Болезни Военный билет Призыв

Когда появилось железо у людей. Продолжительность железной эпохи. Загадка древней колонны

Так вот с того момента, когда начинает активно использоваться железо, наступает новый, качественный перелом в развитии, в данном случае нас интересует развитие Древней Греции. Я уже говорил, что железо обладает важными показателями.

Самое главное преимущество железа перед бронзой – это то, что это дешёвый металл. Это металл очень распространённый. Мы с вами говорили, что бронза – это сплав меди и олова. Медь – достаточно редкий металл. Олово – ещё более редкий металл. А вот руды железа в различных видах, они достаточно часто встречаются на земле. Не обязательно нужно иметь в виду месторождение типа Курской магнитной аномалии или ещё что-нибудь такое. Были очень маленькие месторождения, которые очень быстро вырабатывались, но они давали в исторический период необходимый металл. Так что это металл более демократичный по сути своей. Бронза очень долгое время была (и будем сегодня об этом говорить), это металл для знати. Железо – это металл для людей, для формирующегося гражданского населения.

Второй момент – то, что железо обладает более высокими качественными показателями по сравнению с бронзой, и поэтому это ускоряло прогресс в различных сферах производства. Тем более что постепенно, правда, не сразу, открытия в области железа (изобретение стали, изобретение пайки и т.д., это будет относиться только ещё к VII — VI векам, повторяю, не всё сразу), но уже это давало потенциальную возможность для развития общества.

И во многом именно распространение железа и привело в Греции к такому результату, что когда у нас вот этот период хаоса, период регресса заканчивается, у нас будет восстановлена опять новая социальная структура, новое общество на территории Греции. Оно уже не будет напоминать ни минойскую Критскую Грецию, ни микенскую Балканскую Грецию. Это общество будет принципиально новым. Если мы говорили, что для обществ III — II тысячелетий основным структурообразующим элементом был дворец (мы говорили о том, что дворец – есть некое полифункциональное явление и о том, что дворцовый тип организации государства и общества – это нормальный, общеисторический организм, который характерен был для древних стран Востока, и в этом отношении Европа своим Критом и своей Балканской Грецией, она в принципе шла в русле развития цивилизации мировой), то теперь, в I тысячелетии, будет складываться, постепенно складываться, не возникнет сразу, а на это уйдут века, совершенно новые общества.

Общества, где центром будет совершенно другое явление, не дворец, а полис. Полис теперь будет основным структурообразующим элементом. И вот поэтому с тем, чтобы понять, что же такое вот это новое явление, нужно, прежде всего, и определить, что такое полис. Поэтому я сначала расскажу о полисе, а потом мы уже поговорим о следующем историческом периоде, о том периоде, когда этот полис формировался на территории Греции.

Вот как раз следующий период, о котором пойдёт речь – это период архаики (VIII — VI века до н.э.), это эпоха формирования греческого полиса.

Появление железа и его роль в истории

Технические достижения Древнего Востока

Ирригационное земледелие в цивилизациях Древнего Востока

Донаучные знания первобытного общества

Неолитическая революция

Зарождение первобытного искусства и его технические приемы

Эволюция жилища в первобытную эпоху

Техника и технологии каменной индустрии

Основные противоречия и закономерности в развитии науки и техники

Периодизация науки и техники

Роль науки и техники в истории человечества

Выводы

1. Историко-экономическая наука оформилась как самостоятельная ветвь системы экономических наук в XIX в. История экономики и экономической мысли изучает развитие экономических процессов, структур, институтов, деятельности, событий и теорий. В центре ее внимания находится эволюция хозяйства, а не общества.

Экономика – правильное (эффективное) ведение хозяйства, ĸᴏᴛᴏᴩᴏᴇ представляет собой среду жизнедеятельности общества. Структуру модели экономики образуют три базовых элемента: экономическая основа развития общества, экономическое управление и оптимизация потенциала экономики.

2. Основными методами истории экономики и экономической мысли являются исторический, логический, причинно-генетический, структурно-функциональный, хронологический, сравнительно-исторический, исторического моделирования, математической статистики, социальной психологии.

Приоритетными функциями истории экономики и экономической мысли являются: прагматические, ценностные, культурные, фундаментальные и мировоззренческие.

3. Выделяют несколько подходов к периодизации истории экономики и экономической мысли – формационный, цивилизационный и циклический.В соответствии с периодизацией структура курса условно делится на пять разделов. За критерий делœения принята история формирования теории рыночной экономики.

Тема 2. Доцивилизационное накопление знаний и развитие техники

Тема 3. Развитие науки и техники в цивилизациях Древнего мира

4. Научные знания в древневосточных государствах:

· Зарождение и развитие первых систем письменности

· Начало математических знаний и календаря

5. Становление античной науки:

· ʼʼШтаныʼʼ Пифагора

· Евдокс Книдский и доказательство шарообразности земли

· Гелиоцентрическая система Аристарха Самосского

· ʼʼИсторияʼʼ - энциклопедия Геродота

· Клятва Гиппократа

· Анаксагор и теория бесконечно малых

· Протагор: ʼʼЧеловек - есть мера всœех вещейʼʼ

· Платон и ʼʼЛицейʼʼ

· Аристотель и ʼʼАкадемияʼʼ

· Эратосфен и радиус земного шара

· Паровая турбина и театр автоматов Герона

· ʼʼГеометрияʼʼ Евклида

· Архимед. Рождение механики

· Александрийский Мусей

· Витрувий ʼʼ10 книг об архитектуреʼʼ

· Карта Клавдия Птолемея

· ʼʼГеографияʼʼ Страбона

6. Важнейшие технические достижения античной цивилизации:

· Техника и война (метательная артиллерия, фаланга, легион)

· In vino veritas (агротехнические новшества)

· Построено на века (римский цемент, римский бетон, арки и купола, акведуки, термы, римские дороги)

Тема 4. Наука и техника в Средние века

1. Технические достижения Арабского Востока (VII-XII вв.):

· Арабская архитектура и строительная техника

· Особенности арабских городов VII-XI вв. (Дамаск, Багдад и другие)

· ʼʼСделано на Востокеʼʼ: производство бумаги, стекла, хлопчатых и шелковых тканей, дамасская сталь, парфюмерия и косметика

2. Наука арабско-мусульманской цивилизации:

