Болезни Военный билет Призыв

Колебательный контур. Формула Томсона. SA Колебательный контур Колебательный контур. Период свободных колебаний

Тип занятия : урок первичного ознакомления с материалом и практического применения знаний и умений.

Продолжительность занятия: 45 минут.

Цели:

Дидактическая – обобщить и систематизировать знания о физических процессах, происходящих в электромагнитном колебательном контуре

создать условия для усвоения нового материала, используя активные методы обучения

Образовательна я – показать универсальных характер теории колебаний;

Развивающая – развивать когнитивные процессы учащихся, основываясь на применении научного метода познания: аналогичности и моделировании; прогнозировании ситуации; выработать у школьников приёмы эффективной переработки учебной информации, продолжить формирование коммуникативных компетентностей.

Воспитательная – продолжить формирование представлений о взаимосвязи явлений природы и единой физической картине мира

Задачи урока:

1. Образовательные

ü сформулировать зависимость периода колебательного контура от его характеристик: емкости и индуктивности

ü изучить приемы решения типичных задач на « Колебательный контур»

2. Развивающие

ü продолжить формирование умений сравнивать явления, делать выводы и обобщения на основе эксперимента

ü работать над формированием умений анализировать свойства и явления на основе знаний.

3. Воспитывающие

ü показать значение опытных фактов и эксперимента в жизни человека.

ü раскрыть значение накопления фактов и их уточнений при познавании явлений.

ü познакомить учащихся с взаимосвязью и обусловленностью явлений окружающего мира.

ТСО: компьютер, проектор, ИАД

Предварительная подготовка:

- индивидуальные оценочные листы - 24шт

- маршрутные листы(цветные) – 4шт

Технологическая карта урока:

Этапы урока

Активные методы

ИКТ сопровождение

1.Организационный

Эпиграф урока

Слайд №1,2

2. Актуализация знаний

(обобщение ранее изученного материала – проверка знания формул по теме « Колебания механические и электромагнитные»)

Лови ошибку!

Формулы даны с ошибками.

Задание: исправить ошибки, затем взаимопроверка, выставление оценок

Слайд №3

Слайд №4

Слайд № 5

3.Мотивация деятельности : для чего эту тему изучают в курсе физики 11 класса

(слово учителя-тезисы)

Колебательный контур- основная часть радиоприемника. Назначение приемника – принимать колебания (волны) различных частот. Простейший колебательный контур-это катушка и конденсатор с характеристиками индуктивность и емкость соответственно. Как зависит приемная способность контура от катушки и конденсатора?

Ключевые слова

КМД(коллективная мыслительная деятельность)

группам отводится 5 мин на то, чтобы методом мозговой атаки дать общую трактовку этих терминов и предположить, как они будут фигурировать в последующем уроке.

Слайд № 6

4.Целеполагание

Выяснить зависимость периода электромагнитного колебательного контура от емкости конденсатора и индуктивности катушки. Научиться применять формулу при решении задач.

(цель ставят обучающиеся сами, используя ключевые термины)

5. Формирование новых знаний

(использование опыта обучающихся при изучении нового материала)

Какая формула периода вам уже известна?

Т=2π/ω;

ω =2πν

Какая формула для циклической частоты была получена на прошлом уроке?

Свяжите эти две формулы и получите формулу, которую вывел король викторианской физики Уильям Томсон:


Историческая справка о лорде Томсоне

Виртуальная лаборатория (видеоэксперимент)

Виртуальная лаборатория(интерактивная модель)

«Толстые» вопросы:

Объясните почему …?

Почему вы считаете …?

В чем различие …?

Предположите, что будет если …?

«Тонкие» вопросы:

Что? Где? Как?

Может ли…?

Будет ли …?

Согласны ли вы …?

Баскет - метод (анализ практической ситуации в группах)

Слайд №9

Слайд №10

Слайд №11,12

6. Контроль полученных знаний

Одну задачу разобрать на доске

В группах придумать условие качественной или расчетной задачи, записать на маршрутном листе, следующая группа решает эту задачу, докладчик показывает на доске

Формула Томсона:

Период электромагнитных колебаний в иде­альном колебательном контуре (т.е. в таком контуре, где нет потерь энергии) зависит от индуктивности катушки и емкости конденсатора и находится по формуле, впервые полученной в 1853 г. английским ученым Уильямом Томсоном:

Частота с периодом связана обратно пропорциональной зависимостью ν = 1/Т.

