Болезни Военный билет Призыв

Кора головного мозга. Нейронная организация новой коры. Кортикализация функций. Новая кора

В этой статье поговорим о лимбической системе, неокортексе их истории возникновении и основных функциях.

Лимбическая система

Лимбическая система головного мозга – это совокупность сложных нейрорегуляторных структур головного мозга. Эта система не ограничивается лишь несколькими функциями – она выполняет огромный ряд важнейших для человека задач. Предназначение лимбуса – регуляция высших психических функций и особых процессов высшей нервной деятельности, начиная от простого обаяния и бодрствования и заканчивая культурными эмоциями, памятью и сном.

История возникновения

Лимбическая система мозга образовалось за долго до того, как начал образовываться неокортекс. Это древнейшая гормонально-инстинктивная структура мозга, которая отвечает за выживание субъекта. За длительную эволюцию можно сформировать 3 основных цели системы для выживания:

  • Доминантность – проявление превосходства по самым разными параметрам
  • Еда – питание субъекта
  • Размножение – перенос своего генома в следующие поколение

Т.к. человек имеет животные корни, в мозгу человека присутствует лимбическая система. Изначально Человек Разумный обладал лишь аффектами, влияющие на физиологическое состояние тела. Со временем формировалось общение по типу крика (вокализация). Особи, умевшие передать свое состояние с помощью эмоций, выживали. С течением времени все больше формировалось эмоциональное восприятие действительности. Такое эволюционное наслоение позволяло людям объединяться в группы, группы в племена, племена в расселение, а последние в целые народы. Впервые же лимбическую систему открыл американский исследователь Пауль Мак-Лин еще в 1952 году.

Строение системы

Анатомически лимбус включает области палеокортекса (древняя кора), архикортекса (старая кора), часть неокортекса (новая кора) и некоторые структуры подкорки (хвостатое ядро, миндалевидное тело, бледный шар). Перечисленные названия различных видов коры обозначает их формирование в указанное время эволюции.

Масса специалистов в области нейробиологии занимались вопросом о том, какие структуры относятся к лимбической системе. Последняя включает в себя множество структур:

Кроме того, система тесно связана с системой ретикулярной формации (структура, отвечающая за активацию мозга и состояние бодрствования). Схема анатомии лимбического комплекса упирается в постепенном наслоении одной части на другую. Так, сверху лежит поясная извилина, и далее по нисходящей:

  • мозолистое тело;
  • свод;
  • мамиллярное тело;
  • миндалина;
  • гиппокамп.

Отличительной чертой висцерального мозга является его богатая связь с прочими структурами, состоящих из сложных путей и двухсторонних связей. Такая разветвленная система веток образует комплекс замкнутых кругов, что создает условия для продолжительного циркулирования возбуждения в лимбусе.

Функционал лимбической системы

Висцеральный мозг активно получает и обрабатывает информацию из окружающего мира. За что отвечает лимбическая система? Лимбус – одна из тех структур, работающая в режиме реального времени, позволяя организму эффективно приспосабливаться к условиям внешней среды.

Лимбическая система человека в мозге выполняет следующую функцию:

  • Формирование эмоций, чувств и переживаний. Сквозь призму эмоций человек субъективно оценивает предметы и явление окружающей среды.
  • Память. Эта функция осуществляется гипокампом, располагающийся в структуре лимбической системы. Мнестические процессы обеспечиваются процессами реверберации – кругового движения возбуждения в закрытых нейронных цепях морского коня.
  • Выбор и коррекция модели подходящего поведения.
  • Обучение, переобучение, страх и агрессия;
  • Выработка пространственных навыков.
  • Оборонительное и поведение поиска пищи.
  • Выразительность речи.
  • Приобретение и поддержание различных фобий.
  • Работа обонятельной системы.
  • Реакция осторожности, приготовление к действию.
  • Регуляция полового и социального поведения. Существует понятие эмоционального интеллекта – способности распознавать эмоции окружающих людей.

При выражении эмоций возникает реакция, которая проявляется в виде: изменения артериального давления, кожной температуры, частоты дыхания, реакция зрачков, потоотделение, реакция гормональных механизмов и многое другое.

Возможно, среди женщин бытует вопрос о том, как включить лимбическую систему у мужчин. Однако ответ прост: никак. У всех мужчин лимбус работает в полной мере (за исключением больных). Это обосновывается эволюционными процессами, когда женщина почти во всех временных периодах истории занималась воспитанием ребенка, что включает глубокую эмоциональную отдачу, и, следовательно, глубокое развитие эмоционального мозга. К сожалению, мужчинам уже не достичь развития лимбуса уровня женщины.

Развитие лимбической системы у грудничка во многом зависит от типа воспитания и в целом отношения к нему. Строгий взгляд и холодная улыбка не способствуют развитию лимбического комплекса, в отличии от крепких объятий и искренней улыбки.

Взаимодействие с неокортексом

Неокортекс и лимбическая система крепко связаны между собой множеством проводящих путей. Благодаря такому объединению, эти две структуры составляют одно целое психической сферы человека: они соединяют умственную составляющую с эмоциональной. Новая кора выступает в качестве регулятора животных инстинктов: прежде, чем совершить какое-либо действие, спонтанно вызванное эмоциями, человеческая мысль, как правило, проходит ряд культурных и моральных инспекций. Кроме контроля эмоций, неокортекс оказывает вспомогательное действие. Чувство голода возникает в глубинах лимбической системы, а уже высшие корковые центры, регулирующие поведение, осуществляют поиск пищи.