· Сохранение и развитие античных знаний

· Алгоритм ‑ аль-Хорезми и математика

· Ученый-энциклопедист аль-Бируни

· Алхимия и алхимики Арабского Востока

· Ибн-Сина (Авиценна) – ученый, врач, философ, музыкант

· Астрономия и обсерватории арабского мира

· Философия Востока ‑ ибн-Рушд (Аверроэс) и Омар Хайям

· Арабские путешественники, географы и мореплаватели (Масуди, ибн-Баттута)

3. Техника и изобретения раннего Средневековья:

· Технический регресс и новый подъем

· Греческий огонь

· Заимствования у кочевников (конская упряжь, седло, стремена, подкова, верховая езда, пахота на лошадях)

· Викинги – короли моря

· Ремесло средневековой цивилизации: традиции и новации

· Строительство и архитектура Византии, Западной Европы и Руси

· Средневековый город

· Крестовые походы и новации Востока

4. Наука и образование средневековой Европы:

· Византийская наука ‑ грамматик Фотий, Лев Математик и начало алгебры, Козьма Индикоплов

· Христианство и наука (Исидор Севильский. Беда Достопочтенный. ʼʼАкадемияʼʼ Карла Великого. Сильвестр II)

· Монах-ученый Роджер Бэкон

· Первые университеты

· Церковь против изобретателœей

5. Изобретения и открытия в эпоху Возрождения (XIV-XVI вв.):

· Расцвет ветряных и водяных мельниц

· Распространение сахарного тростника, чая, кофе, хлопка

· Революция в военной технике – появление пороха и огнестрельного оружия

· Механические часы

· Компас, каравелла и Великие географические открытия

· Колумб и агротехническая революция: кукуруза, картофель, табак, какао

· Географические представления средневековья и путешествие Марко Поло

· Иоганн Гуттенберг и первая печатная книга

· Поэзия камня – Собор Парижской Богоматери

6. Наука Ренессанса:

· Изобретатель, мастер, художник, архитектор, ученый – единая профессия в эпоху Возрождения

· Леонардо да Винчи, соединивший науку, технику и искусство

· Гелиоцентрическая модель мира Н. Коперника

· Семь цветов радуги Франческо Мавролико

· Бесконечность Вселœенной Джордано Бруно

· Политология Н. Макиавелли

· Утопия Т. Мора и Т. Кампанеллы

· Полидор Вергилий ʼʼОб изобретателях вещейʼʼ

· Реформация: вместо веры в Бога ‑ вера в науку

Тема 5. Новое время: научная революция и рождение современной (классической) науки (XVII-XIX вв.)

1. Формирование науки как формы познания окружающего мира:

· Первые научные сообщества: Лондонское королевское сообщество и Французская королевская академия наук

· Три закона небесной механики И. Кеплера

· Исследователь природы Р. Декарт

· Телœескоп Галилео Галилея

· ʼʼСистема мираʼʼ И. Ньютона

· Изобретатель логарифмов Д. Непер

· Священник и логарифмическая линœейка ‑ У. Отред

· Теория естественного права Б. Спинозы, Т. Гоббса и Д. Локка

· Эмпирический (Ф. Бэкон) и рационалистический (Г. Лейбниц) методы познания окружающего мира

· Общественный договор и правовое государство Т. Гоббса и Дж. Локка

2. Технический прогресс в XVII-XVIII вв.:

· Механизация мануфактурного производства (гидроустановки)

· Новации в металлургии (доменные печи, чугунолитейное производство и т.д.)

· Новый инструмент инженеров ‑ теоретическая механика

· Возникновение приборостроения

· Механик и изобретатель токарных станков А.К. Нартов

· Новое слово в транспорте ‑ дилижанс и омнибус

· Паро-атмосферная машина Т. Ньюкомена

· Изобретение парового двигателя (Дж. Уатт)

· Эпоха морских войн (XVII в.) и развитие военного флота

· Петровские реформы и создание новой промышленности России

· Россия ‑ родина боевых ракет

3. Развитие науки в эпоху европейского Просвещения:

· ʼʼПринцип Даламбераʼʼ (Ж. Даламбер)

· Философы-просветители (Вольтер, Ш. Монтескье, Д. Дидро, Ж.-Ж. Руссо)

· Классическая политэкономия (У. Петти, А. Смит, Д. Рикардо)

· Шкала А. Цельсия

· М.В. Ломоносов – титан русской науки

· Суммирующая машина Б. Паскаля

· ʼʼЛейденская банкаʼʼ П. Мушенбрука

Тема 6. Эпоха промышленного переворота

1. Основные закономерности развития науки и техники в XVIII-XIX вв.:

· Европа на пороге промышленной революции

· Англия – ʼʼмастерская мираʼʼ

· Формирование фабрично-заводской системы производства

· Передел мира и создание колониальных систем

· Социальные последствия промышленной революции: новые общественные классы (промышленники и рабочие)

· Урбанизация и промышленные города

· Принципиальное изменение в связях науки с производством

· Возникновение технологии как науки о производстве

2. Промышленный переворот: от мануфактуры к машинному производству (вторая половина XVIII – конец XIX вв.):

· Механизация текстильной промышленности (ʼʼЛетающий челнокʼʼ Кея. Прялка ʼʼДженниʼʼ. ʼʼВатер-машинаʼʼ Аркрайта. ʼʼМюль-машинаʼʼ Кромптона. Станок Жаккара)

· Пароход ‑ изобретение Роберта Фултона

· Паровоз ‑ Р. Тревитик и Дж. Стефенсон

· Начало века стали: использование каменного угля, конвертер Бессмера, мартеновская печь

· Новое слово в военной технике: казнозарядная винтовка, новые взрывчатые вещества (пироксилин и нитроглицерин), нарезные артиллерийские орудия, пушки Круппа

3. Классическая наука (XVIII-XIX вв.):

· Формирование классических технических наук (прикладная механика, теплотехника, электротехника)

· Парижская политехническая школа как прообраз научного образования инженеров

· Открытия в области электричества и электромагнетизма (Б. Франклин, А. Вольта͵ М. Фарадей, Дж. Максвелл)

· Исаак Ньютон и ʼʼНачала…ʼʼ

· Атомистика Дж. Дальтона

· А. Лавуазье и закон сохранения вещества

· Роберт Бойль и его роль для становления химии как науки

· Д. И. Менделœеев и периодическая система элементов

· Систематизация видов: Линней и Бюффон

· Чарльз Дарвин и учение о происхождении видов

· Пастер и бактериология – начало научной медицины

· Г. Мендель и рождение генетики

Тема 7. Наука и техника в конце XIX – первой половинœе XX вв.

