Болезни Военный билет Призыв

Контрольные работы. Школьная энциклопедия

Контрольные работы

Подготовка к ЕГЭ. 11-й класс

(Здесь публикуются контрольные только по двум темам из присланных одиннадцати, по всему курсу для 11-го класса. Полный текст задач опубликован на интернет-сайте «Физики»: в рубрике «Дополнительные материалы». – Ред .)

Предлагаю систему контрольных работ, разработанных с целью подготовки учащихся к ЕГЭ. Каждая рассчитана на один урок, включает в себя шесть вариантов и является как бы тематическим фрагментом ЕГЭ. Уровень сложности пяти заданий дифференцирован. В каждом – три теста с выбором ответа и две задачи (одна проще, другая сложнее). Через три минуты после начала контрольной я собираю ответы на тесты, и учащиеся приступают к решению задач. Таким образом, темп (вопрос в минуту) оказывается максимально приближенным к условиям ЕГЭ.

Задачи оформляются традиционно: краткое условие, чертёж, расчётные формулы с краткими пояснениями, подстановка числовых данных, проверка единиц физических величин. Полная гласность подведения итогов контрольной работы обеспечивается детальной информированностью учащихся и системой выставления оценки. Решённый тест оценивается в 1 балл, 4-я задача – в 2 балла, более сложная 5-я – в 3 балла. Оценка за контрольную работу выставляется в зависимости от суммарного балла, полученного учащимся за правильные ответы на вопросы и задачи, по следующей шкале: 7–8 баллов – «5», 5–6 баллов – «4», 3–4 балла – «3», меньше 3 – «2».

Подобная структура контрольной работы позволяет объединить текущий контроль усвоения материала (задания 1–3) с проверкой глубины понимания физической теории (задачи 4, 5). Имея сводные данные по ответу на каждый вопрос и по решению каждой задачи, можно составить представление о динамике изучения материала каждым учащимся. Например, если учащийся регулярно правильно отвечает на первые три вопроса, но не справляется с четвёртой и пятой задачами, это означает, что он достаточно (на репродуктивном уровне) представляет себе материал курса. Наоборот, если учащийся регулярно решает пятую задачу, но неправильно отвечает на остальные вопросы, то это свидетельствует о достаточно глубоком, но фрагментарном изучении им курса.

Литература

Касьянов В.А. Физика-11: Тематическое и поурочное планирование. – М.: Дрофа, 2002.

Касьянов В.А. Единый государственный экзамен по физике в России и SAT-II в США. – Физика («ПС», № 40/03.

Коноплич Р.В. , Орлов В.А. , Добродеев Н.А. , Татур А.О. Сборник тестовых заданий для тематического и итогового контроля. Физика-11. – М.: Интеллект-Центр, 2002.

Коноплич Р.В. , Орлов В.А. , Добродеев Н.А. , Татур А.О. Сборник тестовых заданий для тематического и итогового контроля. Физика-10. – М.: Интеллект-Центр, 2002.

Кирик Л.А. Физика-11. Разноуровневые самостоятельные и контрольные работы. – М.: Илекса, 2003.

Кирик Л.А. Физика-10. Разноуровневые самостоятельные и контрольные работы. – М.: Илекса, 2003.

Орлов В.А. , Ханнанов Н.К. , Фадеева А.А. Учебно-тренировочные материалы для подготовки к единому государственному экзамену. Физика. – М.: Интеллект-Центр, 2003.

Пигалицын Л.В. Тематические тесты по физике. 11 класс. – Н.Новгород: Нижегородский гуманитарный центр, 1997.

Контрольная работа № 10. Квантовая теория электромагнитного излучения вещества

Вариант 1

1. Импульс фотона р связан с его частотой соотношением (h – постоянная Планка):

2. Фотоэффект – это явление:

А) почернения фотоэмульсии под действием света;

Б) вылета электронов с поверхности металла под действием света;

В) свечения некоторых веществ в темноте;

Г) излучения нагретого твёрдого тела.

3. На рисунке представлена диаграмма энергетических уровней атома. Какой стрелкой обозначен переход с излучением фотона наибольшей частоты?

А) 1; Б) 2; В) 3; Г) 4.

4. При переходе электрона в атоме водорода с одной орбиты на другую, более близкую к ядру, излучаются фотоны энергией 3,03 10 –19 Дж. Определите частоту излучения атома.

5. Работа выхода электрона из цинка равна 3,74 эВ. Определите красную границу фотоэффекта для цинка. Какую скорость получат электроны, вырванные из цинка при облучении его ультрафиолетовым излучением длиной волны 200 нм?

Вариант 2

1. Энергия фотона прямо пропорциональна ( – длина волны):

А) –2 ; Б) –1 ; В) ; Г) 2 .

2. На каком из графиков верно изображена зависимость фототока (при фотоэффекте) от напряжения между электродами при неизменной освещённости в стандартном эксперименте?

3. Атомы одного элемента, находившиеся в состояниях энергиями Е 1 и Е 2 , при переходе в основное состояние испустили фотоны длинами волн 1 и 2 соответственно, причем 1 > 2 . Для энергий этих состояний справедливо соотношение:

А) Е 1 > Е 2 ; Б) Е 1 < Е 2 ;

В) Е 1 = Е 2 ; Г) | Е 1 | < | Е 2 |.