Такие структуры мозга не обошел в своё время и отец психоанализа Зигмунд Фрейд. Психолог утверждал, что всякий невроз образуется под гнетом подавления сексуальных и агрессивных инстинктов. Конечно, во времена его работы еще не было данных о лимбусе, но великий ученый догадывался о подобных устройствах мозга. Так, чем больше культурных и моральных наслоений (супер Эго – неокортекс) было у индивида, тем больше у него подавляются первичные животные инстинкты (Ид – лимбическая система).

Нарушения и их последствия

Исходя из того, что лимбическая система отвечает за множество функций, это самое множество может поддаваться различным повреждениям. Лимбус, как и другие структуры головного мозга, может подвергаться травмам и другим вредительным факторам, к числу которых относятся и опухоли с кровоизлияниями.

Синдромы поражения лимбической системы богаты на количество, основные из них таковы:

Деменция – слабоумие. Развитие таких болезней, как Альцгеймера и синдром Пика связывают с атрофией систем лимбического комплекса, а особенно в локализации гиппокампа.

Эпилепсия . Органические нарушения гиппокампа ведут к развитию падучей болезни.

Патологическая тревожность и фобии. Нарушение деятельности миндалины ведет к медиаторному дисбалансу, что, в свою очередь, сопровождается расстройством эмоций, в число которых входит тревожность. Фобия же – иррациональный страх по отношению к безобидному предмету. Кроме того, дисбаланс нейромедиаторов провоцирует депрессию и манию.

Аутизм . В своей сути, аутизм – глубокая и серьезная дезадаптация в обществе. Неспособность лимбической системы распознавать эмоции других людей ведет к тяжелым последствиям.

Ретикулярная формация (или сетчатое образование) – неспецифическая формация лимбической системы, отвечающая за активацию сознания. После глубокого сна люди просыпаются благодаря работе этой структуре. В случаях её повреждения человеческий мозг подвергается различным расстройствам выключение сознания, среди которых абсанс и синкопе.

Неокортекс

Новая кора – часть мозга, присущая высшим млекопитающим. Зачатки неокортекса также наблюдаются у низших животных, сосущих молоко, однако они не достигают высокого развития. У человека изокортекс – львиная часть общей коры головного мозга, имеющая толщину в среднем до 4 миллиметров. Площадь неокортекса достигает 220 тысяч кв. мм.

История возникновения

В данный момент неокортекс – высшая ступень эволюции человека. Первые проявления новой коры ученым удалось изучить у представителей рептилий. Последними животными, не имеющие новой коры в цепочке развития, оказались птицы. И лишь развитой обладает человек.

Эволюция – сложный и длинный процесс. Каждый вид существ проходит суровый эволюционный процесс. Если вид животного не смог адаптироваться под изменчивую внешнюю среду – вид терял свое существование. Почему же человек смог адаптироваться и выжить по сей день?

Находясь в благоприятных условиях проживания (теплый климат и белковая еда), потомкам человека (до Неандертальцев) не оставалось ничего, как питаться и размножаться (благодаря развитой лимбической системе). Из-за этого масса мозга, по меркам длительности эволюции, набрала критическую массу за небольшой период времени (несколько миллионов лет). Кстати, масса мозга в те времена была на 20% больше, чем у современного человека.

Однако, всему хорошему рано или поздно приходит конец. Со сменой климата, потомкам нужно было менять место жительство, а с ним и начинать искать еду. Имея огромный мозг, потомки начали применять его для поиска пищи, а далее и для социального вовлечения, т.к. выяснилось, что объединяясь в группы по определенным критериям поведения – выживать было легче. К примеру, в группе, где каждый делился пищей с другими членами группы имела больше шансов на выживание (Кто-то хорошо собирал ягоды, а кто-то охотился и тд).

С этого момента началась отдельная эволюция по мозгу , отдельная от эволюции всего тела. С тех времен внешний вид человека не сильно поменялся, но состав мозгов отличается кардинально.

Из чего состоит

Новая кора больших полушарий – это скопление нервных клеток, образующих комплексное . Анатомически разделяют 4 типа коры, в зависимости от её локализации – , затылочная, . Гистологически же кора состоит из шести шаров клеток:

  • Молекулярный шар;
  • наружный зернистый;
  • пирамидные нейроны;
  • внутренний зернистый;
  • ганглионарный слой;
  • мульиформные клетки.

Какие функции выполняет

Новая кора головного мозга человека классифицируется по трем функциональным зонам:

  • Сенсорная . Эта зона отвечает за высшую обработку полученных раздражителей из внешней среды. Так, лед становится холодным тогда, когда информация о температуре поступает в теменную область – на пальце же холода нет, а есть только электрический импульс.
  • Ассоциативная зона . Эта область коры отвечает за информационную связь между моторной корой и чувствительной.
  • Моторная зона . В этой части мозга формируются все сознательные движение.
    Кроме таких функций, новая кора обеспечивает высшую психическую деятельность: интеллект, речь, память и поведение.