1. Уровень развития и достижения в техники в конце XIX ‑ начале ХХ вв.:

· Всеобщая электрификация производства и быта

· Динамо-машины, электродвигатели и электростанции

· Двигатели внутреннего сгорания

· Новые искусственные материалы (целлулоид, карболит, искусственный шелк, синтетический каучук, красители)

· Новые строительные материалы: портландцемент, желœезобетон, желœезные и стальные конструкции (ʼʼКристаллпаласʼʼ, Эйфелœева башня, Бруклинский мост, небоскребы США)

· Изменение градостроительных стратегий с условием развития транспорта и новых требований к качеству жизни (водопровод, канализация, электрическое освещение)

· Желœезные дороги как залог развития: магистраль Берлин-Багдад, Транссибирская магистраль

· Паровоз, паровоз-компаунд, электровоз

· Метры автомобилестроения и их детища: автомобили Бенца и Даймлера

· Конвейер Г. Форда

· Стальные гиганты в борьбе за море: корабли из металла, увеличение размеров судов, трансатлантические лайнеры

· ʼʼТитаникʼʼ ‑ символ эпохи

· Первые теплоходы и появление специализированных кораблей (танкеры, ледоколы)

· Дирижабли, аэропланы, самолеты (самолет Можайского, братья Райт, Фарман и Блерио, самолеты Сикорского)

· Теоретическая космонавтика (Циолковский)

· Телœефон (Юз и Эдисон)

· Изобретение радио (Попов и Маркони)

· Развитие фотографии

· Возникновение кинœематографа

· Рождение телœевидения

2. Становление ʼʼНеклассической наукиʼʼ и революция в естествознании:

· Наука ‑ движущая сила общественного прогресса

· Нобелœевская премия в области физики, химии, физиологии и медицины (1895 ᴦ.) как индикатор базовых направлений и достижений науки

· Открытие радиоактивности ‑ М. Складовская-Кюри и Э. Розерфорд

· Квантовая теория М. Планка и Н. Бора

· Теория относительности А. Энштейна

· Ноосфера ‑ учение В.И. Вернадского

· ʼʼСобака Павловаʼʼ ‑ физиология высшей нервной деятельности (И.П. Павлов)

· Экология: возникновение, развитие, мировоззрение

· Н. Винœер и создание кибернетики

· Вычислительная техника: создание ЭВМ и появление персональных компьютеров

· Ядерная физика ‑ расщепление атомного ядра и использование атомной энергии в военных и мирных целях

· Век пластмасс

· Наука и техника для медицины: электрокардиография, искусственное сердце и почка, антибиотики, трансплантация

3. Роль науки и техники в мировых войнах:

· Роль технических средств в Первой мировой войне

· ʼʼАдский косильщикʼʼ ‑ пулемет Максима

· Броненосцы и дредноуты

· Торпеды и миноносцы

· Подводная война: субмарины

· Война в воздухе: дирижабли и авиация

· Химическое оружие на фронте

· Танк – стальной аргумент на поле боя

· Война машин ‑ превосходство военной техники как гарантия победы во Второй мировой войне

· Новое слово в авиации: стратегические бомбардировки, реактивная авиация

· ʼʼОружие возмездияʼʼ: развитие ракетной техники

· Война на море по новым правилам: авианосœец и подводная лодка

· Создание ядерного оружия

Появление железа и его роль в истории - понятие и виды. Классификация и особенности категории "Появление железа и его роль в истории" 2017, 2018.

Пользовательское соглашение

Я принимаю условия Политики конфиденциальности и даю разрешение на использование моих персональных данных на законных основаниях. Настоящая Политика конфиденциальности определяет порядок получения, обработки, использования и хранения личной информации Пользователя. Индивидуальную информацию посетителя сайта может получить ООО «Фирма «ВИКАНТ» (идентификационный код 24942675), в период нахождения на сайте сайт, и во время регистрации, а также использования продуктов, служб, программ, сервисов. Свои данные Пользователь вносит самостоятельно. Суть сбора информации и обработка персональных данных Пользователей Мы собираем информацию, которую вы вносите при регистрации на сайте, а также, когда создаете заявку на покупку и/или покидаете свой аккаунт. Эта информация включает в себя ваш номер телефона, электронный адрес и имя. На основании полученных сведений мы имеем возможность предоставлять клиентскую поддержку, обеспечивать нашим Пользователям безопасность. А также мы можем точнее определять информацию, которая интересна Пользователям и персонифицировать контент, что поможет повысить комфортность пребывания на сайте. Чтобы предоставлять нашим Пользователям самую актуальную информацию об услугах и товарах, держать в курсе последних новостей и прогрессе обработки заявок/запросов, а также для реализации ООО «Фирма «ВИКАНТ» своих обязанностей перед потребителями. Из-за особенностей метода получения данных ООО «Фирма «ВИКАНТ» не анализирует информацию на предмет достоверности и актуальности персональных данных Пользователя. Ввиду того, что Пользователь заполняет данные по вопросам, которые предложены в форме для регистрации, он обеспечивает эти данные в актуальном состоянии. Если информация оказалась недостоверной или не актуальной, то всю ответственность за это несет Пользователь. Если информация оказалась у третьих лиц Мы не разглашаем, не продаем, не обмениваем персональные данные сторонним компаниям, которые собираем на нашем сайте. Раскрытие персональной информации возможно только в определённых случаях, которые предусмотрены действующим законодательством Украины, а также: - в случае нанесения вреда нам или третьим лицам, во избежание преступления или мошенничества; - в случае необходимости предоставления информации третьим лицам, оказывающим нам поддержку и услуги. Например, сотрудники технической поддержки, которые работают с конкретным заданием могут получить доступ к личным данным. Личные данные Пользователя сохраняются в полной конфиденциальности, за исключением случаев предоставления информации о себе по собственной воле для неограниченного доступа большому количеству людей. Нажатием кнопки «Принимаю Соглашение о конфиденциальности» при заполнении на сайте формы с личной информацией, Пользователь автоматически соглашается с правилами данной Политики. Мы применяем необходимые и достаточные административные и технические меры и отвечаем за использование безвредных методов сохранения и защиты информации. Чтобы обеспечить необходимое использование и обезопасить от несанкционированного и/или непроизвольного доступа к личной информации наших Пользователей данные сохраняются на серверах, в охраняемых помещениях и доступны узкому кругу людей. Алгоритм внесения правок в личную информацию. В любой момент Пользователь может дополнить, изменить, обновить предоставленную информацию или её часть. Также доступны изменения параметров конфиденциальности. В любой момент Пользователь может отказаться от получения новостей, рассылок, нажав на соответствующую ссылку внизу сообщения. Без согласия Пользователя обработка персональных данных не допускается, за исключением фактов, прописанных в законах и только в интересах экономического благосостояния, прав человека и национальной безопасности. При возникновении проблем или вопросов, связанных с конфиденциальностью, отправляйте свои вопросы на электронный адрес: metal@сайт Изменения С течением времени наша Политика конфиденциальности может меняться, но мы не будем урезать права Пользователей без их согласия. Обновления Политики конфиденциальности будут размещены на этой станице, а о самых значительных мы сообщим лично (в случае с некоторыми службами – по электронной почте). Чтобы Пользователям было удобнее, мы сохраним все предыдущие версии данного документа в архиве. Пользователь имеет права, предусмотренные Законом Украины «О защите персональных данных» от 1 июня 2010 года №2297-VI. Условия данной Политики вступают в силу, когда Пользователь на сайте сайт при передаче своих данных соглашается с условиями данной Политики и действует до тех пор, пока на сайте сайт хранятся персональные данные или любая информация о Пользователе. При использовании нашего сайта вы автоматически принимаете условия и Политику конфиденциальности.