4. При переходе электрона в атоме водорода с третьей стационарной орбиты на вторую излучается фотон, соответствующий длине волны 0,652 мкм (красная линия водородного спектра). Какую энергию теряет при этом атом водорода?

5. Для некоторого металла красной границей фотоэффекта является свет длиной волны 690 нм. Определите работу выхода электрона из этого металла и максимальную скорость, которую приобретут электроны под действием излучения длиной волны 190 нм.

Вариант 3

1. Длина волны кр, соответствующая красной границе фотоэффекта, равна (А – работа выхода, h – постоянная Планка):

А) ; Б) ; В) ; Г) .

2. Фототок насыщения при фотоэффекте при уменьшении падающего светового потока:

А) увеличивается; Б) уменьшается; В) не изменяется;

Г) увеличивается или уменьшается в зависимости от условий опыта.

3. Какой цифрой на приведённой диаграмме энергетических уровней атома обозначен переход с излучением фотона максимальной частоты?

А) 1; Б) 2; В) 3; Г) 4.

4. Глаз человека воспринимает свет длиной волны 500 нм, если световые лучи ежесекундно приносят в глаз энергию не менее 20,8 10 –18 Дж. Какое количество квантов света при этом ежесекундно попадает на сетчатку глаза?

5. Какую максимальную скорость приобретут фотоэлектроны, вырванные с поверхности молибдена излучением частотой 3 10 15 Гц? Работа выхода электрона для молибдена 4,27 эВ.

А) Э.Резерфорд; Б) Дж.Дж.Томсон;

В) Ф.Жолио-Кюри; Г) И.В.Курчатов.

2. Какое из приведённых ниже продолжений утверждения правильно? При переходе между двумя различными стационарными состояниями атом может:

А) излучать и поглощать фотоны любой энергии;

Б) излучать и поглощать фотоны лишь с определёнными значениями энергии;

В) излучать фотоны любой энергии, а поглощать лишь с некоторыми значениями энергии;

Г) поглощать фотоны любой энергии, а излучать лишь с некоторыми значениями энергии.

3. Какое из указанных явлений: I – спонтанное излучение; II – индуцированное излучение, – используется в оптических квантовых генераторах?

А) I; Б) II; В) I и II; Г) ни I, ни II.

4. При какой длине электромагнитной волны энергия фотона равна 9,93 10 –19 Дж?

5. Красная граница фотоэффекта для рубидия равна 0,81 мкм. Какое напряжение надо приложить к фотоэлементу, чтобы задерживать электроны, вырываемые из рубидия ультрафиолетовыми лучами длиной волны 0,1 мкм?

Вариант 5

1. Чему равна энергия фотона частотой ?

А) h с 2 ; Б) h с ; В) h ; Г) h /с .

2. При освещении катода вакуумного фотоэлемента монохроматическим светом происходит освобождение фотоэлектронов. Как изменится максимальная энергия фотоэлектронов при увеличении частоты света в 2 раза?

А) Не изменится; Б) увеличится в 2 раза;

В) увеличится менее, чем в 2 раза;

Г) увеличится более, чем в 2 раза.

3. Для данной диаграммы энергетических уровней укажите правильное утверждение:

А) Е 1 > Е 4 ; Б) Е 4 > Е 2 ;

В) Е 2 > Е 3 ; Г) Е 2 > Е 4 .

4. Для ионизации атома азота необходима энергия 14,53 эВ. Найдите длину волны излучения, которое вызовет ионизацию.

5. Работа выхода электронов из кадмия 4,08 эВ. Светом какой длиной волны нужно освещать кадмий, чтобы максимальная скорость вылетающих электронов была 7,2 10 5 м/с?

Вариант 6

1. Частота красного света почти в 2 раза меньше частоты фиолетового. Импульс «красного» фотона по отношению к импульсу «фиолетового» фотона:

А) больше в 4 раза; Б) меньше в 4 раза;

В) больше в 2 раза; Г) меньше в 2 раза.

2. Какова природа сил, отклоняющих a-частицы на малые углы от прямолинейных траекторий в опыте Резерфорда?

А) Гравитационная; Б) кулоновская;

В) электромагнитная; Г) ядерная.

3. При освещении поверхности тела с работой выхода А монохроматическим светом частотой вырываются фотоэлектроны. Что определяет разность (h А )?

А) Среднюю кинетическую энергию фотоэлектронов;

Б) среднюю скорость фотоэлектронов;

В) максимальную кинетическую энергию фотоэлектронов;

Г) максимальную скорость фотоэлектронов.

4. При переходе электронов в атоме водорода с 4-й стационарной орбиты на 2-ю излучается фотон, дающий зелёную линию в спектре водорода. Определите длину волны этой линии, если при излучении фотона теряется 2,53 эВ энергии.

5. Отрицательно заряженная цинковая пластинка освещалась монохроматическим светом длиной волны 300 нм. Красная граница для цинка составляет 332 нм. Какой максимальный потенциал приобретает цинковая пластинка?