Для практического применения важно получить незату­хающие электромагнитные колебания, а для этого необходимо колебательный контур пополнять элек­троэнергией, чтобы скомпенсировать потери.

Для получения незатухающих электромагнитных колебаний применяют генератор незатухающих ко­лебаний, который является примером автоколеба­тельной системы.

См.ниже «Вынужденные электрические колебания»

СВОБОДНЫЕ ЭЛЕКТРОМАГНИТНЫЕ КОЛЕБАНИЯ В КОНТУРЕ

ПРЕВРАЩЕНИЕ ЭНЕРГИИ В КОЛЕБАТЕЛЬНОМ КОНТУРЕ

См.выше «Колебательный контур»

СОБСТВЕННАЯ ЧАСТОТА КОЛЕБАНИЙ В КОНТУРЕ

См.выше «Колебательный контур»

ВЫНУЖДЕННЫЕ ЭЛЕКТРИЧЕСКИЕ КОЛЕБАНИЯ

ДОБАВИТЬ ПРИМЕРЫ СХЕМ

Если в контуре, в состав которого входят индуктивность L и емкость С, каким-то образом зарядить конденсатор (например, путем кратковременного подключения источника питания), то в нем возникнут периодические затухающие колебания:

u = Umax sin(ω0t + φ) e-αt

ω0 = (Собственная частота колебаний контура)

Для обеспечения незатухающих колебаний в состав генератора должен обязательно входить элемент, способный вовремя подключить контур к источнику питания, - ключ или усилитель.

Для того чтобы этот ключ или усилитель открывался только в нужный момент, необходима обратная связь от контура на управляющий вход усилителя.

Генератор синусоидального напряжения LC-типа должен иметь три основных узла:

Резонансный контур

Усилитель или ключ(на электронной лампе, транзисторе или другом элементе)

Обратную связь

Рассмотрим работу такого генератора.

Если конденсатор С заряжен и происходит его перезарядка через индуктивность L таким образом, что ток в контуре протекает против часовой стрелки, то в обмотке, имеющей индуктивную связь с контуром, возникает э. д. с., запирающая транзистор Т. Контур при этом отключен от источника питания.

В следующий полупериод, когда происходит обратная перезарядка конденсатора, в обмотке связи индуктируется э.д.с. другого знака и транзистор приоткрывается, ток от источника питания проходит в контур, подзаряжая конденсатор.

Если количество энергии, поступившей в контур, меньше, чем потери в нем, процесс начнет затухать, хотя и медленнее, чем при отсутствии усилителя.

При одинаковом пополнении и расходе энергии колебания незатухающие, а если подпитка контура превышает потери в нем, то колебания становятся расходящимися.

Для создания незатухающего характера колебаний обычно используется следующий метод: при малых амплитудах колебаний в контуре обеспечивается такой коллекторный ток транзистора, при котором пополнение энергии превышает ее расход. В результате амплитуды колебаний возрастают и коллекторный ток достигает значения тока насыщения. Дальнейший рост базового тока не приводит к увеличению коллекторного, и поэтому нарастание амплитуды колебаний прекращается.

ПЕРЕМЕННЫЙ ЭЛЕКТРИЧЕСКИЙ ТОК

ГЕНЕРАТОР ПЕРЕМЕННОГО ТОКА (уч.11кл.стр.131)

ЭДС рамки, вращающейся в поле

Генератор переменного тока.

В проводнике, движущемся в постоянном магнитном поле, генерируется электрическое поле, возникает ЭДС индукции.

Основным элементом генератора является рамка, вращающаяся в магнитном поле внешним механическим двигателем.

Найдем ЭДС, индуцируемую в рамке размером a x b, вращающейся с угловой частотой ω в магнитном поле с индукцией В.