Что было в плотницком ящике? Обыкновенный железный инструмент: топор, пила, молоток, гвозди.

Через два столетия на другой необитаемый остров попали герои другого известного романа - пятеро американцев. Они сумели не только выжить на острове, но и создать себе более или менее нормальные условия жизни, что определенно не удалось бы, если бы всеведущий инженер Сайрес Смит (заметим, что по-английски «смит» означает «кузнец») не сумел найти на таинственном острове железную руду и сделать железные инструменты. Иначе опять пришлось бы Жюлю Верну выручать своих героев с помощью знаменитого капитана Немо.

Как видим, без железа не может обойтись даже приключенческая литература. Чрезвычайно важное место занимает этот металл в жизни человека.

Цифры, отражающие годовой уровень выплавки стали, в значительной степени определяют экономическую мощь страны.

Развитию черной металлургии - металлургии железа - придавал первостепенное значение Владимир Ильич Ленин. Еще до Октябрьской революции, в 1913 г., в статье «Железо в крестьянском хозяйстве» он писал: «Относительно железа - ...одного из фундаментов, можно сказать, цивилизации - отсталость и дикость России особенно велики». Действительно, в тот год, а 1913 год считался в царской России годом промышленного подъема, в огромной стране со 150-миллионным населением было выплавлено лишь 3,6 млн. т стали. Сейчас это средняя годовая производительность среднего металлургического завода. Сегодня Россия по выплавке чугуна и стали уверенно держит первое место в мире. В 1975 г. в нашей стране было выплавлено 141 млн. т стали, а в 1980 г. - 148 млн. т. Мировое производство стали подошло уже к рубежу 700 млн. т. Много стали (данные за 1980 г.) выплавляют Япония - 111,5 млн. т, США - 100,8 млн. т, страны Общего рынка - 128,6, в том числе ФРГ - 44,1 млн. т.

Общая доля развивающихся стран - 56,8 млн. т, в том числе Бразилии - 15,4, а Индии - 9,4 млн. т (остальные - меньше).


Начало железного века

Использование железа первобытными людьми

Было время, когда железо на земле ценилось значительно дороже золота. Советский историк Г. Арешян изучал влияние железа на древнюю культуру стран Средиземноморья. Он приводит такую пропорцию: 1: 160: 1280: 6400. Это соотношение стоимостей меди , серебра , золота и железа у древних хеттов. Как свидетельствует в «Одиссее» Гомер, победителя игр, устроенных Ахиллесом, награждали куском золота и куском железа. Железо было в равной степени необходимо и воину, и пахарю, а практическая потребность, как известно, - лучший двигатель производства и технического прогресса.

Термин «железный век» введен в науку в середине XIX в. датским археологом К. Ю. Томсеном. «Официальные» границы этого периода человеческой истории: от IX-VII вв. до н.э. когда у многих народов и племен Европы и Азии начала развиваться металлургия железа, и до времени возникновения у этих племен классового общества и государства. Но если эпохи называть по главному материалу орудий труда, то, очевидно, железный век продолжается и сегодня.

Как получали железо наши далекие предки? Сначала так называемым сыродутным методом. Сыродутные печи устраивали прямо на земле, обычно на склонах оврагов и канав. Они имели вид трубы. Эту трубу заполняли древесным углем и железной рудой. Уголь зажигали, и ветер, дувший в склон оврага, поддерживал горение угля.

Железная руда восстанавливалась, и получалась мягкая крица - железо с включениями шлака. Такое железо называют сварочным; в нем содержалось немного углерода и примесей, перешедших из руды. Крицу ковали, куски шлака отваливались, и под молотом оставалось железо, пронизанное шлаковыми нитями. Из него отковывали различные орудия.

Век сварочного железа был долгим, однако людям древности и раннего средневековья было знакомо и другое железо. Знаменитую дамасскую сталь (или булат) делали на Востоке еще во времена Аристотеля (IV в. до и. э.). Но технология ее производства, так же как процесс изготовления булатных клинков, много веков держалась в секрете.

Процесс производства стали сводится в сущности к выжиганию из чугуна примесей, к окислению их кислородом воздуха. То, что делают металлурги, рядовому химику может показаться бессмыслицей: сначала восстанавливают окисел железа, одновременно насыщая металл углеродом, кремнием , марганцем (производство чугуна), а потом стараются выжечь их. Обиднее всего, что химик совершенно прав: металлурги применяют явно нелепый метод. Но другого у них не было.

Главный металлургический передел - производство стали из чугуна - возник в XIV в. Сталь тогда получали в кричных горнах. Чугун помещали на слой древесного угля, расположенный выше фурмы для подачи воздуха. При горении угля чугун плавился и каплями стекал вниз, проходя через зону, более богатую кислородом, - мимо фурмы. Здесь железо частично освобождалось от углерода и почти полностью от кремния и марганца. Затем оно оказывалось на дне горна, устланном слоем железистого шлака, оставшегося после предыдущей плавки. Шлак постепенно окислял углерод, еще сохранившийся в металле, отчего температура плавления металла повышалась, и он загустевал. Образовавшийся мягкий слиток ломом поднимали вверх. В зоне над фурмой он еще раз переплавлялся, при этом окислялась еще какая-то часть содержащегося в железе углерода. Когда после переплавки на дне горна образовывалась 50-100-килограммовая крица, ее извлекали из горна и тут же отправляли на проковку, цель которой была не только уплотнить металл, но и выдавить из него жидкие шлаки.