Ответы

Контрольная работа № 11. Физика высоких энергий

Вариант 1

1. При испускании ядром -частицы образуется дочернее ядро, имеющее:

А) большее зарядовое и то же массовое число;

Б) меньшее зарядовое и то же массовое число;

В) большее зарядовое и меньшее массовое число;

Г) меньшее зарядовое и большее массовое число.

2. Число радиоактивных ядер в образце изменяется со временем, как показано на рисунке. Период полураспада материала образца:

А) 1 год; Б) 1,5 года; В) 2 года; Г) 2,5 года.

3. При радиоактивном распаде урана протекает ядерная реакция Какой при этом образуется изотоп?

4. Период полураспада радиоактивного элемента 400 лет. Какая часть образца из этого элемента распадается через 1200 лет?

5. Определите энергию связи, приходящуюся на один нуклон в ядре атома если масса последнего 22,99714 а.е.м.

Вариант 2

1. В результате естественного радиоактивного распада образуются:

А) только -частицы;

Б) только -частицы;

В) только -кванты;

Г) -частицы, -частицы, -кванты, нейтрино.

2. Число радиоактивных ядер в образце изменяется со временем, как показано на рисунке. Найдите период полураспада материала.

А) 2 мс; Б) 2,5 мс; В) 3 мс; Г) 3,5 мс.

3. Какая частица Х образуется в результате ядерной реакции

4. Какая доля ядер радиоактивного изотопа с периодом полураспада 2 дня останется через 16 дней?

5. При обстреле ядер бора протонами получается бериллий . Какие ещё ядра получаются при этой реакции и сколько энергии высвобождается?

Вариант 3

1. Сколько протонов входит в состав ядра

А) Z ; Б) A Z ; B) A + Z ; Г) Z A .

2.

А) Поток ядер водорода; Б) поток ядер гелия;

В) поток нейтронов; Г) поток электронов.

3. Ядро атома может самопроизвольно делиться на два осколка. Один из осколков – барий , другой – криптон Сколько нейтронов вылетает при делении?

А) 1; Б) 2; В) 3; Г) 4.

4. Определите, с поглощением или выделением энергии протекает реакция

5. При бомбардировке -частицами бора наблюдается вылет нейтронов. Напишите уравнение ядерной реакции, приводящей к вылету одного нейтрона. Каков энергетический выход этой реакции?

Вариант 4

1. Укажите второй продукт ядерной реакции

А) Нейтрон; Б) протон;

В) электрон; Г) -частица.

2. Что представляет собой -излучение?

А) Поток нейтронов;

Б) поток быстрых электронов;

В) поток квантов электромагнитного излучения;

Г) поток протонов.

3. В ядерных реакторах коэффициент размножения нейтронов в цепной реакции деления должен быть:

А) > 1; Б) = 1; В) < 1; Г) 1.

4. Определите энергию, которая выделяется при аннигиляции электрона и позитрона, если масса электрона 9,1 10 –31 кг.

5. Какова электрическая мощность атомной электростанции с КПД 25%, расходующей в сутки 220 г изотопа урана-235?

Вариант 5

1. Какая частица испускается атомным ядром при -распаде?

А) Только нейтрон; Б) только -квант;

В) электрон и антинейтрино; Г) позитрон и нейтрон.

2. Какие силы действуют между нейтронами в ядре?

А) Гравитационные; Б) ядерные;

В) кулоновские; Г) ядерные и гравитационные.

3. В недрах Солнца температура достигает десятков миллионов градусов. Это объясняют:

А) быстрым вращением Солнца вокруг своей оси;

Б) делением тяжёлых ядер;

В) термоядерным синтезом лёгких ядер;

Г) реакцией горения водорода в кислороде.

4. При бомбардировке изотопа алюминия -частицами получается радиоактивный изотоп фосфора , который затем распадается с выделением позитронов. Напишите уравнения обеих реакций.

5. При бомбардировке нейтронами изотопа бора образуются -частицы. Напишите уравнение этой реакции и найдите её энергетический выход.

Вариант 6

1. Масса ядра атома гелия больше массы ядра атома водорода в:

А) 2 раза; Б) 3 раза; В) 4 раза; Г) 6 раз.

2. Полное превращение элементов впервые наблюдалось в реакции , в результате которой появились два ядра:

А) водорода; Б) гелия; В) бериллия; Г) бора.

3. Какая доля радиоактивных ядер распадается через интервал времени, равный двум периодам полураспада?

А) 25%; Б) 50%; В) 75% Г) 100%.

4. В процессе термоядерного синтеза 5 10 4 кг водорода превращается в 49 644 кг гелия. Определите, сколько энергии выделяется при этом.

5. Мощность атомного реактора при использовании за сутки 0,2 кг изотопа урана-235 составляет 32 000 кВт. Какая часть энергии, выделяемой вследствие деления ядер, используется полезно?

Ответы

Ольга Павловна Сорокина окончила факультет вычислительной математики и кибернетики Горьковского госуниверситета им. Н.И.Лобачевского в 1988 г. С 1993 г. преподаёт математику, физику, информатику и ИКТ (последние два года). Учитель высшей квалификационной категории. Автор двух статей педагогического содержания. Кредо: «Уча других, мы учимся сами». Вместе с мужем воспитывает двоих детей. Всё свободное время отдаёт самообразованию. Любит готовить, печь пироги и торты.

