнение 2х 2 – 7х – 3 = 0 имеет корни х 1 и х 2 . Найти утроенную сумму коэффициентов приведенного квадратного уравнения, корнями которого являются числа Х 1 = 1/х 1 и Х 2 = 1/х 2 . (*)

Решение.

Очевидно, что х 1 + х 2 = 7/2 и х 1 · х 2 = -3/2. Составим второе уравнение по его корням в виде х 2 + рх + q = 0. Для этого используем утверждение, обратное теореме Виета. Получим: р = -(Х 1 + Х 2) и q = Х 1 · Х 2 .

Выполнив подстановку в эти формулы, исходя из (*), тогда: р = -(х 1 + х 2)/(х 1 · х 2) = 7/3 и q = 1/(х 1 · х 2) = -2/3.

Искомое уравнение примет вид: х 2 + 7/3 · х – 2/3 = 0. Теперь легко посчитаем утроенную сумму его коэффициентов:

3(1 + 7/3 – 2/3) = 8. Ответ получен.

Остались вопросы? Не знаете, как использовать теорему Виета?
Чтобы получить помощь репетитора – .
Первый урок – бесплатно!

blog.сайт, при полном или частичном копировании материала ссылка на первоисточник обязательна.

Суть данного приема состоит в том, чтобы находить корни без помощи дискриминанта. Для уравнения вида x2 + bx + c = 0, где имеется два действительных разных корня, верно два утверждения.

Первое утверждение гласит, что сумма корней данного уравнения приравнивается значению коэффициента при переменной x (в данном случае это b), но с противоположным знаком. Наглядно это выглядит так: x1 + x2 = −b.

Второе утверждение уже связано не с суммой, а с произведением этих же двух корней. Приравнивается же это произведение к свободному коэффициенту, т.е. c. Или, x1 * x2 = c. Оба этих примера решаются в системе.

Теорема Виета значительно упрощает решение, но имеет одно ограничение. Квадратное уравнение, корни которого можно найти, используя этот прием, должно быть приведенным. В приведенном уравнении коэффициента a, тот, что стоит перед x2, равен единице. Любое уравнение можно привести к подобному виду, разделив выражение первый коэффициент, но не всегда данная операция рациональна.

Доказательство теоремы

Для начала следует вспомнить, как по традиции принято искать корни квадратного уравнения. Первый и второй корни находятся , а именно: x1 = (-b-√D)/2, x2 = (-b+√D)/2. Вообще делится на 2a, но, как уже говорилось, теорему можно применять только когда a=1.

Из теоремы Виета известно, что сумма корней равна второму коэффициенту со знаком минус. Это значит, что x1 + x2 = (-b-√D)/2 + (-b+√D)/2 = −2b/2 = −b.

То же справедливо и для произведения неизвестных корней: x1 * x2 = (-b-√D)/2 * (-b+√D)/2 = (b2-D)/4. В свою очередь D = b2-4c (опять же при a=1). Получается, что итог таков: x1 * x2 = (b2- b2)/4+c = c.

Из приведенного простого доказательства можно сделать только один вывод: теорема Виета полностью подтверждена.

Вторая формулировка и доказательство

Теорема Виета имеет и другое толкование. Если говорить точнее, то не толкование, а формулировку. Дело в том, что если соблюдаются те же условия, что и в первом случае: имеется два различных действительных корня, то теорему можно записать другой формулой.

Эта равенство выглядит следующим образом: x2 + bx + c = (x - x1)(x - x2). Если функция P(x) пересекается в двух точка x1 и x2, то ее можно записать в виде P(x) = (x - x1)(x - x2) * R(x). В случае, когда P имеет вторую степень, а именно так и выглядит первоначальное выражение, то R является простым числом, а именно 1. Это утверждение верно по той причине, что в ином случае равенство выполняться не будет. Коэффициент x2 при раскрытии скобок не должен быть больше единицы, а выражение должно оставаться квадратным.

Формулировка и доказательство теоремы Виета для квадратных уравнений. Обратная теорема Виета. Теорема Виета для кубических уравнений и уравнений произвольного порядка.

Квадратные уравнения

Теорема Виета

Пусть и обозначают корни приведенного квадратного уравнения
(1) .
Тогда сумма корней равна коэффициенту при , взятому с обратным знаком. Произведение корней равно свободному члену:
;
.

Замечание по поводу кратных корней

Если дискриминант уравнения (1) равен нулю, то это уравнение имеет один корень. Но, чтобы избежать громоздких формулировок, принято считать, что в этом случае, уравнение (1) имеет два кратных, или равных, корня:
.

Доказательство первое

Найдем корни уравнения (1). Для этого применим формулу для корней квадратного уравнения :
;
;
.

Находим сумму корней:
.

Чтобы найти произведение, применим формулу:
.
Тогда

.

Теорема доказана.

Доказательство второе

Если числа и являются корнями квадратного уравнения (1), то
.
Раскрываем скобки.

.
Таким образом, уравнение (1) примет вид:
.
Сравнивая с (1) находим:
;
.

Теорема доказана.

Обратная теорема Виета

Пусть и есть произвольные числа. Тогда и являются корнями квадратного уравнения
,
где
(2) ;
(3) .

Доказательство обратной теоремы Виета

Рассмотрим квадратное уравнение
(1) .
Нам нужно доказать, что если и , то и являются корнями уравнения (1).

Подставим (2) и (3) в (1):
.
Группируем члены левой части уравнения:
;
;
(4) .

Подставим в (4) :
;
.

Подставим в (4) :
;
.
Уравнение выполняется. То есть число является корнем уравнения (1).

Теорема доказана.

Теорема Виета для полного квадратного уравнения

Теперь рассмотрим полное квадратное уравнение
(5) ,
где , и есть некоторые числа. Причем .

Разделим уравнение (5) на :
.
То есть мы получили приведенное уравнение
,
где ; .

Тогда теорема Виета для полного квадратного уравнения имеет следующий вид.

Пусть и обозначают корни полного квадратного уравнения
.
Тогда сумма и произведение корней определяются по формулам:
;
.

Теорема Виета для кубического уравнения

Аналогичным образом мы можем установить связи между корнями кубического уравнения. Рассмотрим кубическое уравнение
(6) ,
где , , , есть некоторые числа. Причем .
Разделим это уравнение на :
(7) ,
где , , .
Пусть , , есть корни уравнения (7) (и уравнения (6)). Тогда

.

Сравнивая с уравнением (7) находим:
;
;
.

Теорема Виета для уравнения n-й степени

Тем же способом можно найти связи между корнями , , ... , , для уравнения n-й степени
.

Теорема Виета для уравнения n-й степени имеет следующий вид:
;
;
;

.

Чтобы получить эти формулы мы записываем уравнение в следующем виде:
.
Затем приравниваем коэффициенты при , , , ... , и сравниваем свободный член.

Использованная литература:
И.Н. Бронштейн, К.А. Семендяев, Справочник по математике для инженеров и учащихся втузов, «Лань», 2009.
С.М. Никольский, М.К. Потапов и др., Алгебра: учебник для 8 класса общеобразовательных учреждений, Москва, Просвещение, 2006.