Наиболее совершенным железоделательным агрегатом прошлого была пудлинговая печь, изобретенная англичанином Генри Кортом в конце XVIII в. (Кстати, он же изобрел и прокатку профильного железа на валках с нарезанными в них калибрами. Раскаленная полоса металла, проходя через калибры, принимала их форму.)

Пудлинговая печь Корта загружалась чугуном, а подина (дно) и стены ее были футерованы железной рудой. После каждой плавки их подновляли. Горячие газы из топки расплавляли чугун, а потом кислород воздуха и кислород, содержащийся в руде, окисляли примеси. Пудлинговщик, стоящий у печи, помешивал в ванне железной клюшкой, на которой осаждались кристаллы, образующие железную крицу.

После изобретения пудлинговой печи в этой области черной металлургии долго не появлялось ничего нового, если не считать разработанного англичанином Гунстманом тигельного способа получения высококачественной стали. Но тигли были малопроизводительны, а развитие промышленности и транспорта требовало все большего и большего количества стали.

Мартен и конвертер


Генри Бессемер был механиком, вдобавок без систематического образования. Он изобретал, что придется: машинку для гашения марок, нарезную пушку, различные механические приспособления. Бывал он и на металлургических заводах, наблюдал за работой пудлинговщиков. У Бессемера появилась мысль переложить эту тяжелую «горячую» работу на сжатый воздух. После многих проб он в 1856 г. запатентовал способ производства стали продуванием воздуха через жидкий чугун, находящийся в конвертере - грушевидном сосуде из листового железа, выложенном изнутри кварцевым огнеупором.

Для подвода дутья служит огнеупорное днище со многими отверстиями. Конвертер имеет устройство для поворота в пределах 300°. Перед началом работы конвертер кладут «на спину», заливают в него чугун, пускают дутье и только тогда ставят конвертер вертикально. Кислород воздуха окисляет железо в закись FeO. Последняя растворяется в чугуне и окисляет углерод, кремний, марганец... Из окислов железа, марганца и кремния образуются шлаки. Такой процесс ведут до полного выгорания углерода.

Затем конвертер снова кладут «на спину», отключают дутье, вводят в металл расчетное количество ферромарганца - для раскисления. Так получается высококачественная сталь. Способ конвертерного передела чугуна стал первым способом массового производства литой стали.

Передел в бессемеровском конвертере, как выяснилось позже, имел и недостатки. В частности, из чугуна не удалялись вредные примеси - сера и фосфор . Поэтому для переработки в конвертере применяли главным образом чугун, свободный от серы и фосфора. От серы впоследствии научились избавляться (частично, разумеется), добавляя в жидкую сталь богатый марганцем «зеркальный» чугун, а позже и ферромарганец.

С фосфором, который не удалялся в доменном процессе и не связывался марганцем, дело обстояло сложнее. Некоторые руды, такие, как лотарингская, отличающиеся высоким содержанием фосфора, оставались непригодными для производства стали. Выход был найден английским химиком С. Д. Томасом, который предложил связывать фосфор известью. Конвертер Томаса в отличие от бессемеровского был футерован обожженным доломитом , а не кремнеземом. В чугун во время продувки подавали известь. Образовывался известково-фосфористый шлак, который легко отделялся от стали. Впоследствии этот шлак даже стали использовать как удобрение.

Самая большая революция в сталеплавильном производстве произошла в 1865 г., когда отец и сын - Пьер и Эмиль Мартены - использовали для получения стали регенеративную газовую печь, построенную по чертежам В. Сименса. В ней, благодаря подогреву газа и воздуха, в особых камерах с огнеупорной насадкой достигалась такая высокая температура, что сталь в ванне печи переходила уже не в тестообразное, как в пудлинговой печи, а в жидкое состояние. Ее можно было заливать в ковши и формы, изготовлять слитки и прокатывать их в рельсы, балки, строительные профили, листы... И все это в огромных масштабах! Кроме того, появилась возможность использовать громадные количества железного лома, скопившегося за долгие годы на металлургических и машиностроительных заводах.

Последнее обстоятельство сыграло очень важную роль в становлении нового процесса. В начале XX в. мартеновские печи почти полностью вытеснили бессемеровские и томасовские конвертеры, которые хотя и потребляли лом, но в очень малых количествах.

Конвертерное производство могло бы стать исторической редкостью, такой же, как и пудлинговое, если бы не кислородное дутье. Мысль о том, чтобы убрать из воздуха азот, не участвующий в процессе, и продувать чугун одним кислородом, приходила в голову многим видным металлургам прошлого; в частности, еще в XIX в. русский металлург Д. К. Чернов и швед Р. Окерман писали об этом. Но в то время кислород был слишком дорог. Только в 30-40-х годах прошлого столетия, когда были внедрены дешевые промышленные способы получения кислорода из воздуха, металлурги смогли использовать кислород в сталеплавильном производстве. Разумеется, в мартеновских печах. Попытки продувать кислородом чугун в конвертерах не привели к успеху: развивалась такая высокая температура, что прогорали днища аппаратов. В мартеновской печи все было проще: кислород давали и в факел, чтобы повысить температуру пламени, и в ванну (в жидкий металл), чтобы выжечь примеси. Это позволило намного увеличить производительность мартеновских печен, но в то же время повысило температуру в них настолько, что начинали плавиться огнеупоры. Поэтому и здесь кислород применяли в умеренных количествах.

В 1952 г. в австрийском городе Линце на заводе «Фест» впервые начали применять новый способ производства стали - кислородноконвертерный. Чугун заливали в конвертер, днище которого не имело отверстий для дутья, было глухим. Кислород подавался на поверхность жидкого чугуна. Выгорание примесей создавало такую высокую температуру, что жидкий металл приходилось охлаждать, добавляя в конвертер железную руду и лом. И в довольно больших количествах. Конвертеры снова появились на металлургических заводах. Новый способ производства стали начал быстро распространяться во всех промышленно развитых странах. Сейчас он считается одним из самых перспективных в сталеплавильном производстве.

