Болезни Военный билет Призыв

Касательная сфере. Касательная плоскость к сфере

Симметрия шара

Любая диаметральная плоскость шара является его плоскостью симметрии. Центр шара является его центром симметрии.

Доказательство: Пусть - диаметральная плоскость и Х - произвольная точка шара. Построим точку Х", симметричную точке Х относительно плоскости. Плоскость перпендикулярна отрезку ХХ" и пересекается ним в его середине (в точке А). Из равенства прямоугольных треугольников ОАХ и ОАХ" следует, что ОХ" =ОХ.

Так как ОХ?R, то и ОХ"?R, т.е. точка, симметричная точке Х, принадлежит шару. Первое утверждение теоремы доказано.

Пусть теперь Х"" - точка, симметричная точке Х относительно центра шара. Тогда ОХ"" = ОХ?R, т.е. точка Х"" принадлежит шару. Теорема доказана полностью.

Касательная плоскость к шару

Плоскость, проходящая через точку А шаровой поверхности перпендикулярная радиусу, проведенному в точку А, называется касательной плоскостью. Точка А называется точкой касания.

Касательная плоскость имеет с шаром только одну общую точку - точку касания.

Доказательство: Пусть б - плоскость касательная к шару, и А - точка касания. Возьмем произвольную точку Х плоскости б, отличную от А. Так как ОА - перпендикуляр, а ОХ - наклонная, то ОХ > ОА = R. Следовательно, точка Х не принадлежит шару. Теорема доказана.

Прямая в касательной плоскости шара, проходящая через точку касания, называется касательной к шару в этой точке. Так как касательная плоскость имеет с шаром только одну общую точку - точку касания.

Дата: 02.02.2016

Тема: Касательная к сфере (шару) плоскости.

Цель урока: Сформировывать знания и умения, учащихся по теме, рассмотреть теоремы

о , научить решать задачи по данной теме.
Воспитывать внимательность, добросовестное отношение к учебе, аккуратность

Развивать память, мышление, пространственное воображение, речь

Структура урока

    Организационный момент

    Постановка цели урока

    Проверка домашнего задания

    Защита презентаций учащимися

    Индивидуальная самостоятельная работа

    Решение задач в паре

    Решение задач в группе

    Игра на развитие внимательности

    Выдача домашнего задания

    Итог урока
    Ход урока

    В начале урока проводится устная работа. Повторение основных понятий связанных с шаром и сферой.

    Домашние задания №26 (стр 61), № 34

Дежурные на доске (на перемене) выполняют чертежи к домашним заданиям. На уроке учитель к доске вызывает двух учеников для проверки домашнего задания. После ответа у доски ученики ставят себе оценки на оценочных листах.

    Защита презентаций:

І группа: История возникновения шара

ІІ группа: Взаимное расположение сферы и плоскости

ІІІ группа: Шар и сфера в живой природе

    Самостоятельная работа

1. Найдите координаты центра и радиус сферы, заданной уравнением:

1 вариант

(х-2) 2 +(у+3) 2 + z 2 = 25

2 вариант

(х+3) 2 + у 2 + (z -1) 2 = 16

2. Напишите уравнение сферы радиуса R с центром окружности в точке А, если:

1 вариант

А (2; 0; -1), R = 7

2 вариант

A (-2; 1; 0) , R = 6

3. Проверти, лежит ли точка А на сфере, заданной уравнением:

1 вариант

(х + 2) 2 + (у – 1) 2 + (z – 3) 2 = 1, если А (-2; 1; 4)

2 вариант

(х - 3) 2 + (у + 1) 2 + (z - 4) 2 = 4, если А (5; - 1; 4)

4. Докажите, что данное уравнение является уравнением сферы:

1 вариант

х 2 +у 2 + z 2 + 2 z - 2у= 2

    Работа в паре

2 вариант

х 2 + у 2 + z 2 – 2х + 2 z = 7

Радиус сферы равен 112 см. Точка, лежащая на плоскости, касательной к сфере, удалена от точки касания на 15 см. Найдите расстояние от этой точки до ближайшей к ней точки сферы.