4. Фотоэффект практически безынерционен.

В методике изучения фотоэффекта можно выделить несколько этапов:

1. Знакомство учащихся с самим явлением фотоэффекта. Рассказ об истории его открытия (Г. Герц).

2. Рассказ о поиске закономерностей этого явления. Исследования.

3. Рассмотрение основных закономерностей фотоэффекта. Показ, вскрытие имеющихся трудностей - невозможность объяснить все законы фотоэффекта с известных уже учащимся позиций (волновой теории света).

4. Выдвижение гипотезы световых квантов. Рассказ о работе А. Эйнштейна. Уравнение фотоэффекта.

5. Объяснение всех закономерностей фотоэффекта с квантовых позиций:

6. Выводы квантовой теории о природе света.

7. Вакуумные и полупроводниковые фотоэлементы. Применение фотоэффекта в технике.

К пониманию явления фотоэффекта и его закономерностей лучше всего подвести школьников с помощью эксперимента. На первом уроке по теме обычно предлагают серию опытов:

1) Закрепленную на стержне электрометра хорошо очищенную цинковую пластину заряжают отрицательно и освещают потоком ультрафиолетовых лучей. Наблюдают разряд электрометра.

2) Разряд прекращается, если мы перекрываем поток лучей стеклом.

3) Если же сообщить пластине положительный заряд, то при таком же освещении разряд электрометра не наблюдается.

4) Разряд происходит тем быстрее, чем больше интенсивность света.

5) Заменив цинковую пластину медной (затем свинцовой), повторяют опыты при тех же условиях (освещенность, начальный заряд).

В ходе беседы последовательно обсуждают следующие вопросы: почему заряженная пластина может сохранять заряд в течение длительного времени? Какими способами можно разрядить пластину? Как объяснить быстрый разряд отрицательно заряженной пластины при ее освещении светом дуги? Будет ли при освещении ультрафиолетом так же разряжаться положительно заряженная цинковая пластина? Почему электрометр не обнаруживает изменения заряда в этом случае? Наблюдаем ли мы разряд медной пластины при тех же условиях опыта? Почему прекращается разряд отрицательно заряженной цинковой пластины, если свет от электрической дуги перекрыть стеклянной пластиной?

Проведенное обсуждение позволяет сделать выводы:

1. Под действием света разряжаются только отрицательно заряженные металлы. Следовательно, при некоторых условиях свет способен вырывать электроны из металлов. Это явление называют фотоэффектом. (Здесь же можно рассказать и об истории открытия фотоэффекта.)

2. Разряд начинается одновременно с началом освещения, следовательно, фотоэффект практически безынерционен. (Точные опыты показали, что время между началом облучения и началом фотоэффекта не превышает 10-9 с.)

3. Наличие фотоэффекта зависит от рода и обработки освещаемого металла и от спектрального состава излучения, скорость разряда зависит также и от падающей в единицу времени световой энергии.

Изучение закономерностей фотоэффекта продолжают на установке, позволяющей исследовать зависимость фототока от приложенного напряжения, интенсивности и спектрального состава излучения. Вначале экспериментально устанавливают существование тока насыщения, а затем - его зависимость от интенсивности падающего на катод света (первый закон фотоэффекта - закон Столетова).

По результатам эксперимента строят графики зависимости силы тока от интенсивности света и от напряжения.

После этого, освещая фотоэлемент светом определенной частоты, с помощью потенциометра "запирают" фотоэлемент и измеряют запирающее напряжение, что позволяет определить максимальную скорость вылетающих электронов.

Меняя светофильтры, получают при повторении опытов новые данные и убеждают учащихся в том, что скорость вылета электронов зависит от частоты падающего света и не зависит от интенсивности света (второй закон фотоэффекта).

Далее приступают к объяснению законов фотоэффекта. Само явление и то, что фототок насыщения прямо пропорционален падающей в единицу времени световой энергии - первый закон фотоэффекта, можно объяснить и с волновых позиций. Объяснение того, почему существует порог фотоэффекта (красная граница), почему максимальная начальная скорость (и максимальная кинетическая энергия фотоэлектронов) не зависит от интенсивности света, а определяется только его частотой (линейно возрастает с частотой), а также объяснение безынерционности фотоэффекта не может быть дано на основе волновой электромагнитной теории света. Ведь по этой теории вырывание электронов из металла является результатом их "раскачивания" в переменном электрическом поле световой волны. Но тогда и скорость и кинетическая энергия фотоэлектронов должны зависеть от амплитуды вектора напряженности Е электрического поля волны и, следовательно, от ее интенсивности, на "раскачку" электрона требуется время, эффект не может быть безынерционным. Несоответствие экспериментальных фактов сложившейся волновой теории света доказывало ее несостоятельность и требовало создания новой теории.