Пусть в начальном положении угол α между вектором магнитной индукции В и вектором площади рамки S равен нулю. В этом положении никакого разделения зарядов не происходит.

В правой половинке рамки вектор скорости сонаправлен вектору индукции, а в левой половине противоположен ему. Поэтому сила Лоренца, действующая на заряды в рамке, равна нулю

При повороте рамки на угол 90о в сторонах рамки под действием силы Лоренца происходит разделение зарядов. В сторонах рамки 1 и 3 возникают одинаковые ЭДС индукции:

εi1 = εi3 = υBb

Разделение зарядов в сторонах 2 и 4 незначительно, и поэтому ЭДС индукции, возникающими в них, можно пренебречь.

С учетом того, что υ = ω a/2, полная ЭДС, индуцируемая в рамке:

εi = 2 εi1 = ωBΔS

ЭДС, индуцируемую в рамке можно найти из закона электромагнитной индукции Фарадея. Магнитный поток через площадь вращающейся рамки изменяется во времени в зависимости от угла поворота φ = wt между линиями магнитной индукции и вектором площади.

При вращении витка с частотой n угол j меняется по закону j = 2πnt, и выражение для потока примет вид:

Φ = BDS cos(wt) = BDS cos(2πnt)

По закону Фарадея изменения магнитного потока создают ЭДС индукции, равную минус скорости изменения потока:

εi = - dΦ/dt = -Φ’ = BSω sin(ωt) = εmax sin(wt) .

где εmax = wBDS - максимальная ЭДС, индуцируемая в рамке

Следовательно, изменение ЭДС индукции будет происходить по гармоническому закону.

Если с помощью контактных колец и скользящих по ним щеток соединить концы витка с электрической цепью, то под действием ЭДС индукции, изменяющейся со временем по гармоническому закону, в электрической цепи возникнут вынужденные электрические колебания силы тока – переменный ток.

На практике синусоидальная ЭДС возбуждается не путем вращения витка в магнитном поле, а путем вращения магнита или электромагнита (ротора) внутри статора – неподвижных обмоток, навитых на стальные сердечники.

Перейти на страницу:

[по вмени англ. физика У. Томсона (W. Thomson; 1824 - 1907)] - ф-ла, выражающая зависимость периода Т незатухающих собственных колебаний в колебательном контуре от его параметров - индуктивности L и ёмкости С: Т = 2ПИ корень из LC (здесь L в Гн, С в Ф, Г в с).

  • - выделение или поглощение теплоты в проводнике с током, вдоль к-рого имеется градиент темп-ры, происходящее помимо выделения джоулевой теплоты. Теплота Томсона Qs пропорц...

    Физическая энциклопедия

  • - дроссель-эффект, - изменение темп-ры газа при его адиабатич. дросселировании, т. е. понижении давления газа при его протекании через пористую перегородку, диафрагму или вентиль без теплообмена с окружающей средой...
  • - разница потенциалов, которая образуется между двумя точками металлического проводника, если эти две точки имеют разные температуры. Эффект назван по имени Уильяма Томсона. см. также ТЕРМОЭЛЕКТРИЧЕСТВО...

    Научно-технический энциклопедический словарь

  • - см. Дросселирование...

    Естествознание. Энциклопедический словарь

  • - см. Гликогеноз VII...

    Большой медицинский словарь

  • - инструмент для дробления конкрементов в мочевом пузыре с рабочей частью в виде металлических губок, которые сводились с помощью винта; предшественник современных механических литотрипторов...

    Большой медицинский словарь

  • - см. Пойкилодермия наследственная склерозирующая...

    Большой медицинский словарь

  • - формула, имеющая вид: где a1, А2,..., Ап - несовместимые события, Общая схема применения Ф. в. г.: если событие В может происходить в разл. условиях, относительно которых сделано п гипотез А1, А2, .....

    Геологическая энциклопедия

  • - выделение или поглощение теплоты, помимо джоулевой, в проводнике с током, в к-ром существует перепад темп-р. Эффект описывается ф-лой: О = т/t Дельта Т, где I - сила тока, t - время, Дельта Т - перепад темп-р. т - коэфф...

