Болезни Военный билет Призыв

Какой процесс происходит во время кроссинговера. Кроссинговер, механизмы и эволюционное значение. Примеры употребления слова кроссинговер в литературе

Мейотический - происходит в профазу первого деления мейоза, при образовании половых клеток.

Митотический – при делении соматических клеток, главным образом эмбриональных. Приводит к мозаичности в проявлении признаков.

2. В зависимости от молекулярной гомологии участков хромосом, вступающих в кроссинговер.

Обычный (равный) – происходит обмен разными участками хромосом.

Неравный - наблюдается разрыв в нетождественных участках хромосом.

3. В зависимости от количества образованных хиазм и разрывов хромосом с последующих перекомбинацией генов.

Одинарный

Множественный

Значение кроссинговера:

Приводит к увеличению комбинативной изменчивости

Приводит к увеличению мутаций.

23. На основании анализа результатов многочисленных эксперементов с дрозофилой Томас Морган сформулировал хромосомную теорию наследственности, сущность которой заключается в следующем:

Материальные носители наследственности – гены находяться в хромосомах, распологаются в них линейно на определенном расстоянии друг от друга.

Гены, расположенные в одной хромосоме, относятся к одной группе сцепления. Число групп сцепления соответствует гаплоидному числу хромосом.

Признаки, гены которых находятьс в одной хромосоме, наследуются сцеплено.

В потомстве гетерозиготных родителей новые сочетания генов, расположенных в дной паре хромосом, могут возникать в результате кроссинговера в процессе мейоза.

Частота кроссинговера, определяемая по проценту кроссоверных особей, зависит от расстояния между генами.

На основании линейного расположения генов в хромосоме и частоты кроссинговера как покозателя расстояния между генами можно построить карты хромосом.

24. Генетическая карта - схема расположения структурных генов и регуляторных элементов в хромосоме.

Первоначально взаимное расположение генов в хромосомах определяли по частоте кроссинговера между ними. Соответствующее генетическое расстояние измеряли в сантиморганах (или сантиморганидах, сМ): 1 сМ соответствует частоте кроссинговера в 1%. При таком методе генетического картирования физическое расстояние между генами нередко отличалось от их генетического расстояния, так как кроссинговер происходит не с одинаковой вероятностью в разных участках хромосом. При современных методах генетического картирования расстояние между генами измеряется в тысячах пар нуклеотидов (т.п.н.) и соответствует физическому.

При создании генетической карты устанавливают последовательности расположения генетических маркеров (в этом качестве использовали различные ДНК полиморфизмы, т.е. наследуемые вариации в структуре ДНК) по длине всех хромосом с определенной плотностью, т.е. на достаточно близком расстоянии друг от друга.

Генетическая карта маркерных последовательностей должна облегчить картирование всех генов человека, особенно генов наследственных болезней, что является одной из основных целей указанной программы. За короткое время было генетически картировано несколько тысяч генов.

Метод составления генетических карт, разработанный на дрозофиле, был перенесен на растения (кукуруза, львиный зев) и животные (мыши).

Составление генетических карт – процедура весьма трудоемкая. Генные структуры хромосом поддаются легкой расшифровке у тех организмов, которые быстро размножаются. Последнее обстоятельство является основной причиной того, что самые подробные карты существуют для дрозофилы, ряда бактерий и бактериофагов, а наименее подробные для растений.

25. Модификационная (фенотипическая) изменчивость - изменения в организме, связанные с изменением фенотипа вследствие влияния окружающей среды и носящие, в большинстве случаев, адаптивный характер. Генотип при этом не изменяется. В целом современное понятие «адаптивные модификации» соответствует понятию «определенной изменчивости», которое ввел в науку Чарльз Дарвин.