Вывод

Подводя итог, можно выделить следующее:

  • Благодаря двум основным, принципиально разным, структурам мозга человек имеет двойственность сознания. Над каждым поступком в мозгу формируется две разные мысли:
    • “Хочу” – лимбическая система (инстинктивное поведение). Лимбическая система занимает 10% от всей массы мозга, малое энергопотребление
    • “Надо” – неокортекс (социальное поведение). Неокортекс занимает до 80% от всей массы мозга, высокое энергопотребление и ограниченная скорость метаболизма

Неокортекс - эволюциоипо самая молодая часть коры, занимающая большую часть поверхности полушарий. Ее толщина у человека составляет примерно 3 мм.

Клеточный состав неокоргекса очень разнообразен, но примерно три четверти нейронов коры составляют пирамидные нейроны (пирамиды), в связи с чем одна из основных классификаций нейронов коры делит их на пирамидные и неиирамидные (веретеновидные, звездчатые, зернистые, клетки-канделябры, клетки Мартинотти и др.). Другая классификация связана с длиной аксона (см. параграф 2.4). Длинноаксонные клетки Гольджи I - это в основном пирамиды и веретена, их аксоны могут выходить из коры, остальные клетки - короткоаксонные Гольджи II.

Корковые нейроны отличаются и по величине клеточного тела: размер сверхмалых нейронов 6x5 мкм, размер гигантских - больше чем 40 х 18. Самые крупные нейроны - пирамиды Беца, их размер 120 х 30-60 мкм.

Пирамидные нейроны (см. рис. 2.6, г) имеют форму тела в виде пирамиды, вершина которой направлена вверх. От этой вершины отходит апикальный дендрит, поднимающийся в вышележащие корковые слои. От остальных частей сомы отходят базальные дендриты. Все дендриты имеют шипики. От основания клетки отходит длинный аксон, образующий многочисленные коллатерали, в том числе и возвратные, которые загибаются и поднимаются вверх. У звездчатых клеток апикального дендрита нет, шипики на дендритах в большинстве случаев отсутствуют. У веретеновидных клеток от противоположных полюсов тела отходят два крупных дендрита, есть и мелкие дендриты, отходящие от остальных частей тела. Дендриты имеют шипики. Аксон длинный, маловетвящийся.

Во время эмбрионального развития новая кора обязательно проходит стадию шестислойного строения, при созревании в некоторых областях число слоев может уменьшаться. Глубокие слои филогенетически более древние, наружные слои более молодые. Каждый слой коры характеризуется своим нейронным составом и толщиной, которая в разных областях коры может отличаться друг от друга.

Перечислим слои новой коры (рис. 9.8).

I слой - молекулярный - самый наружный, содержит небольшое количество нейронов и в основном состоит из волокон, проходящих параллельно поверхности. Также сюда поднимаются дендриты нейронов, расположенных в нижележащих слоях.

II слой - наружный зернистый , или наружный гранулярный , - состоит главным образом из малых пирамидных нейронов и небольшого количества среднего размера звездчатых клеток.

III слой - наружный пирамидный - самый широкий и толстый слой, содержит в основном малые и среднего размера пирамидные и звездчатые нейроны. В глубине слоя располагаются крупные и гигантские пирамиды.

IV слой - внутренний зернистый , или внутренний гранулярный , - состоит главным образом из малых нейронов всех разновидностей, есть и немногочисленные крупные пирамиды.

V слой - внутренний пирамидный , или ганглиозный, характерной особенностью которого является присутствие крупных и в некоторых областях (главным образом в полях 4 и 6; рис. 9.9; подпараграф 9.3.4) - гигантских пирамидных нейронов (пирамид Беца). Апикальные дендриты пирамид, как правило, достигают I слоя.

VI слой - полиморфный , или мулътиформный, - содержит преимущественно веретенообразные нейроны, а также клетки всех других форм. Этот слой делят на два подслоя, которые ряд исследователей рассматривают как самостоятельные слои, говоря в этом случае о семислойной коре.

Рис. 9.8.

а - нейроны окрашены целиком; б - окрашены только тела нейронов; в - окрашены

только отростки нейронов

Основные функции каждого слоя также различаются. I и II слои осуществляют связи между нейронами разных слоев коры. Каллозальные и ассоциативные волокна главным образом идут от пирамид III слоя и приходят во II слой. Основные афферентные волокна, поступающие в кору из таламуса, оканчиваются на нейронах IV слоя. С системой нисходящих проекционных волокон главным образом связан V слой. Аксоны пирамид этого слоя образуют основные эфферентные пути коры больших полушарий.

В большинстве корковых полей одинаково хорошо выражены все шесть слоев. Такая кора называется гомотипической. Однако в некоторых полях в процессе развития выраженность слоев может изменяться. Такую кору называют гетеротипической. Она бывает двух типов:

гранулярная (ноля 3, 17, 41; рис. 9.9), в которой очень увеличено количество нейронов в наружном (II) и особенно во внутреннем (IV) зернистых слоях, в результате чего IV слой делят на три подслоя. Такая кора характерна для первичных сенсорных зон (см. ниже);

Агранулярная (поля 4 и 6, или моторная и премоторная кора; рис. 9.9), в которой, наоборот, очень узкий II слой и практически отсутствует IV, но зато очень широкие пирамидные слои, особенно внутренний (V).