    Большой энциклопедический политехнический словарь

  • - 1...

    Энциклопедический словарь по металлургии

  • - изменение температуры газа в результате медленного протекания его под действием постоянного перепада давления сквозь дроссель - местное препятствие потоку газа...
  • - «Томсон организейшен, лимитед» , одно из крупнейших газетно-издательских объединений Великобритании. Во главе концерна - барон Г. Томсон...

    Большая Советская энциклопедия

  • - подводный хребет между Фарерскими островами и северным побережьем острова Великобритания...

    Большая Советская энциклопедия

  • - I То́мсона эффе́кт термоэлектрический, одно из термоэлектрических явлений...

    Большая Советская энциклопедия

  • - подводный хребет, отделяющий впадину Атлантического ок. от впадины Норвежского м., препятствует глубинному водообмену между ними. Длина ок. 100 км...
  • - дополнительное выделение или поглощение тепла при прохождении тока через проводник, в котором имеется перепад температуры. Количество тепла пропорционально току и перепаду температуры...

    Большой энциклопедический словарь

"ТОМСОНА ФОРМУЛА" в книгах

МЕТОД МАКСВЕЛЛА И «АНАЛОГИИ» ТОМСОНА

Из книги Максвелл автора Карцев Владимир Петрович

МЕТОД МАКСВЕЛЛА И «АНАЛОГИИ» ТОМСОНА Максвеллу было ясно, что Фарадей прав и его силовые линии были поистине великим открытием. Но фарадеевские силовые линии не годились для расчетов. Нельзя было, например, наперед сказать, каковы будут силовые линии двух совокупностей

Его формула

Из книги Изнанка экрана автора Марягин Леонид

Его формула Незадолго до смерти Довженко мечтал уйти с «Мосфильма» и образовать свою студию. Я, юный, влюбленный в мосфильмовский гигант, был ошарашен.- Чем вам не нравится «Мосфильм»? - робко спросил я у Александра Петровича.И получил многозначительный ответ:- На

Формула

Из книги Размышления о личном развитии автора Адизес Ицхак Калдерон

Формула В моем понимании, формула, правящая миром, – не что иное, как абсолютная, чистая любовь (или, другими словами, полная интеграция). А интеграция является функцией взаимного уважения и доверия.Итак, где же был Бог во время Холокоста? Формула объясняет, что произошло:

Формула

Из книги Освободитесь от плохих долгов автора Кийосаки Роберт Тору

Формула Вы сделали первые четыре шага и теперь готовы перейти к формуле ликвидации плохих долгов. Шаги с 5-го по 10-й приведут вас к конкретной формуле, которую мы с Робертом использовали для того, чтобы избавиться от всех тех долгов, которые висели на нас неподъемным

Из предисловия бывшего начальника британской разведки Бэзиля Томсона

Из книги Американская разведка во время мировой войны автора Джонсон Томас М

Из предисловия бывшего начальника британской разведки Бэзиля Томсона Если я берусь написать предисловие к этой книге, то делаю это потому, что знал лично много коллег Джонсона и могу отдать себе отчет в той старательности, с какой они выполняли свою работу. Автор говорит

Глава 9. 1840 г. - 1859 г. Телеграфы Кука-Уитстона, Морзе, Сименса, машина Альянс, формула Томсона, телеграф Юза, аккумулятор Планте

автора Кучин Владимир

Глава 9. 1840 г. - 1859 г. Телеграфы Кука-Уитстона, Морзе, Сименса, машина Альянс, формула Томсона, телеграф Юза, аккумулятор Планте 1840 г. телеграф Кука и Уитстона, телеграф Морзе В 1840 году, 21 января, англичане Кук и Уитстон патентуют в Англии 5-стрелочный телеграф (ВР 8345),

1853 г. Сименс, Гальске, Физо, формула Томсона

Из книги Популярная история - от электричества до телевидения автора Кучин Владимир

1853 г. Сименс, Гальске, Физо, формула Томсона В 1853 году Эрнст Вернер фон Сименс начал сооружение в России линии телеграфа своей конструкции от Петербурга до Севастополя, работы были завершены в 1856 году. В России в это время шла Крымская война, и щедрое финансирование