Далее рассказывают о том, что трудности в объяснении законов фотоэффекта были не единственной причиной создания новой теории. В 1900 г. М. Планк для объяснения теплового излучения вынужден был высказать, на первый взгляд, нелепую идею, что тело излучает энергию не непрерывно, а отдельными порциями (квантами). Эта идея противоречила сложившимся представлениям классической физики, где процессы и величины, их характеризующие, изменяются непрерывно. Эту непонятную и поэтому мало кем принятую идею в 1905 г. А. Эйнштейн использовал для объяснения законов фотоэффекта. Он пошел далее М. Планка и утверждал: свет не только испускается, но и распространяется и поглощается квантами.

Иначе говоря, поток монохроматического света, несущий энергию Е, представляет собой поток n частиц (названных позднее фотонами), каждый из которых обладает энергией h.

Энергия фотона пропорциональна частоте света. Чем больше частота (меньше длина волны) излучения, тем большую энергию несет каждый его фотон. Энергия фотонов длинноволнового излучения меньше.

Далее Эйнштейн предположил: каждый фотон взаимодействует не со всем веществом, на которое падает свет, и даже не с атомом в целом, а с отдельным электроном атома. Фотон отдает свою энергию электрону, а электрон, получив энергию, вырывается из металла с определенной кинетической энергией. На основе закона сохранения энергии можно записать следующее уравнение для элементарного акта взаимодействия фотона с электроном:



После этого объясняют экспериментальные законы фотоэффекта с точки зрения квантовой теории. Сила фототока насыщения равна числу электронов, вылетающих за единицу времени с освещаемой поверхности; интенсивность света - числу ежесекундно падающих фотонов. Так как каждый фотон может выбить с поверхности металла лишь один электрон, то естественно, что сила фототока насыщения (число вырванных электронов) будет пропорциональна интенсивности света (числу падающих фотонов).

Важно при этом подчеркнуть, что наблюдают прямую пропорциональность, а не равенство, так как часть падающих на металл фотонов отражается, а из поглощенных фотонов не все вырывают из металла свободные электроны. Энергия части поглощенных фотонов превращается во внутреннюю энергию металла. Поэтому отношение числа электронов к числу падающих на металл фотонов значительно меньше единицы (для чистых металлов примерно в 1000 раз).

Далее объясняют, почему наибольшая кинетическая энергия фотоэлектронов зависит от частоты падающего света, а не от его интенсивности (второй закон фотоэффекта). Из уравнения Эйнштейна следует: так как для данного вещества работа выхода постоянна, то наибольшая кинетическая энергия фотоэлектронов пропорциональна частоте падающего света. Анализируют случай, когда энергия светового кванта численно равна работе выхода.

Следовательно, вся энергия фотона идет на совершение работы выхода и скорость электронов равна нулю. Красная граница фотоэффекта зависит только от работы выхода, т. е. от химической природы металла, и может лежать на любом участке оптического диапазона. Для каждого вещества есть определенная длинноволновая граница фотоэффекта (третий закон фотоэффекта).

Таким образом, уравнение Эйнштейна объясняет все законы внешнего фотоэффекта. Оно позволяет вычислять скорости фотоэлектронов и определять наибольшую длину волны, при которой еще наблюдается явление фотоэффекта для данного вещества, а также вычислить работу выхода для конкретного металла.

После анализа уравнения Эйнштейна можно показать, как была осуществлена экспериментальная проверка этого уравнения. Она состояла в определении постоянной Планка из результатов опыта.

Так как работа выхода для данного вещества - величина постоянная, то кинетическая энергия фотоэлектрона является линейной функцией частоты излучения, падающего на фотоэлемент.

При практическом проведении таких измерений встретились большие трудности. Первые тщательные измерения постоянной Планка этим методом были проведены в 1915 г. Р. Милликеном. Он получил значение, близкое к тому, какое было уже известно из теории теплового излучения.


В нашей стране в 1928 г. опытами и была подтверждена линейная зависимость кинетической энергии фотоэлектронов от частоты падающего света и получено значение постоянной Планка.

Для закрепления уравнений Эйнштейна решают задачи на вычисление скорости и энергии электронов, красной границы фотоэффекта, работы выхода.

ЭФФЕКТ КОМПТОНА

Формирование представлений о фотоне, начатое при изучении: фотоэффекта, продолжают при изучении последующих вопросов курса - эффекта Комптона, давления света, химического действия света.

В 1887 году немецкий ученый Герц открыл влияние света на электрический разряд. Изучая искровой разряд, Герц обнаружил, что если освещать отрицательный электрод ультрафиолетовыми лучами, то разряд наступает при меньшем напряжении на электродах.

Далее было обнаружено, что при освещении светом отрицательно заряженной металлической пластинки, соединенной с электроскопом, стрелка электроскопа опускается. Это свидетельствовало о том, что освещаемая электрической дугой металлическая пластинка теряет свой отрицательный заряд. Положительный заряд металлическая пластинка при освещении не теряет.

Потеря металлическими телами при освещении их лучами света отрицательного получила название фотоэлектрический эффект или просто фотоэффект.

Явления изучалась с 1888 года и знаменитым русским ученым А. Г. Столетовым.

Изучение фотоэффекта Столетов производил при помощи установки, состоящей из двух небольших дисков. Сплошная цинковая пластинка и тонкая сетка устанавливались вертикально друг против друга, образуя конденсатор. Его пластинки соединялись с полюсами а затем освещались светом электрической дуги.