Новая кора (неокортекс) представляет собой слой серого вещества общей площадью 1500-2200 квадратных сантиметров, покрывающий большие полушария. Новая кора составляет около 72% всей площади коры и около 40% массы головного мозга. В новой коре имеется 14 млр. Нейронов, а количество глиальных клеток приблизительно в 10 раз больше.

Кора головного мозга в филогенетическом плане является наиболее молодой нервной структурой. У человека она осуществляет высшую регуляцию функций организма и психофизиологические процессы, обеспечивающие различные формы поведения.

В направлении с поверхности новой коры вглубь различают шесть горизонтальных слоев.

    Молекулярный слой. Имеет очень мало клеток, но большое количество ветвящихся дендриов пирамидных клеток, формирующих сплетение, расположенное параллельно поверхности. На этих дендритах образуют синапсы афферентные волокна, приходящие от ассоциативных и неспецифических ядер таламуса.

    Наружный зернистый слой. Составлен в основном звездчатыми и частично пирамидными клетками. Волокна клеток этого слоя расположены преимущественно вдоль поверхности коры, образуя кортикокортикальные связи.

    Наружный пирамидный слой. Состоит преимущественно из пирамидных клеток средней величины. Аксоны этих клеток как и зернистые клетки 2-го слоя, образуют кортикокортикальные ассоциативные связи.

    Вгутренний зернистый слой. По характеру клеток (звездчатые клетки) и расположению их волокон аналогичен наружному зернистому слою. В этом слое афферентные волокна имеют синаптические окончания, идущие от нейронов специфических ядер таламуса и, следовательно, от рецепторов сенсорных систем.

    Внутренний пирамидный слой. Образован средними и крупными пирамидными клетками. Причем, гигантские пирамидные клетки Беца расположены в двигательной коре. Аксоны этих клеток образуют афферентные кортикоспинальные и кортикобульбарный двигательные пути.

    Слой полиморфных клеток. Образован преимущественно веретенообразными клетками, аксоны которых образуют кортикоталамические пути.

Оценивая в целом афферентные и эфферентные связи новой коры, необходимо отметить, что в слоях 1 и 4 происходят восприятие и обработка поступающих в кору сигналов. Нейроны 2 и 3 слоев осуществляют кортикокортикальные ассоциативные связи. Покидающие кору эфферентные пути формируются преимущественно в 5 и 6 слоях.

Гистологические данные показывают, что элементарные нейронные цепи, участвующие в обработке информации, расположены перпендикулярно поверхности коры. При этом они расположены таким образом, что захватывают все слои коры. Такие объединения нейронов были названы учеными нейронными колонками . Соседние нейронные колонки могут частично перекрываться, а также взаимодействовать друг с другом.

Возрастание в филогенезе роли коры большого мозга, анализ и регуляция функций организма и подчинение себе нижележащих отделов центральной нервной системы учеными определено как кортикализация функций (объединение).

Наряду с кортикализацией функций новой коры, принято выделять и локализацию ее функций. Наиболее часто используемым подходом к функциональному разделению коры головного мозга является выделение в ней сенсорной, ассоциативной и двигательной областей.

Сенсорные области коры – зоны, в которые проецируются сенсорные раздражители. Они расположены преимущественно в теменной, височной и затылочной долях. Афферентные пути в сенсорную кору поступают преимущественно от специфических сенсорных ядер таламуса (центральных, задних латерального и медиального). Сенсорная кора имеет хорошо выраженные 2 и 4 слои и называется гранулярной.

Зоны сенсорной коры, раздражение или разрушение которых вызывает четкие и постоянные изменения чувствительности организма, называются первичными сенсорными областями (ядерными частями анализаторов, как полагал И.П.Павлов). Они состоят преимущественно из мономодальных нейронов и формируют ощущения одного качества. В первичных сенсорных зонах обычно имеется четкое пространственное (топографическое) представительство частей тела, их рецепторных полей.

Вокруг первичных сенсорных зон находятся менее локализованные вторичные сенсорные зоны , полимодальные нейроны которых отвечают на действие нескольких раздражителей.

Важнейшей сенсорной областью является теменная кора постцентральной извилины и соответствующая ей часть постцентральной дольки на медиальной поверхности полушарий (поля 1 – 3), которую обозначают как соматосенсорную область . Здесь имеется проекция кожной чувствительности противоположной стороны тела от тактильных, болевых, температурных рецепторов, интероцептивной чувствительности и чувствительности опорно-мышечного аппарата от мышечных, суставных, сухожильных рецепторов. Проекция участков тела в этой области характеризуется тем, что проекция головы и верхних отделов туловища расположена в нижнелатеральных участках постцентральной извилины, проекция нижней половины туловища и ног – в верхнемедиальных зонах извилины, а проекция нижней части голени и стоп – в коре постцентральной дольки на медиальной поверхности полушарий (Рис. 12).

При этом проекция наиболее чувствительных участков (язык, гортань, пальцы рук и т.д.) имеет относительно большие зоны по сравнению с другими частями тела.