Джоуля - Томсона эффект

Из книги Большая Советская Энциклопедия (ДЖ) автора БСЭ

Комитет Томсона 10 апреля 1940 года в Лондоне в старинном викторианском здании Королевского общества собрались члены комитета Томсона. Этот субсидируемый правительством орган был учрежден, чтобы заниматься вопросами военного применения атомной энергии.- Джентльмены! -

Предисловие Гарнера Томсона

Из книги ТРАНСформация автора Бендлер Ричард

Предисловие Гарнера Томсона Я был глубоко польщен, когда мне предложили редактировать книгу доктора Ричарда Бендлера о гипнозе и нейро- лингвистическом программировании. Жизнь не часто сводит нас с подобными людьми, которые делают невозможное возможным ради блага

Формула пути – формула жизни

Из книги Жизнь – игра. Правила победителей автора Зюзгинов Александр

Формула пути – формула жизни Жизнь – это путешествие в самый неизвестный уголок во всем мире – Себя. Никто не знает своих границ. И я уверен, что их нет совсем. Я не знаю, что я возьму с собой по дороге, от чего откажусь, что не замечу, о чем буду плакать, смеяться, сожалеть. Я

Если сравнить рис. 50 с рис. 17, на котором показаны колебания тела на пружинах, то нетрудно установить большое сходство во всех стадиях процесса. Можно составить своего рода «словарь», с помощью которого описание электрических колебаний можно тотчас же перевести на описание механических, и обратно. Вот этот словарь.

Попробуйте перечитать предыдущий параграф с этим «словарем». В начальный момент конденсатор заряжен (тело отклонено), т. е. системе сообщен запас электрической (потенциальной) энергии. Начинает течь ток (тело приобретает скорость), через четверть периода ток и магнитная энергия наибольшие, а конденсатор разряжен, заряд на нем равен нулю (скорость тела и его кинетическая энергия наибольшие, причем тело проходит через положение равновесия), и т.д.

Заметим, что начальный заряд конденсатора и, следовательно, напряжение на нем создаются электродвижущей силой батареи. С другой стороны, начальное отклонение тела создается приложенной извне силой. Таким образом, сила, действующая на механическую колебательную систему, играет роль, аналогичную электродвижущей силе, действующей на электрическую колебательную систему. Наш «словарь» может быть поэтому дополнен еще одним «переводом»:

7) сила, 7) электродвижущая сила.

Сходство закономерностей обоих процессов идет и дальше. Механические колебания затухают из-за трения: при каждом колебании часть энергии превращается из-за трения в теплоту, поэтому амплитуда делается все меньше. Точно так же при каждой перезарядке конденсатора часть энергии тока переходит в теплоту, выделяющуюся из-за наличия сопротивления у провода катушки. Поэтому и электрические колебания в контуре тоже затухают. Сопротивление играет для электрических колебаний ту же роль, что трение для механических колебаний.

В 1853г. английский физик Вильям Томсон (лорд Кельвин, 1824-1907) показал теоретически, что собственные электрические колебания в контуре, состоящем из конденсатора емкости и катушки индуктивности , являются гармоническими, и период их выражается формулой

( - в генри, - в фарадах, - в секундах). Эта простая и очень важная формула называется формулой Томсона. Сами колебательные контуры с емкостью и индуктивностью часто тоже называют томсоновскими, так как Томсон впервые дал теорию электрических колебаний в таких контурах. В последнее время все чаще используется термин «-контур» (и аналогично «-контур», «-контур» и т. п.).

Сравнивая формулу Томсона с формулой, определяющей период гармонических колебаний упругого маятника (§ 9), , мы видим, что масса тела играет такую же роль, как индуктивность , а жесткость пружины - такую же роль, как величина, обратная емкости (). В соответствии с этим в нашем «словаре» вторую строку можно записать и так:

2) жесткость пружины 2) величина, обратная емкости конденсатора.