Достоинства конвертера состоят в том, что он занимает меньше места, чем мартеновская печь, сооружение его гораздо дешевле, а производительность выше. Однако в конвертерах сначала выплавляли только малоуглеродистые мягкие стали. В последующие годы был разработан процесс выплавки в конвертере высокоуглеродистых и легированных сталей.

Получение и применение железа по праву относится к выдающимся достижениям человечества. По словам Ф. Энгельса, на рубеже II-I тыс. до н. э. «все культурные народы переживают свою героическую эпоху, - эпоху железного меча, а вместе с тем железного плуга и топора. Человеку стало служить железо, последний и важнейший из всех видов сырья, игравших революционную роль в истории...»

Железо как металл стало известно человечеству почти одновременно с медью и обрабатывалось оно, так же как и медь, ковкой. Спорадические находки археологами железных предметов (главным образом украшений, очень небольших по размеру) относятся к IV тыс. до н. э. Химический анализ отдельных предметов того времени показывает высокое содержание в них никеля (до 7,5%), что свидетельствует о метеоритном происхождении железа. Так, например, в Египте, в Эль-Герце при раскопках могил додинастического периода были найдены небольшие бусины, сделанные из кованой железной пластинки, свернутой в трубочку.

В настоящее время большинство исследователей сходится на том, что в начале III тыс. до н. э. племена, населявшие горы Армении на Кавказе (хетты, урартийцы, митани), впервые открыли секрет получения железа из руд. Свободное, так называемое самородное железо в земной коре в отличие от меди встречается крайне редко. Железо входит в состав многих минералов, из которых наиболее широко распространены магнетит, пирит-серный или железный колчедан, гематит (красный железняк), железный блеск и др. Железо плавится при температуре 1539° С. Такую температуру, несмотря на усовершенствование воздуходувных устройств, в небольших горнах получить еще не могли. В начале III тыс. до н. э. был открыт сыродутный процесс получения железа, который на протяжении II и I тыс. до н. э. распространяется повсеместно и до XIV в. нашей эры является единственным (за исключением тигельного способа, не имевшего большого производственного значения) способом производства железа.

При сыродутном процессе железо добывали из широко распространенных и легко доступных залежей бурого железняка, озерных и болотных руд: металл восстанавливался из железной руды при температуре 800-900°С. Процесс шел в горнах, загружавшихся попеременными слоями предварительно измельченной и обожженной на открытом огне железной руды и древесного угля. С помощью воздуходувных устройств (сопел и мехов, которые сначала были кожаными, а затем деревянными и металлическими) в горн нагнетали сырой, неподогретый воздух, откуда и пошло название всего процесса. В результате восстановления на дне горна образовывался ком мягкого сварного железа - крица весом от 1 до 8 кг. Крица состояла из мягкого (малонауглероженного) металла с пустотами, заполненными затвердевшим шлаком, образовавшимся из пустой породы и золы топлива. Шлак из крицы удаляли неоднократными ударами молота. После ковки железо становилось довольно высокого качества, но производительность первых печей была очень невелика, да и степень извлечения железа из руд не превышала 50%. Со временем производительность печей повысилась вследствие увеличения горнового пространства и усовершенствования воздуходувных устройств. Очень рано были открыты и способы получения более твердого металла - закалка и цементация железных изделий. Все дальнейшие достижения и изобретения в черной металлургии относятся к более позднему времени.

Впервые железные предметы (как дань города Пуршханда) упоминаются в начале II тыс. до н. э. В середине II тыс. до н. э. хеттский царь Хаттушиль пишет египетскому фараону Рамсесу II о посылке в Египет железа. В это же время хетты проникают в Северную Сирию, Палестину и Киликию, доходят до Вавилона в Месопотамии, занимают северные области Египта. Археолог В. Петри при раскопках в Гераре в Палестине обнаружил железные сошники, серпы, мотыги, которые он датировал XI в. до н. э. Однако широко применять железо на Древнем Востоке стали с IX-VIII вв. до н. э. Именно к этому времени относится расцвет Ассирийской державы, расположенной к северу от Месопотамии. Еще в XIII в. до н. э. железные предметы клали в виде вотивных даров при закладке храмов. Начиная с IX в. в ассирийских документах упоминаются железные мотыги, кинжалы, но и в это время железо еще полностью не вытеснило бронзу и камень при изготовлении орудий труда. При раскопках современного Хорсабада, во дворце ассирийского царя Саргона II, правившего в VIII в. до н. э., был найден склад железных слитков и орудий (лопаты, лемехи, мотыги). Лишь с VIII в. до н. э. железо получает широкое распространение. Из него начинают изготавливать доспехи и вооружение ассирийских воинов (панцири, щиты, шлемы, мечи, копья).

Железо в Греции

Об использовании железа в Древней Греции мы впервые узнаем из поэм Гомера «Илиада» и «Одиссея». В тексте «Илиады» встречается 23, а в «Одиссее» 25 упоминаний о железе. В поэмах фигурируют кузнецы, золотых дел мастера, кожевники, гончары, плотники. Однако процесс отделения ремесла от земледелия в Древней Греции еще находился в самом начале своего развития. Главными отраслями хозяйства оставались земледелие и скотоводство. Торговля еще не имела большого значения; земля была собственностью общин. Однако процесс имущественного расслоения все время ускорялся. Постоянные войны доставляли рабов. Рабство носило патриархальный, ограниченный характер. В отличие от стран Древнего Востока, где рабов широко использовали в храмовых и дворцовых хозяйствах, при сооружении и эксплуатации ирригационных систем, на строительных работах, рабы в Древней Греции не занимались ни земледелием, ни ремеслами. Их использовали лишь для домашних работ.

В VII-V вв. до н. э. в Греции в результате широкого распространения железа, проникновения его во все области хозяйства начинается период бурного развития производительных сил. Получает распространение регулярная добыча руд железных и цветных металлов. Главными центрами греческой металлургии становятся Самос, Кнос, Коринф, Халкида, Лаконика, Эгина, Лесбос.

Постепенно в Греции формируется рабовладельческий строй. Появляются рабовладельческие города-государства (полисы). К IV в. до н. э. рабство в Греции достигает максимальных размеров. Оно охватывает все основные отрасли производства и становится господствующей формой эксплуатации.