Рис. 12. Проекция частей тела человека на область коркового конца анализатора общей чувствительности

(разрез мозга во фронтальной плоскости)

В глубине латеральной борозды располагается слуховая кора (кора поперечных височных извилин Гешля). В этой зоне в ответ на раздражение слуховых рецепторов кортиева органа формируются звуковые ощущения, изменяющиеся по громкости, тону и другим качествам. Здесь имеется четкая топическая проекция: в разный участках коры представлены различные участки кортиева органа. К проекционной коре височной доли относится также, как предполагают ученые, центр вестибулярного анализатора в верхней и средней височных извилинах. Обработанная сенсорная информация используется для формирования «схемы тела» и регуляции функций мозжечка (височно-мосто-мозжечковый путь).

Еще одна область новой коры расположена в затылочной коре. Это первичная зрительная область . Здесь имеется топическое представительство рецепторов сетчатки. При этом каждой точке сетчатки соответствует свой участок зрительной коры. В связи с неполным перекрестом зрительных путей в зрительную область каждого полушария проецируются одноименные половины сетчатки. Наличие в каждом полушарии проекции сетчатки обоих глаз является основой бинокулярного зрения. Раздражение коры мозга в этой области приводит к возникновению световых ощущений. Около первичной зрительной области располагается вторичная зрительная область . Нейроны этой области полимодальны и отвечают не только на световые, но и на тактильные, а также на слуховые раздражители. Не случайно именно в этой зрительной области происходит синтез различных видов чувствительности и возникают более сложные зрительные образы и их опознание. Раздражение этой области коры вызывает зрительные галлюцинации, навязчивые ощущения, движения глаз.

Основная часть информации об окружающем мире и внутренней среде организма, поступившая в сенсорную кору, передается для дальнейшей обработки в ассоциативную кору.

Ассоциативные области коры (межсенсорная, межанализаторная), включает участки новой коры большого мозга, которые расположены рядом с сенсорными и двигательными зонами, но не выполняют непосредственно чувствительных или двигательных функций. Границы этих областей обозначены недостаточно четко, что связано со вторичными проекционными зонами, функциональные свойства которых являются переходными между свойствами первичных проекционных и ассоциативных зон. Ассоциативная коры является филогенетически наиболее молодой областью новой коры, получившей наибольшее развитие у приматов и человека. У человека она составляет около 50% всей коры или 70% неокортекса.

Основной физиологической особенностью нейронов ассоциативной коры, отличающей их от нейронов первичных зон, является полисенсорность (полимодальность). Они отвечают с практически одинаковым порогом не на один, а на несколько раздражителей – зрительные, слуховые, кожные и пр. Полисенсорность нейронов ассоциативной коры создается как ее кортикокортикальными связями с разными проекционными зонами, так и главным ее афферентным входом от ассоциативных ядер таламуса, в которых уже произошла сложная обработка информации от различных чувствительных путей. В результате этого ассоциативная кора представляет собой мощный аппарат конвергенции различных сенсорных возбуждений, позволяющий произвести сложную обработку информации о внешней и внутренней среде организма и использовать ее для осуществления высших психических функций.

По таламокортикальным проекциям выделяют две ассоциативные системы мозга:

    таламотеменную;

    таломовисочную.

Таламотеменная система представлена ассоциативными зонами теменной коры, получающими основные афферентные входы от задней группы ассоциативных ядер таламуса (латеральное заднее ядро и подушка). Теменная ассоциативная кора имеет афферентные выходы на ядра таламуса и гипоталамуса, моторную кору и ядра экстрапирамидной системы. Основными функциями таламотеменной системы являются гнозис, формирование «схемы тела» и праксис.

Гнозис – это различные виды узнавания: формы, величины, значения предметов, понимание речи и пр. К гностическим функциям относится оценка пространственных отношений, например взаимного расположения предметов. В теменной коре выделяют центр стереогнозиса (расположен сзади от средних отделов постцентральной извилины). Он обеспечивает способность узнавания предметов на ощупь. Вариантом гностической функции является также и формирование в сознании трехмерной модели тела («схемы тела»).

Под праксисом понимают целенаправленное действие. Центр праксиса находится в надкраевой извилине и обеспечивает хранение и реализацию программы двигательных автоматизированных актов (например, причесывание, рукопожатие и пр.).

Таламолобная система . Представлена ассоциативными зонами лобной коры, имеющими основной афферентный вход от медиодорсального ядра таламуса. Главной функцией лобной ассоциативной коры является формирование программ целенаправленного поведения, особенно в новой для человека обстановке. Реализация данной функции основывается на других функциях таломолобной системы, таких как:

    формирование доминирующей мотивации, обеспечивающей направление поведения человека. Эта функция основана на тесных двусторонних связях лобной коры и лимбической системы и ролью последней в регуляции высших эмоций человека, связанных с его социальной деятельностью и творчеством;

    обеспечение вероятностного прогнозирования, что выражается в изменении поведения в ответ на изменения обстановки окружающей среды и доминирующей мотивации;

    самоконтроль действий путем постоянного сравнения результата действия с исходными намерениями, что связано с созданием аппарата предвидения (согласно теории функциональной системы П.К.Анохина, акцептор результата действия).

В результате проведения по медицинским показаниям префронтальной лоботомии, при которой пересекаются связи между лобной долей и таламусам, наблюдается развитие «эмоциональной тупости», отсутствие мотивации, твердых намерений и планов, основанных на прогнозировании. Такие люди становятся грубыми, нетактичными, у них появляется тенденция к повторению каких-либо двигательных актов, хотя изменившаяся обстановка требует выполнения совсем других действий.