Подбирая разные и , можно получить любые периоды электрических колебаний. Естественно, в зависимости от периода электрических колебаний надо пользоваться различными способами их наблюдения и записи (осциллографирования). Если взять, например, и , то период будет

т. е. колебания будут происходить с частотой около . Это пример электрических колебаний, частота которых лежит в звуковом диапазоне. Такие колебания можно услышать при помощи телефона и записать на шлейфовом осциллографе. Электронный осциллограф позволяет получить развертку как таких, так и более высокочастотных колебаний. В радиотехнике используются чрезвычайно быстрые колебания - с частотами во много миллионов герц. Электронный осциллограф позволяет наблюдать их форму так же хорошо, как мы можем с помощью следа маятника на закопченной пластинке (§ 3) видеть форму колебаний маятника. Осциллографирование свободных электрических колебаний при однократном возбуждении колебательного контура обычно не применяется. Дело в том, что состояние равновесия в контуре устанавливается всего лишь за несколько периодов, или, в лучшем случае, за несколько десятков периодов (в зависимости от соотношения между индуктивностью контура , его емкостью и сопротивлением ). Если, скажем, процесс затухания практически заканчивается за 20 периодов, то в приведенном выше примере контура с периодам в вся вспышка свободных колебаний займет всего и уследить за осциллограммой при простом визуальном наблюдении будет весьма трудно. Задача легко решается, если весь процесс - от возбуждения колебаний до их практически полного угасания - периодически повторять. Сделав развертывающее напряжение электронного осциллографа тоже периодическим и синхронным с процессом возбуждения колебаний, мы заставим электронный пучок многократно «рисовать» одну и ту же осциллограмму на одном и том же месте экрана. При достаточно частом повторении наблюдаемая на экране картина вообще будет казаться непрерывающейся, т. е. мы усидим неподвижную и неизменную кривую, представление о которой дает рис. 49, б.

В схеме с переключателем, показанной на рис. 49, а, многократное повторение процесса можно получить просто, периодически перебрасывая переключатель из одного положения в другое.

Радиотехника располагает для этой же гораздо более совершенными и быстрым электрическими способами переключения, использующими схемы с электронными лампами. Но еще до изобретения электронных ламп был придуман остроумный способ периодического повторения возбуждения затухающих колебаний в контуре, основанный на использовании искрового заряда. Ввиду простоты и наглядности этого способа мы остановимся на нем несколько подробнее.

Рис. 51. Схема искрового возбуждения колебаний в контуре

Колебательный контур разорван небольшим промежутком (искровой промежуток 1), концы которого присоединены ко вторичной обмотке повышающего трансформатора 2 (рис. 51). Ток от трансформатора заряжает конденсатор 3 до тех пор, пока напряжение на искровом промежутке не станет равным напряжению пробоя (см. том II, §93). В этот момент в искровом промежутке происходит искровой разряд, который замыкает контур, так как столбик сильно ионизованного газа в канале искры проводит ток почти так же хорошо, как и металл. В таком замкнутом контуре возникнут электрические колебания, как это описано выше. Пока искровой промежуток хорошо проводит ток, вторичная обмотка трансформатора практически замкнута искрой накоротко, так что все напряжение трансформатора падает на его вторичной обмотке, сопротивление которой значительно больше сопротивления искры. Следовательно, при хорошо проводящем искровом промежутке трансформатор практически не доставляет энергии контуру. В силу того, что контур обладает сопротивлением, часть колебательное энергии расходуется на джоулево тепло, а также на процессы в искре, колебания затухают и через короткое время амплитуды тока и напряжения падают настолько, что искра гаснет. Тогда электрические колебания обрываются. С этого момента трансформатор вновь заряжает конденсатор, пока опять не произойдет пробой, и весь процесс повторится (рис. 52). Таким образом, образование искры и ее погасание играют роль автоматического переключателя, обеспечивающего повторение колебательного процесса.