Предел проявления модификационной изменчивости организма при неизменном генотипе - норма реакции . Норма реакции обусловлена генотипом и различается у разных особей данного вида. Фактически норма реакции - спектр возможных уровней экспрессии генов, из которого выбирается уровень экспрессии, наиболее подходящий для данных условий окружающей среды. Норма реакции имеет пределы или границы для каждого биологического вида (нижний и верхний) - например, усиленное кормление приведет к увеличению массы животного, однако она будет находиться в пределах нормы реакции, характерной для данного вида или породы. Норма реакции генетически детерминирована и наследуется. Для разных признаков пределы нормы реакции сильно различаются. Например, широкие пределы нормы реакции имеют величина удоя, продуктивность злаков и многие другие количественные признаки), узкие пределы - интенсивность окраски большинства животных и многие другие качественные признаки.

Тем не менее, для некоторых количественных признаков характерна узкая норма реакции (жирность молока, число пальцев на ногах у морских свинок), а для некоторых качественных признаков - широкая (например, сезонные изменения окраски у многих видов животных северных широт). Кроме того, граница между количественными и качественными признаками иногда весьма условна.

Экспрессивность – степень фенотипического проявления аллеля. Например, аллели групп крови АВ0 у человека имеют постоянную экспрессивность (всегда проявляются на 100%), а аллели, определяющие окраску глаз, – изменчивую экспрессивность. Рецессивная мутация, уменьшающая число фасеток глаза у дрозофилы, у разных особей по разному уменьшает число фасеток вплоть до полного их отсутствия.

Пенетрантность – вероятность фенотипического проявления признака при наличии соответствующего гена. Например, пенетрантность врожденного вывиха бедра у человека составляет 25%, т.е. болезнью страдает только 1/4 рецессивных гомозигот. Медико-генетическое значение пенетрантности: здоровый человек, у которого один из родителей страдает заболеванием с неполной пенетрантностью, может иметь непроявляющийся мутантный ген и передать его детям.

26. Мутационная изменчивость

Мутационная изменчивость - возникновение изменений в наследственном материале, в самих молекулах ДНК. Может измениться не только состав ДНК, но и ее количество (количество хромосом). На мутагенный процесс имеют влияние разные факторы внешней и внутренней среды.

КРОССИНГОВЕР (от английского crossing-over - перекрёст), обмен участками хромосом при их тесном сближении (конъюгации); частный случай рекомбинации. Термин «кроссинговер» предложен Т. Х. Морганом в 1911 году и обычно используется применительно к эукариотным организмам (клеткам). Кроссинговер происходит как при образовании половых клеток в ходе мейоза (мейотический кроссинговер), так и в митотически делящихся соматических клетках (митотический кроссинговер), где его частота значительно меньше, чем при мейотическом.

В норме конъюгация происходит в профазе мейоза между гомологичными хромосомами (каждая из них состоит из 2 сестринских хроматид, образуемых в процессе предшествующей репликации) по всей их длине с помощью так называемого синаптонемального комплекса - структуры, специфичной для каждого вида организмов. Мейотический кроссинговер, осуществляемый с участием специальных белков (в том числе ферментов), приводит к обмену равноценными, с равным числом генов участками хроматид. Такой кроссинговер регистрируют в клетке по наличию участков перекрёста (хиазм) в бивалентах - двух конъюгированных гомологичных хромосомах, наблюдаемых во время первого мейотического деления. В редких случаях происходит неравный кроссинговер, в результате которого участок одной из гомологичных хромосом может удвоиться (дупликация) или утроиться, а в другой хромосоме потеряться (делеция); кроссинговер в гомологичных участках одной хроматиды может быть причиной других хромосомных перестроек, например, инверсий, образующихся кольцевых хромосом. Кроссинговер между конъюгирующими негомологичными хромосомами приводит к транслокациям. При анализе потомства гетерозигот по аллелям генов, расположенных в одной и той же паре гомологичных хромосом, отмечают межгенный кроссинговер. В этом случае выявляется их сцепленное наследование - новые (неродительские, кроссоверные) комбинации аллелей появляются у потомков с меньшей частотой, чем исходные (родительские, некроссоверные). При внутригенном кроссинговере обмен происходит в пределах одного гена и приводит к появлению новых аллелей. Частота кроссинговера прямо пропорциональна физическому расстоянию между генами.