Наряду с таламотеменной и таламолобной системами, некоторые ученые предлагают выделять и таламовисочную систему. Однако концепция таламовисочной системы до настоящего времени не получает подтверждения и достаточной научной проработки. Ученые отмечают определенную роль височной коры. Так, некоторые ассоциативные центры (например, стереогнозиса и праксиса) включают в себя и участки височной коры. В височной коре расположен слуховой центр речи Вернике, находящийся в задних отделах верхней височной извилины. Именно данный центр обеспечивает речевой гнозис – распознавание и хранение устной речи, как собственной, так и чужой. В средней части верхней височной извилины находится центр распознания музыкальных звуков и их сочетаний. На границе височной, теменной и затылочной долей находится центр чтения письменной речи, обеспечивающий распознание и хранение образов письменной речи.

Также необходимо отметить, что психофизиологические функции, осуществляемые ассоциативной корой, инициируют поведение, обязательным компонентом которого являются произвольные и целенаправленные движения, осуществляемые при обязательном участии двигательной коры.

Двигательные области коры . Понятие о двигательной коре больших полушарий начало формироваться с 80-х годов Х1Х в., когда было показано, что электрическое раздражение некоторых корковых зон у животных вызывает движение конечностей противоположной стороны. На основании современных исследований в двигательной коре принято выделять две моторные области: первичную и вторичную.

В первичной моторной коре (прецентральная извилина) расположены нейроны, иннервирующие мотонейроны мышц лица, туловища и конечностей. В ней имеется четкая топография проекций мышц тела. При этом проекции мышц нижних конечностей и туловища расположены в верхних участках прецентральной извилины и занимают сравнительно небольшую площадь, а проекция мышц верхних конечностей, лица и языка расположены в нижних участках извилины и занимают большую площадь. Основной закономерностью топографического представительства является то, что регуляция деятельности мышц, обеспечивающих наиболее точные и разнообразные движения (речь, письмо, мимика), требует участия больших по площади участков двигательной коры. Двигательные реакции на раздражение первичной моторной коры осуществляется с минимальным порогом, что говорит о ее высокой возбудимости. Они (эти двигательные реакции) представлены элементарными сокращениями противоположной стороны тела. При поражении этой корковой области утрачивается способность к тонким координированным движениям конечностей, особенно пальцев рук.

Вторичная двигательная кора . Расположена на латеральной поверхности полушарий, впереди прецентральной извилины (премоторная кора). Она осуществляет высшие двигательные функции, связанные с планированием и координацией произвольных движений. Премоторная кора получает основную часть эфферентной импульсации базальных ганглиев и мозжечка и участвует в перекодировании информации о плане сложных движений. Раздражение данной области коры вызывает сложные координированные движения (например, поворот головы, глаз и туловища в противоположные стороны). В премоторной коре расположены двигательные центры, связанные с социальными функциями человека: в заднем отделе средней лобной извилины располагается центр письменной речи, в заднем отделе нижней лобной извилины располагается центр моторной речи (центр Брока), а также музыкальный моторный центр, определяющий тональность речи и способность петь.

Моторную кору часто называют агранулярной корой, поскольку в ней плохо выражены зернистые слои, но более ярко выражен слой, содержащий гигантские пирамидные клетки Беца. Нейроны двигательной коры получают афферентные входы через таламус от мышечных, суставных и кожных рецепторов, а также от базальных ганглиев и мозжечка. Основной эфферентный выход двигательной коры на стволовые и спинальные моторные центры формируют пирамидные клетки. Пирамидные и сопряженные с ними вставочные нейроны расположены вертикально по отношению к поверхности коры. Такие рядом лежащие нейронные комплексы, выполняющие сходные функции, называют функциональными двигательными колонками . Пирамидные нейроны двигательной колонки могут возбуждать или тормозить мотонейроны стволовых и спинальных центров. Соседние колонки в функциональном плане перекрываются, а пирамидные нейроны, регулирующие деятельность одной мышцы, расположены, как правило, в нескольких колонках.

Основные эфферентные связи двигательной коры осуществляются через пирамидные и экстрапирамидные пути, начинающиеся от гигантских пирамидных клеток Беца и менее крупных пирамидных клеток коры прецентральной извилины, премоторной коры и постцентральной извилины.

Пирамидный путь состоит из 1 млн волокон кортикоспинальньного пути, начинающихся от коры верхней и средней трети перцентральной извилины, и 20 млн волокон кортикобульбарного пути, начинающегося от коры нижней трети прецентральной извилины. Через двигательную кору и пирамидные пути осуществляются произвольные простые и сложные целенаправленные двигательные программы (например, профессиональные навыки, формирование которых начинается в базальных ганглиях и заканчивается во вторичной моторной коре). Большинство волокон пирамидных путей осуществляет перекрест. Но небольшая их часть остается неперекрещенными, что способствует компенсации нарушенных функций движения при односторонних поражениях. Через пирамидные пути осуществляет свои функции и премоторная кора (двигательные навыки письма, поворот головы и глаз в противоположную сторону и пр.).