    Работа в группе

Все стороны треугольника АВС касаются сферы радиуса 5 см. Найдите расстояние от центра сферы до плоскости треугольника, если АВ=13см, ВС=14см, СА=15см

    Игра на внимательность

На цветных бумагах записаны основные формулы площадей поверхностей многогранников и тел вращения. Эти карточки прикреплены на магнитную доску. Учитель просит внимательно посмотреть на формулы и запомнить их. Естественно ученики начинают запоминать сами формулы. Закрыв доску, учитель задает вопросы следующего содержания: «Какого цвета карточка, на которой записана формула площади боковой поверхности пирамиды?» и т.д. Естественно ученики не ожидали такого вопроса. Учитель дает еще одну возможность, но на этот раз ученики стараются запомнить и цвет карточки.

    Итог урока.

Шкала оценок

«5» за 8-9 баллов

«4» - за 6-7 баллов

«3» - за 4-5 баллов

    Домашнее задание: № 28 (стр 61), № 29 (стр 62)







ОПРЕДЕЛЕНИЕ . Касательной плоскостью к поверхности в точке
называется плоскость, содержащая в себе все касательные к кривым, проведенным на поверхности через эту точку.Нормалью называется прямая, перпендикулярная к касательной плоскости и проходящая через точку касания.

Покажем, что
направлен по нормали к поверхности
в точке
­.

Рассмотрим кривую , лежащую на поверхности и проходящую через точку
(рис. 15). Пусть она задана параметрическими уравнениями

.

Если
– радиус-вектор точки
, движущейся при изменениивдоль, то, а
– радиус-вектор точки
.

Так как лежит на поверхности, то. Продифференцируем это тождество по:

. (6.6)

По определению
, а. Поэтому (6.6) означает, что скалярное произведение
во всех точках кривой.

Равенство нулю скалярного произведения векторов – необходимое и достаточное условие их перпендикулярности. Значит, в точке

. Но вектор
– вектор скорости – направлен по касательной к траектории точки

, то есть по касательной к кривой(рис. 15). Так каквыбрана произвольно, то
перпендикулярен всевозможным касательным, проведенным к линиям, лежащим на
и проходящим через точку
. А это по определению означает, что
перпендикулярен касательной плоскости, то есть является ее нормалью.

Отсюда уравнение касательной плоскости к данной поверхности имеет вид (см. гл. 3):

Уравнение нормали (см. гл. 3):

. (6.8)

В частности, если поверхность задана явным уравнением
, получим:– уравнение касательной

плоскости, и
– уравнение нормали.

ПРИМЕР . Написать уравнения касательной плоскости и нормали к сфере
в точке
.

Очевидно

Уравнение касательной плоскости (6.7):

Уравнения нормали (6.8):

.

Заметим, что эта прямая проходит через начало координат, то есть центр сферы.

ПРИМЕР . Написать уравнение касательной плоскости к эллиптическому параболоиду
в точке
.

Эта поверхность задана явным уравнением и
.

Поэтому уравнение касательной плоскости в данной точке имеет вид: или.

Экстремумы функции двух переменных

Пусть функция
определена во всех точках некоторой области
.

ОПРЕДЕЛЕНИЕ . Точка
называется точкой максимума (минимума) функции
, если существует её окрестность
, всюду в пределах которой.

Из определения следует, что если
– точка максимума, то

; если
– точка минимума, то

ТЕОРЕМА (необходимое условие экстремума дифференцируемой функции двух переменных). Пусть функция
имеет в точке
экстремум. Если в этой точке существуют производные первого порядка, то

ДОКАЗАТЕЛЬСТВО . Зафиксируем значение
. Тогда
– функция одной переменной. Она имеет экстремум при
и по необходимому условию экстремума дифференцируемой функции одной переменной (см. гл. 5)
.

Аналогично, зафиксировав значение
, получим, что
.

Что и требовалось доказать.

ОПРЕДЕЛЕНИЕ . Стационарной точкой функции
называется точка
, в которой обе частные производные первого порядка равны нулю:

.

ЗАМЕЧАНИЕ 1 . Сформулированное необходимое условие не является достаточным условием экстремума.

Пусть
. Значит,
– стационарная точка этой функции. Рассмотрим произвольную- окрестность начала координат.

В пределах этой окрестности имеет, очевидно, разные знаки (рис. 16). А это означает, что точка
точкой экстремума по определению не является.

Таким образом, не всякая стационарная точка – точка экстремума .

ЗАМЕЧАНИЕ 2 . Непрерывная функция может иметь экстремум, но не иметь стационарной точки.

Рассмотрим функцию
. Её графиком является верхняя
половина конуса, и, очевидно,
– точка минимума (рис. 17).