При большом расстоянии между генами возрастает вероятность множественного кроссинговера, который может имитировать отсутствие сцепленного наследования. Множественный кроссинговер на относительно небольших расстояниях сопровождается хромосомной интерференцией, при которой кроссинговер, происшедший в одном участке хромосомы, препятствует кроссинговер в близлежащих участках. Это явление было открыто Г. Дж. Мёллером (1916) и доказано цитологически Дж. Холдейном (1931). Величина интерференции (I) равняется 1 - С, где С - коэффициент коинциденции - отношения частоты регистрируемого множественного кроссинговера к частоте теоретически ожидаемого. Интерференция всегда положительна (одно событие кроссинговера препятствует прохождению другого). Наблюдаемые изредка (на очень коротких расстояниях) отрицательные значения интерференции объясняются конверсией генов. При наличии хромосомной интерференции хроматидная интерференция отсутствует, то есть вероятность вовлечения в повторный обмен любой из 4 хроматид в паре гомологичных хромосом не зависит от того, какая из хроматид была вовлечена в первый обмен. Частота мейотического кроссинговера может существенно отличаться у особей разного пола, увеличиваться при действии внешних факторов (повышенная температура, облучение, воздействие химических веществ), уменьшаться под действием некоторых мутаций. Так как кроссинговер приводит к появлению новых сочетаний аллелей на фоне гетерозиготности, он обеспечивает определённый уровень генотипической изменчивости, необходимой в эволюции и селекционной работе, и используется как один из инструментов генетического анализа.

Лит.: Жимулев И. Ф. Общая и молекулярная генетика. 4-е изд. Новосиб., 2007.

Допустив, что в одной хромосоме может размещаться больше чем один ген, следует поставить вопрос о том, а могут ли гены в гомологичной паре хромосом меняться местами, т. е. гены отцовской хромосомы перемещаться в материнскую и обратно.

Если бы такой процесс не происходил, то гены комбинировались бы только путем случайного расхождения гомологичных хромосом в мейозе. Следовательно, возможность обмена наследственной информацией между родительскими организмами ограничивалась бы лишь одними менделевскими закономерностями наследования.

Исследования Т. Моргана и его школы показали, что в гомологичной паре хромосом регулярно происходит обмен генами. Процесс обмена генами, или гомологичными участками гомологичных хромосом, называют кроссинговером, или перекрестом хромосом. Наличие такого механизма обмена генами между скрещивающимися организмами, т. е. процесс рекомбинации генов, расширяет возможности комбинативной изменчивости в эволюции.

При скрещивании двух организмов, различающихся по двум сцепленным генам AB/AB x ab/ab возникает гетерозиготная форма AB/ab.

В случае полного сцепления дигетерозигота даст только два сорта гамет: АВ и ab. При анализирующем скрещивании возникают два класса зигот AB/ab и ab/ab в отношении 1:1. Особи обоих классов воспроизводят признаки своих родителей. Данная картина напоминает моногибридное, а не дигибридное расщепление при анализирующем скрещивании.

Но наряду с явлением полного сцепления закономерно существует явление неполного сцепления. В случае неполного сцепления при скрещивании гетерозиготных особей генотипа AB/ab с рецессивной формой ab/ab в потомстве появляются не два, а четыре класса фенотипов и генотипов: AB/ab, ab/ab, Ab/ab, aB/ab. Эти классы по качественному составу напоминают расщепление при анализирующем скрещивании дигибрида, когда осуществляется свободное комбинирование генов. Однако числовое отношение классов при неполном сцеплении отлично от свободного комбинирования, дающего отношение 1: 1: 1: 1. При неполном сцеплении возникают два новых класса зигот с иным, чем у родителей, сочетанием генов, а именно Ab/ab и aB/ab, которые всегда составляют менее 50%.