Свет свободно проникал через сетку на поверхность сплошного цинкового диска.

Столетов установил, что если цинковая обкладка конденсатора соединена с отрицательным полюсом источника напряжения (является катодом), то гальванометр, включенный в цепь, показывает ток. Если же катодом является сетка, то ток отсутствует. Значит, освещенная цинковая пластинка испускает отрицательно заряженные частички, которые и обусловливают существование тока в промежутке между ней и сеткой.

Столетов, изучая фотоэффект, физика которого была еще не раскрыта, брал для своих опытов диски из самых различных металлов: алюминиевые, медные, цинковые, серебряные, никелевые. Присоединяя их к отрицательному полюсу источника напряжения, он наблюдал, как под действием дуги в цепи его опытной установки возникал электрический ток. Такой ток называется фототоком.

При увеличении напряжения между обкладками конденсатора фототок увеличивался, достигая при некотором напряжении своего максимального значения, называемого фототоком насыщения.

Исследуя фотоэффект, физика которого неразрывно связана с зависимостью фототока насыщения от величины падающего на катодную пластину, Столетов установил следующий закон: величина фототока насыщения, будет прямо пропорциональна падающему на металлическую пластинку световому потоку.

Этот закон носит название Столетова.

В дальнейшем было установлено, что фототок - поток электронов, вырванный светом из металла.

Теория фотоэффекта нашла широкое практическое применение. Так были созданы устройства, в основе которых лежит это явление. Называются они фотоэлементами.

Светочувствительный слой - катод - покрывает почти всю внутреннюю поверхность стеклянного баллона, за исключением небольшого окошечка для доступа света. Анод же представляет собой проволочное кольцо, укрепленное внутри баллона. В баллоне - вакуум.

Если соединить кольцо с положительным полюсом батареи, а светочувствительный слой металла через гальванометр с отрицательным ее полюсом, то при освещении слоя надлежащим источником света в цепи появится ток.

Можно батарею выключить совсем, но и тогда мы будем наблюдать ток, только очень слабый, так как только ничтожная часть вырываемых светом электронов будет попадать на проволочное кольцо - анод. Для усиления эффекта необходимо напряжение порядка 80-100 в.

Фотоэффект, физика которого используется в таких элементах, можно наблюдать, используя любой металл. Однако большинство из них, такие, как медь, железо, платина, вольфрам, чувствительны только к Одни лишь щелочные металлы - калий, натрий и особенно цезий - чувствительны и к видимым лучам. Они-то и применяются для изготовления катодов фотоэлементов.

Фотоэлектрический эффект. Проводники могут заряжаться также под действием света. Явление заключается в том, что под действием света электроны могут вылететь из проводника в окружающее пространство, благодаря чему проводник заряжается положительно. Это явление получило название фотоэлектрического эффекта или фотоэффекта.

На рис. 18 изображен опыт, который в простейшей форме позволяет обнаружить и наблюдать возникновение на проводниках электрического заряда под действием света. Укрепим на стержне электроскопа хорошо очищенную от окислов металлическую (лучше всего цинковую) пластинку и зарядим электроскоп отрицательно. Если его изоляция достаточно хороша, то избыточные электроны будут хорошо удерживаться на электроскопе и его листки будут долго оставаться в отклоненном положении.

Рис. 18. Опыт по наблюдению фотоэлектрического эффекта. Электрическая дуга освещает отрицательно заряженную металлическую пластинку, укрепленную на электроскопе. Под влиянием света электроны вырываются из пластинки, отрицательный заряд электроскопа уменьшается и листки его спадают

Будем теперь освещать цинковую пластинку дуговой лампой проекционного фонаря. Листки немедленно опадут, а это значит, что цинковая пластинка теряет при этом свои избыточные электроны. Эти электроны под действием света вырываются из металла и, отталкиваемые отрицательно заряженной пластинкой, разлетаются в окружающее пространство. Зарядим теперь пластинку положительно и попробуем проделать тот же опыт. Мы найдем, что в этом случае освещение не вызывает никакого действия, и листки электроскопа остаются в отклоненном положении. Освобождающиеся электроны теперь не могут покинуть пластинку, так как они удерживаются сильным притяжением к положительному заряду. Положительные же заряды под действием света не освобождаются из металла.

Этот результат показывает, что положительные и отрицательные заряды связаны с металлом с различной прочностью. Под действием света могут освобождаться только отрицательные заряды – электроны.

Если проделать опыт с незаряженной пластинкой, то заметного отклонения листков обычного электроскопа не наблюдается. Однако, применив достаточно чувствительный электроскоп, мы обнаружим, что на пластинке под действием света возникает небольшой положительный заряд, скоро достигающий своего предела. Нетрудно понять, почему зарядка пластинки под действием света приостанавливается. После того как некоторое число электронов покинет пластинку и она зарядится положительно, дальнейшее удаление электронов в окружающее пространство сделается невозможным, как было объяснено выше. В томе III явление фотоэффекта будет изучено подробнее. Пока же ограничимся упоминанием, что и этот способ зарядки тел представляет собой также разделение электронов и положительных зарядов, которые существовали в теле и до освещения.

Одним из явлений, подтверждающих гипотезу фотонов, является фотоэлектрический эффект .