Свободный труд почти полностью вытесняется рабским, особенно в ремесленном производстве. В первой половине VII в. до н. э. начинают чеканить монеты. В связи с развитием морской торговли (в V-IV вв. до н. э. центром морской торговли становится афинская гавань Пирей) чеканная монета быстро распространяется по всему Средиземноморью. Рост товарно-денежных отношений привел к третьему крупному общественному разделению труда - возникает «класс, который занимается уже не производством, а только обменом продуктов, а именно купцов».

Под влиянием развития производительных сил в Греции, вызванного широким использованием железа в хозяйственной жизни, а также в результате завоеваний Александра Македонского в странах Восточного Средиземноморья, Западной Азии в период эллинизма (Эллинизм - период истории Восточного Средиземноморья, Западной Азии и Причерноморья со времен завоеваний Александра Македонского (IV в. до н. э.) до подчинения Египта Римом (I в. до н. э.)) строй существовавших там рабовладельческих государств приобретает новые черты. Повсюду наблюдается громадный рост рабства и работорговли; рабов селили на землю небольшими группами, подавляющая часть производимой ими продукции поступала рабовладельцу. Большую роль начинают играть города как торгово-ремесленные центры; в них стали прививаться античная форма рабства и полисное устройство, но при этом сохранялись многие черты деспотических государств и прежде всего верховная собственность царя на землю. В период эллинизма греки основали ряд колоний в Причерноморье, где также возникли полисы.

Роль железа в ремесленном производстве

Только в результате широкого использования железа в производстве ремесло окончательно отделилось от сельского хозяйства. С отделением ремесла от земледелия создаются предпосылки производства непосредственно для обмена.

Основу ремесленного производства в Греции составляли мастерские - эргастерии. Как правило, в таких мастерских работало от 3 до 12 рабов. Во главе мастерской стоял или рабовладелец, или надсмотрщик из рабов. Лишь в IV тыс. до н. э. существовали эргастерии, объединявшие несколько десятков рабов. Разделения труда внутри мастерской не было: как правило, изготовление готового продукта от начала до конца было делом рук одного работника. Однако в гончарных мастерских в VI в. до н. э. наблюдалось разделение труда: формовка, обжпг посуды осуществлялись разными мастерами.

Следствием технической революции, вызванной широким распространением железа, прежде всего явилась дифференциация ремесленного производства и высокий уровень изготовления ремесленного инструмента. Наряду с рабами в ремесленном производстве в Древней Греции и в Риме трудились свободные ремесленники.

Высокого уровня достигло кузнечное ремесло. В кузницах стоял горн с ручными двойными воздуходувными мехами. Центральное место занимала железная или бронзовая наковальня. Кузнецы пользовались молотами, клещами, топорами, шарнирными щипцами, зубилами, тисками, сверлами. В VIII в. до н. э. кузнец Главк из Хиоса изобрел способ паяния железа; до этого времени использовали клепку.

При обработке меди и бронзы применяли следующие операции: литье, ковку, штамповку, чеканку, гравировку, инкрустацию, паяние, волочение, серебрение и золочение. В первых веках нашей эры в римских мастерских для обработки металлических поверхностей стали использовать наждак. Наряду с известными ранее цветными металлами и сплавами - медью, золотом и серебром - вошли в употребление латунь и сурьма.

Высокое мастерство было достигнуто в литье бронзы. Известно изображение литейной мастерской на чернофигурной вазе VI в. до н. э. В мастерской находилась плавильная печь со специальной камерой, отделенной от топки; большой глиняный сосуд с металлом помещали в эту камеру для плавки. По восковой модели отливали художественные изделия. В конце VI в. до н. э. впервые применяют полое литье при отливке крупных бронзовых статуй. Примером высокого уровня ремесленной техники может служить сооружение в III в. до н. э. гигантской статуи бога Солнца на о-ве Родос. Железный каркас статуи был установлен на массивном пьедестале; затем на этот каркас монтировали по частям бронзовый покров статуи. Эта статуя высотой 35 м получила название «Колосс родосский» и позднее была причислена к «семи чудесам света».

Роль железа в строительстве

С широким распространением железных инструментов начинается расцвет греческой архитектуры и строительства. Греческим зодчим принадлежит одно из важнейших достижений архитектуры - создание ордера (закономерной системы архитектурных форм): дорического, ионического коринфского.

В классический период Древней Греции (V-IV вв. до н. э.), во время возвышения Афин, разрабатываются приемы гармонической соразмерности отдельных частей зданий. Это время расцвета греческого искусства. Создаются такие шедевры мирового искусства, как афинский акрополь Парфенон, храм Бескрылой победы и др. Парфенон был возведен в 447-438 гг. до н. э. архитекторами Иктином и Калликратом под руководством греческого скульптора Фидия. В IV в. до н. э. в Эпидавре был построен театр - один из лучших памятников строительной техники. Под воздействием греческой культуры римляне переняли ордерную систему. В VI-I вв. до н. э. в строительной технике широко распространяются арочные и сводчатые конструкции, воздвигаются крупные общественные здания. Был построен гигантский амфитеатр Колизей длиной 187,5, шириной 156,7 и высотой до 46,6 м, вмещавший до 90 тыс. человек. Из сооружений, в которых римляне достигли большого искусства, известны огромных размеров стадион на Марсовом поле, дворец Флавиев, арка Тита с двумя триумфальными рельефами. Из памятников нельзя не упомянуть знаменитый маяк (известный как один из «семи чудес света»), сооруженный из белого мрамора в 283 г. до н. э. на о-ве Фарос у входа в Александрийскую гавань. Фаросский маяк представлял собой трехэтажную башню высотой 120 м. Она служила не только маяком, но и защищала от вторжения вражеских кораблей вход в порт; внутри башни размещался большой гарнизон. Нижняя часть башни, построенная из известняка, имела квадратное сечение с длиной сторон 30,5 м; второй этаж представлял собой восьмигранник; в верхнем этаже цилиндрической формы горел огонь маяка. По винтообразной рампе горючее для маяка поднимали на ослах. В нижней части башни находился огромный резервуар с запасом питьевой воды.

В строительстве железо применяли лишь в виде скоб, различного рода скрепок, штырей, затяжек, но его широко использовали и для изготовления столярных и плотничьих инструментов: топоров, сверл, молотков, продольных и поперечных пил, долот, резаков, стамесок, рубанков.