К корковым экстрапирамидным путям относятся кортикобульбарные и кортикоретикулярные пути, начинающиеся приблизительно в той же области, что и пирамидные пути. Волокна кортикобульбарного пути оканчиваются на нейронах красных ядер среднего мозга, от которых далее идут руброспинальные пути. Волокна кортикоретикулярных путей оканчиваются на нейронах медиальных ядер ретикулярной формации моста (от них идут медиальные ретикулоспинальные пути) и на нейронах ретикулярных гигантоклеточных ядер продолговатого мозга, от которых начинаются латеральные ретикулоспинальные пути. Через эти пути осуществляется регуляция тонуса и позы, обеспечивающих точные целенаправленные движения. Корковые экстрапирамидные пути являются компонентом экстрапирамидной системы головного мозга, к которой относятся мозжечок, базальные ганглии, моторные центры ствола. Данная система осуществляет регуляцию тонуса, позы, координацию и коррекцию движений.

Оценивая в общем роль различных структур головного и спинного мозга в регуляции сложных направленных движений, можно отметить, что побуждение (мотивация) к движению создается в лобной системе, замысел движения – в ассоциативной коре больших полушарий, программа движений – в базальных ганглиях, мозжечке и премоторной коре, а выполнение сложных движений происходит через двигательную кору, моторные центры ствола и спинного мозга.

Межполушарные взаимоотношения Межполушарные взаимоотношения проявляются у человека в двух главных формах:

    функциональной асимметрии больших полушарий:

    совместной деятельности больших полушарий.

Функциональная асимметрия полушарий является важнейшим психофизиологическим свойством головного мозга человека. Исследование функциональной асиммертии полушарий началось в середине Х1Х в., когда французские медики М.Дакс и П.Брока показали, что нарушение речи человека возникает при поражении коры нижней лобной извилины, как правило левого полушария. Некоторое время спустя немецкий психиатр К.Вернике обнаружил в коре заднего отдела верхней височной извилины левого полушария слуховой центр речи, поражение которого приводит к нарушению понимания устной речи. Эти данные и наличие моторной асимметрии (праворукости) способствовало формированию концепции, согласно которой для человека характерно левополушарное доминирование, образовавшееся эволюционно в результате трудовой деятельности и являющееся специфическим свойством его мозга. В ХХ столетии в результате применения различных клинических методик (особенно при исследовании больных с расщепленным мозгом – осуществлялась перерезка мозолистого тела), было показано, что по ряду психофизиологических функций у человека доминирует не левое, а правое полушарие. Таким образом возникла концепция частичного доминирования полушарий (ее автором является Р.Сперри).

Принято выделять психическую , сенсорную и моторную межполушарную асимметрии мозга. Опять же, при исследовании речи было показано, что словесный информационный канал контролируется левым полушарием, а несловесный канал (голос, интонация) – правым. Абстрактное мышление и сознание связаны преимущественно с левым полушарием. При выработке условного рефлекса в начальной фазе доминирует правое полушарие, а во время упражнений, то есть упрочения рефлекса – левое. Правое полушарие осуществляет обработку информации одновременно статически, по принципу дедукции, лучше воспринимаются пространственные и относительные признаки предметов. Левое полушарие производит обработку информации последовательно, аналитически, по принципу индукции, лучше воспринимает абсолютные признаки предметов и временные отношения. В эмоциональной сфере правое полушарие обусловливает преимущественно более древние, отрицательные эмоции, контролирует проявление сильных эмоций. В целом правое полушарие «эмоционально». Левое полушарие обусловливает в основном положительные эмоции, контролирует проявление более слабых эмоций.

В сенсорной сфере роль правого и левого полушарий лучше всего проявляется при зрительном восприятии. Правое полушарие воспринимает зрительный образ целостно, сразу во всех подробностях, легче решает задачу различения предметов и опознания визуальных образов предметов, которые трудно описать словами, создает предпосылки конкретно-чувственного мышления. Левое полушарие оценивает зрительный образ расчленено. Легче опознаются знакомые предметы и решаются задачи сходства предметов, зрительные образы лишены конкретных подробностей и имеют высокую степень абстракции, создаются предпосылки логического мышления.

Моторная асимметрия связана с тем, что мышцы полушарий, обеспечивая новый, более высокий уровень регуляции сложных функций мозга, одновременно повышает требования к совмещению деятельности двух полушарий.

Совместная деятельность больших полушарий обеспечивается наличием комиссуральной системы (мозолистого тела, передней и задней, гиппокампальной и хабенулярной комиссур, межталамического сращения), которые анатомически соединяют два полушария головного мозга.

Клинические исследования показали, что помимо поперечных комиссуральных волокон, обеспечивающих взаимосвязь полушарий мозга, также и продольных, а также вертикальных комиссуральных волокон.пе

Вопросы для самоконтроля:

    Общая характеристика новой коры.

    Функции новой коры.

    Строение новой коры.

    Что такое нейронные колонки?

    Какие области коры выделяются учеными?

    Характеристика сенсорной коры.

    Что такое первичные сенсорные области? Их характеристика.

    Что такое вторичные сенсорные зоны? Их функциональное назначение.

    Что такое соматосенсорная область коры и где она располагается?

    Характеристика слуховой области коры.

    Первичная и вторичные зрительные области. Их общая характеристика.

    Характеристика ассоциативной области коры.