ОПРЕДЕЛЕНИЕ . Точки, в которых частные производные первого порядка функции
равны нулю или не существуют, называются еекритическими точками.

ТЕОРЕМА (достаточное условие экстремума функции
). Пусть функция
имеет частные производные второго порядка в некоторой окрестностистационарной точки
. Пусть, кроме того,

.

Тогда, если

1)
, то
– точка экстремума, именно: точка максимума, если
, или точка минимума, если
;

2)
, то экстремума в точке
нет;

3)
, то требуются дополнительные исследования для выяснения характера точки
.

(Без доказательства).

ПРИМЕР . Исследовать на экстремум функцию
.

Найдем стационарные точки:
. Стационарных точек нет, значит, функция не имеет экстремума.

ПРИМЕР . Исследовать на экстремум функцию .

Чтобы найти стационарные точки, надо решить систему уравнений:

То есть данная функция имеет четыре стационарные точки.

Проверим достаточное условие экстремума для каждой из них:

.

Так как
, то в точках
экстремума нет.

и
, значит,
– точка минимума и
;
и
, значит,
– точка максимума и
.

Плоскость , проходящая через точку А шаровой поверхности и перпендикулярная радиусу, проведенному в точку А, называется касательной плоскостью. Точка А называется точкой касания (рис. 457).

Касательная плоскость имеет с шаром только одну общую точку - точку касания.

53) Обем та площина поверхні призми.

Призмой называется многогранник, две грани которого n-угольники, а остальные n граней - параллелограммы.

Площадь поверхности и объём призмы

Пусть H - высота призмы, - боковое ребро призмы, - периметр основания призмы, площадь основания призмы, - площадь боковой поверхности призмы, - площадь полной поверхности призмы, - объем призмы, - периметр перпендикулярного сечения призмы, - площадь перпендикулярного сечения призмы. Тогда имеют место следующие соотношения:

Для прямой призмы , у которой боковые ребра перпендикулярны плоскостям оснований, площадь боковой поверхности и объем даются формулами:

54) Обем та плошина поверхні піраміди.

Пирамидой называется многогранник одна из граней которого является произвольным многоугольником, а остальные грани - треугольники, имеющие общую вершину.

Площадь поверхности и объём пирамиды

Пусть - высота пирамиды, - периметр основания пирамиды, - площадь основания пирамиды, - площадь боковой поверхности пирамиды, - площадь полной поверхности пирамиды, - объем пирамиды. Тогда имеют место следующие соотношения:

Если все двугранные углы при основании пирамиды равны , а высоты всех боковых граней пирамиды, проведенные из вершины пирамиды, равны , то

55) Обем та плошина поверхні зрізаної піраміди.

Усеченной пирамидой называется многогранник, у которого вершинами служат вершины основания и вершины ее сечения плоскостью, параллельной основанию.

Площадь поверхности и объём усеченной пирамиды

Пусть - высота усеченной пирамиды, и - периметры оснований усеченной пирамиды, и - площади оснований усеченной пирамиды, - площадь боковой поверхности усеченной пирамиды, - площадь полной поверхности усеченной пирамиды, - объем усеченной пирамиды. Тогда имеют место следующие соотношения:

Если все двугранные углы при основании усеченной пирамиды равны , а высоты всех боковых граней пирамиды равны , то

56) Обем та площа обема циліндра.

Цилиндр – тело которое состоит из двух кругов, не лежащих в одной плоскости и совмещаемых параллельным переносом и всех отрезков соединяющиеся соответственные точки кругов.

Площадь боковой поверхности круглого цилиндра равна произведению длины окружности основания на высоту:

Полная площадь поверхности круглого цилиндра равна сумме площадей боковой поверхности круглого цилиндра и удвоенной площади основания. Основание круглого цилиндра есть круг и его площадь вычисляется по формуле площади круга:

2. S= 2 π rh+ 2 π r2= 2 π r(h+ r)

Формулы для расчета объема цилиндра:

1) Объем цилиндра равен произведению площади основания на высоту.

2) Объем цилиндра равен произведению числа пи (3.1415) на квадрат радиуса основания на высоту.

57) Обем та площа обема конуса, зрізаного конуса.

Усеченный конус получится, если в конусе провести сечение, параллельное основанию. Тело ограниченное этим сечением, основанием и боковой поверхностью конуса называется усеченным конусом. См. также Площадь поверхности усеченного конуса

58) Обем кулі та її частин. Площа сфери

1) Объем шара вычисляется по приведенной ниже формуле.