В окна вставляли стекла (при раскопках Помпеи были обнаружены небольшие оконные стекла размером 4X5 см) и слюду (о чем упоминает Плиний). Стекло использовали также для изготовления красочной мозаики.

Чтобы проверить пригонку камней и их уровень, строители пользовались циркулем, ватерпасом, отвесом, линейкой, угольником. С V в. до н. э. были известны механизмы для подъема тяжестей (блоки, вороты, полиспасты).

Качество и области применения железа

Железо, хотя и не сразу, показало более совершенные качества по сравнению с бронзой. Принято считать, что совершенствование орудий труда повлекло за собой и социальный прогресс.

Как считает большинство специалистов, переход от бронзы к железу, скорее всего, осуществился из-за практических нужд. На самом деле, бронзовые орудия труда более долговечны, и для их производства не требуется столь высокая температура, как для железа. Однако бронза всегда была дорогим металлом, а бронзолитейное дело более трудоемко, прежде всего, из-за жесткой зависимости от источников сырья, в первую очередь, олова, которое встречается в природе гораздо реже, чем медь. По оценкам, даже в Древнем Египте добыча меди не превышала 7 тонн в год. Египтяне ввозили медь. В Центральной Европе производилось приблизительно 16,5 тонн в год. В микенскую эпоху на Пилосе 400 литейщиков производили 1 тонну бронзы в год.

В конце эпохи бронзы началось массовое изготовление бронзовых орудий, что очень быстро привело к истощению запасов олова. А это вызвало кризис производства, который, скорее всего, стал стимулом для поисков в сфере черной металлургии.

Известно, что в стратифицированных обществах металлургия находилась под контролем знати. Это касается, прежде всего, бронзолитейного производства. Железные руды были более доступны. Болотные руды есть практически повсюду. Данное обстоятельство оказалось решающим для обширных пространств лесной зоны, которые в эпоху бронзы отставали в социально- экономическом развитии от южных регионов. Стала совершенствоваться земледельческая техника, появился железный лемех, пригодный для распашки тяжелых лесных почв. Зона земледелия расширилась значительно за счет лесной зоны. В результате в эпоху железа исчезли многие леса Западной Европы. Но и в традиционно земледельческих районах внедрение железа способствовало улучшению ирригационных систем и повышению продуктивности полей.

Античное земледелие складывалось в виде плужного неполивного, имеющего товарный характер. Потребность в земельных и людских ресурсах стимулировала втягивание в экономическую деятельность соседних племен и породила великую греческую колонизацию.

В умеренной полосе земледелие имело иной характер. Долгое время считалось, что здесь подсечно-огневое земледелие возникло в железном веке. Это произошло ранее, но железный век стал временем его распространения. Подсечно-огневое земледелие имело большой недостаток – почвы быстро истощались, и их требовалось гораздо больше, чем при ирригации. Поэтому вместе с подсекой начали использовать двуполье и трехполье. В лесостепи развивалось пашенное неполивное земледелие и различные формы скотоводства. В лесной зоне наряду с пашенным земледелием практиковалось животноводство, в отдаленных районах лесной полосы, в особенности за Уралом основу жизнедеятельности составляли по-прежнему охота и рыболовство.

В степной зоне сложился новый хозяйственно-культурный тип кочевых скотоводов. Это был не только особый тип экономики, но и своеобразный образ жизни, о котором мы поговорим позже.

В сельском хозяйстве появилось много новых или более совершенных орудий, например, серпы, косы, садовые ножи, железные лемехи плугов и сох, топоры для вырубки леса. Железными кирками и лопатами в V в. до н.э. был вырыт туннель на острове Самос.

По свидетельству Г.Чайлда, к началу н.э. все виды ремесел и сельскохозяйственных орудий, кроме винта и шарнирных ножниц, уже были известны. В эпоху железа кузнечное дело стало первым профессиональным ремеслом. Появилось множество кузнечных инструментов и инструментов для изготовления деревянных бочек, обуви и обработки кожи. В IV в. до н.э. была изобретена вращающаяся мельница для размола горной породы. В Аттике стали использовать железную ось в колесах, но в Англии и в Северной Европе ее начали применять только в начале н.э. Уже в VIII в. до н.э. из железа начали делать различные мелкие детали для транспорта.

Оружейное дело стало более специализированным. В вооружении появились стальные мечи, шлемы, наладилось массовое производство наконечников стрел. Еще во II тыс. до н.э. была изобретена легкая конная повозка, но в железном веке преимущество перешло к верховой езде. В IX-VIII вв. до н.э. ассирийцы ввели постоянные конные отряды, а для колес стали использовать стальные ободья. Ассирийская тактика имела свои недостатки: смерть одного всадника вызывала расстройство конницы. Всадник, основным оружием которого был дротик, был весьма уязвим. Поскольку в то время еще не было стремян, всадник вынужден был одной рукой держать поводья. Если пехотинец мог сделать 6-7 выстрелов в минуту, то конник – значительно меньше. Поэтому в Ассирии конники ездили по двое. Позже после появления легкого скифского лука и скифской тактики ассирийцы провели реформу армии.

Известно, что, сидя на коне, скифы стреляли вбок и назад. Появилось массовое конное войско. С VII-VI в. до н.э. скифские стрелы были введены во все армии Ближнего и Среднего Востока. Более совершенной стала осадная техника: понтонные мосты, подкопы, осадные насыпи, тараны, устройства для метания камней и горящей пакли. Появился флот (гребные суда). Из других нововведений следует отметить шадуф (журавль для подъема воды), герд (соединенный в кольцо канат с навешенными кожаными ведрами, приводимый в движение волами), сакию (водоподъемное колесо со стальной осью).

Улучшились приемы домостроительства, стала совершеннее архитектура, усложнились виды фортификаций, зона их распространения значительно расширилась на север. Иногда железный век Восточной Европы называют веком городищ. Облегчилось строительство дорог. Расширился обмен, начали чеканиться монеты.

Экономические предпосылки ускорили формирование сложных иерархических обществ. Появились новые государственные образования. Вступил в силу фактор влияния передовых цивилизаций на первобытную периферию. По словам Гордона Чайлда, дешевое железо и алфавит сделали общество более демократичным.

По мнению Ясперса, I тыс. до н.э. – это осевое время. В Персии возникли классический иудаизм и зороастризм, в Китае – конфуцианство, в Индии произошел переход от ведизма к буддизму, янизму и другим течениям, в Греции – до-Гомеровский мифологический цикл сменился классической философией.