Рис. 52. Кривая а) показывает, как меняется высокое напряжение на разомкнутой вторичной обмотке трансформатора. В те моменты, когда это напряжение достигает напряжения пробоя , в искровом промежутке проскакивает искра, контур замыкается, получается вспышка затухающих колебаний – кривые б)

Основным устройством, определяющим рабочую частоту любого генератора переменного тока, является колебательный контур. Колебательный контур (рис.1) состоит из катушки индуктивности L (рассмотрим идеальный случай, когда катушка не обладает омическим сопротивлением) и конденсатора C и называется замкнутым. Характеристикой катушки является индуктивность, она обозначается L и измеряется в Генри (Гн), конденсатор характеризуют емкостью C , которую измеряют в фарадах (Ф).

Пусть в начальный момент времени конденсатор заряжен так (рис.1), что на одной из его обкладок имеется заряд +Q 0 , а на другой - заряд -Q 0 . При этом между пластинами конденсатора образуется электрическое поле, обладающее энергией

где - амплитудное (максимальное) напряжение или разность потенциалов на обкладках конденсатора.

После замыкания контура конденсатор начинает разряжаться и по цепи пойдет электрический ток (рис.2), величина которого увеличивается от нуля до максимального значения . Так как в цепи протекает переменный по величине ток, то в катушке индуцируется ЭДС самоиндукции, которая препятствует разрядке конденсатора. Поэтому процесс разрядки конденсатора происходит не мгновенно, а постепенно. В каждый момент времени разность потенциалов на обкладках конденсатора

(где - заряд конденсатора в данный момент времени) равна разности потенциалов на катушке, т.е. равна ЭДС самоиндукции

Рис.1 Рис.2

Когда конденсатор полностью разрядится и , сила тока в катушке достигнет максимального значения (рис.3). Индукция магнитного поля катушки в этот момент также максимальна, а энергия магнитного поля будет равна

Затем сила тока начинает уменьшаться, а заряд будет накапливаться на пластинах конденсатора (рис.4). Когда сила тока уменьшится до нуля, заряд конденсатора достигнет максимального значения Q 0 , но обкладка, прежде заряженная положительно, теперь будет заряжена отрицательно (рис. 5). Затем конденсатор вновь начинает разряжаться, причем ток в цепи потечет в противоположном направлении.

Так процесс перетекания заряда с одной обкладки конденсатора на другую через катушку индуктивности повторяется снова и снова. Говорят, что в контуре происходят электромагнитные колебания . Этот процесс связан не только с колебаниями величины заряда и напряжения на конденсаторе, силы тока в катушке, но и перекачкой энергии из электрического поля в магнитное и обратно.

Рис.3 Рис.4

Перезарядка конденсатора до максимального напряжения произойдет только в том случае, когда в колебательном контуре нет потерь энергии. Такой контур называется идеальным.


В реальных контурах имеют место следующие потери энергии:

1) тепловые потери, т.к. R ¹ 0;

2) потери в диэлектрике конденсатора;

3) гистерезисные потери в сердечнике катушке;

4) потери на излучение и др. Если пренебречь этими потерями энергии, то можно написать, что , т.е.

Колебания, происходящие в идеальном колебательном контуре, в котором выполняется это условие, называются свободными , или собственными , колебаниями контура.

В этом случае напряжение U (и заряд Q ) на конденсаторе изменяется по гармоническому закону:

где n - собственная частота колебательного контура, w 0 = 2pn - собственная (круговая) частота колебательного контура. Частота электромагнитных колебаний в контуре определяется как

Период T - время, в течение которого совершается одно полное колебание напряжения на конденсаторе и тока в контуре, определяется формулой Томсона

Сила тока в контуре также изменяется по гармоническому закону, но отстает от напряжения по фазе на . Поэтому зависимость силы тока в цепи от времени будет иметь вид

На рис.6 представлены графики изменения напряжения U на конденсаторе и тока I в катушке для идеального колебательного контура.

В реальном контуре энергия с каждым колебанием будет убывать. Амплитуды напряжения на конденсаторе и тока в контуре будут убывать, такие колебания называются затухающими. В задающих генераторах их применять нельзя, т.к. прибор будет работать в лучшем случае в импульсном режиме.

Рис.5 Рис.6

Для получения незатухающих колебаний необходимо компенсировать потери энергии при самых разнообразных рабочих частотах приборов, в том числе и применяемых в медицине.