Основное влияние на характер протекания фотоэффекта оказывают свойства облучаемого материала (проводник, полупроводник, диэлектрик), а также энергия фотонов, так как для каждого материала существует минимальное значение энергии фотонов, при которой фотоэффект прекращается.

Рис. 2.4. Ге́нрих Ру́дольф Герц (1857–1894)

Впервые явление фотоэффекта было замечено Г. Герцем в 1887 г. Сущность явления состоит в том, что при освещении ультрафиолетовыми лучами металлическое тело теряет электроны. Фотоэффект можно наблюдать, например, при освещении светом электрической дуги цинковой пластинки, соединенной с электрометром (см. рис. 2.5).

Рис. 2.5. Освещение заряженной цинковой пластинки светом электрической дуги:
1
- отрицательно заряженная пластинка; 2 - положительно заряженная пластинка

Если цинковую пластинку зарядить отрицательно, то при ее облучении электрометр быстро разряжается. Если же пластинка заряжена положительно, то при облучении ее заряд не изменяется.

Рис. 2.6. Алекса́ндр Григо́рьевич Столе́тов (1839–1896)

Рис. 2.7. Филипп Эдуард Антон фон Ленард (1862–1947)

Первые количественные исследования фотоэлектрического эффекта принадлежат русскому физику А.Г. Столетову , который установил основные законы фотоэффекта.


Рис. 2.8. Описание опыта Столетовым А.Г. «Два металлических диска («арматуры», «электроды») в 22 см диаметром были установлены вертикально и друг другу параллельно перед электрическим фонарем Дюбоска, из которого вынуты все стекла. В фонаре имелась лампа с вольтовой дугой А. Один из дисков, близлежащий к фонарю, сделан из тонкой металлической сетки, латунной или железной, иногда гальванопластически покрытой другим металлом, которая была натянута в круглом кольце; другой диск сплошной (металлическая пластинка)» [Столетов А. Г. Избранные сочинения / Под ред. А. К. Тимирязева.- М.; Л.: Гос. изд. техн.-теор. лит., 1950. - 660 с.]. Измерения производились зеркальным гальванометром G, источником тока В служили гальванические батареи из разного числа элементов.

Позже установка Столетова была усовершенствована Ф.Э.А. Ленардом (Нобелевская премия в 1905 г. за исследование катодных лучей) и другими исследователями (рис. 2.2).

Рис. 2.9. Схема опытов по изучению внешнего фотоэффекта

Свет, проникающий через кварцевое окно К В (кварц пропускает ультрафиолетовые лучи), освещает катод К , изготовленный из исследуемого материала. Электроны, испущенные вследствие фотоэффекта, перемещаются под действием электрического поля к аноду А . В цепи возникает фототок, измеряемый миллиамперметром. С помощью потенциометра П можно изменять напряжение между катодом и анодом, которое показывает вольтметр V .

Исследования привели к установлению следующих основных закономерностей фотоэффекта:

1. Испускаемые под действием света заряды имеют отрицательный знак.

2. Величина испускаемого телом заряда пропорциональна поглощенной им световой энергии.

3. Наибольшее действие оказывают ультрафиолетовые лучи. Максимальная кинетическая энергия фотоэлектронов не зависит от интенсивности падающего света, а определяется при прочих равных условиях лишь частотой падающего монохроматического света и растет с увеличением частоты.

4. Фотоэффект протекает безынерционно, то есть фототок появляется практически одновременно с освещением катода (задержка ).

Проанализируем вольт-амперную характеристику (то есть зависимость фототока I от напряжения между электродами U), которая получается в результате фотоэлектрического эффекта. Из кривой на рис. 2.10 видно, что при некотором напряжении фототок достигает насыщения - все электроны, испущенные катодом, попадают на анод.

Рис. 2.10. Вольт-амперная характеристика фотоэффекта

Следовательно, сила тока насыщения определяется количеством электронов, испускаемых катодом в единицу времени под действием света. Поэтому сила фототока насыщения прямо пропорциональна световому потоку

где k - коэффициент пропорциональности, характеризующий «чувствительность» данного вещества к свету.

Рис. 2.11. Зависимость силы фототока насыщения от светового потока

Анализ кривой показывает, что электроны вылетают из катода с различными по величине скоростями. Часть электронов обладает достаточными скоростями, чтобы при U =0 долететь до анода «самостоятельно» и создать фототок без помощи ускоряющего поля. Для обращения фототока в нуль необходимо приложить некоторое задерживающее напряжение . По величине тормозящей разности потенциалов , при которой фототок обращается в нуль, можно определить скорость самых быстрых фотоэлектронов:

где - масса, величина заряда (e>0 ) и максимальная скорость этих электронов. Экспериментально было установлено, что максимальная скорость фотоэлектронов не зависит от интенсивности света, а зависит только от частоты облучения . Растущая линейная зависимость на рис. 2.4 указывает на то, что увеличение частоты приводит к возрастанию максимальной скорости фотоэлектронов.

Рис. 2 .4 . Зависимость задерживающего напряжения от частоты

Эта экспериментальная зависимость не укладывается в рамки классической электродинамики, так как скорость фотоэлектронов по классическим понятиям должна зависеть от интенсивности электромагнитной волны, а не от ее частоты.