    Характеристика ассоциативных систем мозга.

    Что собой представляет таламотеменная система. Ее функции.

    Что собой представляет таламолобная система. Ее функции.

    Общая характеристика двигательной коры.

    Первичная моторная кора; ее характеристика.

    Вторичная моторная кора; ее характеристика.

    Что такое функциональные двигательные колонки.

    Характеристика корковых пирамидных и экстрапирамидных путей.

Кора большого мозга делится на древнюю (archicortex ), старую (paleocortex ) и новую (neocortex ) по филогенетическому признаку, то есть, по порядку возникновения у животных в процессе эволюции. Эти области коры образуют обширные связи в составе лимбической системы. У более филогенетически древних животных древняя и старая кора, как и вся Лимбическая система, отвечали преимущественно за обоняния. У человека Лимбическая система выполняет гораздо более широкие функции, связанные с эмоционально-мотивационной сферой регуляции поведения. В выполнении этих функций участвуют все три области коры.

Древняя кора наряду с другими функциями имеет отношение к обонянию и обеспечению взаимо­действия систем мозга. К древней коре относят обонятельные луковицы, в которые поступают афферентные волокна от обонятельного эпителия слизистой полости носа; обонятельные тракты, расположенные на нижней поверхности лобной доли, обонятельные бугорки, в которых расположены вторичные обонятельные центры. Это филогенетически наиболее ранняя часть коры, занимающая смежные участки лобной и височной долей на нижней и медиальной поверхностях полушарий.

Старая кора включает поясную извилину, гиппокамп и миндалину.

Поясная извилина. Имеет многочисленные связи с корой и стволовыми центрами и выполняет роль главного интегратора различных систем мозга, формирующих эмоции.

Миндалина образует также обширные связи с обонятельной луковицей. Благодаря этим связям обоняние у животных участвует в контроле репродуктивного поведения.

У приматов, в том числе у человека, повреждения миндалины снижают эмоциональную окраску реакций, кроме того, у них полностью исчезают агрессивные аффекты. Электрическая стимуляция миндалины вызывает преимущественно отрицательные эмоции – гнев, ярость, страх. Двустороннее удаление миндалин резко снижает агрессивность животных. Спокойные животные могут, напротив, стать неуправляемо агрессивными. У таких животных нарушается способность оценивать поступающую информацию и соотносить её с эмоциональным поведением. Миндалина участвует в процессе выделения доминирующей эмоции и мотивации и выборе поведения в соответствии с ними. Миндалина – мощнейший модификатор эмоций.

Гиппокамп располагается в медиальной части височной доли. Гиппокамп получает афферентные входы от гиппокампальной извилины (получает входы почти от всех областей неокортекса и других отделов ГМ) , от зрительной, обонятельной и слуховой систем. Повреждение гиппокампа приводит к характерным нарушениям памяти и способности к обучению . Деятельность гиппокампа заключается в консолидации памяти – перехода кратковременной памяти в долговременную. Повреждение гиппокампа вызывает резкое нарушение усвоения новой информации, образования кратковременной и долговременной памяти. Следовательно, гиппокамп, как, впрочем, и другие структуры лимбической системы, существенно влияет на функции неокортекса и на процессы научения. Это влияние осуществляется в первую очередь за счет создания эмоционального фона, который в значительной степени отражается на скорости образования любого условного рефлекса.

К миндалине и гиппокампу идут пути от височной доли коры, передающие информацию от зрительной, слуховой и соматической сенсорных систем. Установлены связи лимбической системы с лобными долями коры переднего мозга.

У новой коры наибольшее развитие величины, диффе­ренциации функций отмечается у человека. Толщина новой коры колеблется от 1,5 до 4,5 мм и максимальна в передней центральной извилине. В лимбической системе и вообще в нервной деятельности кора занимается высшими функциями организации деятельности.

Поражение лобной доли вызывает возникновение эмоциональной тупости, трудности изменения эмоций. Именно при поражении этой области возникает так называемый лобный синдром. Префронтальная область и связанные с ней подкорковые структуры (головка хвостатого ядра, медиодорсальное ядро таламуса) формируют префронтальную систему, отвечающую за сложные когнитивные и поведенческие функции. В орбитофронтальной коре сходятся пути от ассоциативных областей коры, паралимбических областей коры и лимбических областей коры. Таким образом, здесь пересекаются префронтальная система и лимбическая система. Такая организация определяет причастность префронтальной системы к сложным формам поведения, где необходима координация когнитивных, эмоциональных и мотивационных процессов. Целостность ее необходима для оценки текущей обстановки, возможных действий и их последствий и тем самым — для принятия решения и выработки программ поведения.

Удаление височных долей вызывает у обезьян гиперсексуальность, причем их половая активность может быть направлена даже на неодушевленные предметы. Наконец, послеоперационный синдром сопровождается так называемой психической слепотой . Животные утрачивают способность правильной оценки зрительной и слуховой информации, и эта информация никак не связывается с собственным эмоциональным настроем обезьян.

Височные доли тесно связаны со структурами гиппокампа и миндалины и также отвечают за сохранение информации и долговременную память и играют ключевую роль в процессе перевода кратковременной памяти в долговременную. Кора височных долей также отвечает за комбинирование сохраненных в памяти следов.