В 1905 г. А. Эйнштейн показал, что все закономерности фотоэффекта легко объясняются, если предположить, что свет распространяется и поглощается такими же порциями (квантами) , какими он, по предположению Планка, испускается. Взаимодействуя с электроном вещества, фотон может обмениваться с ним энергией и импульсом. Фотоэффект возникает при неупругом столкновении фотона с электроном. При таком столкновении фотон поглощается, а его энергия передается электрону. Таким образом, электрон приобретает кинетическую энергию не постепенно, а сразу - в результате единичного акта столкновения. Этим и объясняется безинерционность фотоэффекта.


Рис. 2.13. Схема возникновения фотоэффекта в металле под действием падающих фотонов

Энергия, полученная электроном, доставляется ему в виде кванта . Часть этой энергии электрон тратит на то, чтобы «вырваться» из металла. Для каждого материала имеется своя работа выхода А ВЫХ

Остаток энергии фотона превращается в кинетическую энергию К электрона. Кинетическая энергия максимальна, если электрон образуется вблизи поверхности вещества и не расходует энергию при случайных столкновениях в веществе. В этом случае будет выполняться соотношение Эйнштейна для фотоэффекта (2.7).

Нобелевская премия по физике за 1921 г. была присуждена Эйнштейну за его «важные физико-математические исследования и особенно за открытие законов фотоэлектрического эффекта ». (Знаменитая теория относительности даже не упомянута в приведенной формулировке). Уравнение Эйнштейна позволяет объяснить законы фотоэффекта. Действительно, из соотношения Эйнштейна непосредственно следует, что максимальная кинетическая энергия фотоэлектрона линейно возрастает с увеличением частоты падающего излучения и не зависит от его интенсивности. Так как с уменьшением частоты падающего света кинетическая энергия фотоэлектронов уменьшается (для данного вещества катода А ВЫХ постоянна), то при достижении некоторой критической частоты кинетическая энергия фотоэлектронов станет равной нулю и фотоэффект прекратится.

Согласно Эйнштейну, частота

представляет красную границу фотоэффекта для данного вещества. Она зависит лишь от работы выхода электронов, то есть от химической природы вещества и состояния его поверхности.

Используя выражение (2.8) для красной границы и соотношение (2.6), перепишем уравнение Эйнштейна в виде

которое объясняет экспериментальную линейную зависимость (см. рис. 2.4) задерживающего потенциала от частоты падающего электромагнитного излучения.

Таким образом, согласно Эйнштейну, свет с частотой w не только испускается, как это предполагал Планк, но и распространяется в пространстве и поглощается веществом отдельными порциями (квантами), энергия которых

В 1914 г. были проведены модифицированные опыты по фотоэффекту: лучи направлялись на металлическую пыль, помещенную в конденсаторе. Фотоэффект практически мгновенен: при соударении пылинки с фотонами из нее выбиваются электроны, пылинка приобретает заряд и начинает двигаться в поле конденсатора. Движение пылинок наблюдалось сразу после включения источника излучения. Если бы излучение было классической электромагнитной волной, то волне потребовалось бы вполне заметное в эксперименте время для того, чтобы раскачать электроны, сообщить им энергию, равную работе выхода и, тем самым, вырвать их из пылинки. Отсутствие такого запаздывания наглядно продемонстрировало корпускулярную природу фотоэффекта.

На явлении фотоэффекта основано действие приборов, называемых фотоэлементами . На рис. 2.14 показано устройство вакуумного фотоэлемента.

Рис. 2.14. Устройство вакуумного фотоэлемента

На внутреннюю поверхность металлического баллона наносится светочувствительный слой, служащий катодом. Он соединен с отрицательным полюсом источника тока. В центре баллона помещается проволочное кольцо, служащее анодом. Анод соединяется с положительным полюсом источника тока. Через прозрачное окно в передней стенке баллона свет проникает внутрь и, пройдя сквозь проволочное кольцо, выбивает фотоэлектроны из катода. Фотоэлектроны под действием электрического поля движутся в сторону анода, цепь замыкается и по ней начинает течь ток I Ф . Если на пути световых лучей появится непрозрачная преграда, то свет перестанет поступать на катод, фотоэлектронная эмиссия прекратится, и ток в цепи прервется. При этом сработает то или иное реле, связанное с регистрирующим устройством.


Рис. 2.15. Солнечные батареи на международной космической станции. При освещении области контакта различных полупроводников возникает фотоэдс, что позволяет преобразовывать световую энергию в электрическую.

Фотоэлементы являются основной частью всевозможных фотореле , нашедших широкое применение в промышленности. С помощью фотореле можно осуществлять управление различными приборами и установками, включая и выключая их автоматически при освещении светом фотоэлемента, либо, наоборот, при его выключении.

Пример 1. На поверхность лития падает монохроматический свет с длиной волны . Чтобы прекратить эмиссию электронов, нужно приложить задерживающую разность потенциалов не менее с - скорость света в вакууме.

Тогда уравнение Эйнштейна приобретает вид

Решая его, находим скорость электронов

которая действительно оказывается близка к скорости света в вакууме .