Образование новых классов зигот в расщеплении указывает на то, что в процессе гаметогенеза у форм, гетерозиготных по двум генам, образуются не только гаметы АВ и ab, но также Аb и аВ. Следовательно, гены, привнесенные в гибрид F 1 одной хромосомой, в процессе образования у него гамет каким-то образом расходятся. Как могли появиться гаметы с таким новым сочетанием генов? Очевидно, что они могли возникнуть только в том случае, если между гомологичными хромосомами произошел обмен участками, т. е. кроссинговер . Кроссинговер обеспечивает новые сочетания генов, находящихся в гомологичных хромосомах. Явление кроссинговера так же, как и сцепление, оказалось общим для всех животных, растений и микроорганизмов.

Кроссинговер можно обнаружить лишь в том случае, если гены находятся в гетерозиготном состоянии, т.е. AB/ab.

При гомозиготном состоянии генов AB/AB и ab/ab перекреста хромосом выявить нельзя, так как обмен идентичными участками не дает новых комбинаций генов в гаметах и в потомстве. О перекресте хромосом можно судить на основе генетического анализа частоты возникающих рекомбинантов, т. е. зигот с новым сочетанием генов, и цитологических исследований поведения хромосом в мейозе.

Перекрест происходит в профазе I мейоза, и поэтому его называют мейотическим перекрестом . Но иногда перекрест происходит и во время митоза в соматических клетках, тогда его называют митотическим , или соматическим .

Мейотический перекрест осуществляется после того, как гомологичные хромосомы в зиготенной стадии профазы I соединяются в пары, образуя биваленты. В профазе I каждая хромосома представлена двумя сестринскими хроматидами, и перекрест происходит не между хромосомами, а между хроматидами. Выражение «перекрест хромосом» является обобщенным понятием, имея в виду, что кроссинговер происходит между хроматидами.

Кроссинговер (crossing-over): обмен генетического материала между хромосомами , как результат "разрыва" и соединения хромосом; процесс обмена участками хромосом при перекресте хромосом (рис. 118 , Б4).

Во время пахитены (стадия толстых нитей), гомологичные хромосомы находятся в состоянии конъюгации длительный период: у дрозофилы - четверо суток, у человека больше двух недель. Все это время отдельные участки хромосом находятся в очень тесном соприкосновении. Если в таком участке произойдет разрыв цепочек ДНК одновременно в двух хроматидах, принадлежащих разным гомологам, то при восстановлении разрыва может получиться так, что ДНК одного гомолога окажется соединенной с ДНК другой, гомологичной хромосомы. Этот процесс носит -название кроссинговера (англ. crossing-over - перекрест).

Поскольку кроссинговер - взаимный обмен гомологичными участками хромосом между гомологичными (парными) хромосомами исходных гаплоидных наборов - особи имеют новые, различающиеся между собой генотипы. При этом достигается перекомбинация наследственных свойств родителей, что увеличивает изменчивость и дает более богатый материал для естественного отбора.

Гены перемешиваются благодаря слиянию гамет двух различных особей, однако генетические изменения осуществляются не только этим путем. Никакие два потомка одних и тех же родителей (если только это не идентичные близнецы) не будут абсолютно одинаковыми. Во время мейоза осуществляются два различных вида пересортировки генов.

Один вид пересортировки - это результат случайного распределения разных материнских и отцовских гомологов между дочерними клетками при первом делении мейоза , каждая гамета получает свою, отличную от других выборку материнских и отцовских хромосом. Из этого следует, что клетки любой особи могут в принципе образовать 2 в степени n генетически различающихся гамет, где n - гаплоидное число хромосом. Однако на самом деле число возможных гамет неизмеримо больше из-за кросинговера (перекреста) - процесса, происходящего во время длительной профазы первого деления мейоза , когда гомологичные хромосомы обмениваются участками. У человека в каждой паре гомологичных хромосом кроссинговер происходит в среднем в 2 - 3 точках.

При кроссинговере происходит разрыв двойной спирали ДНК в одной материнской и одной отцовской хроматиде, а затем получившиеся отрезки воссоединяются "наперекрест" (процесс генетической рекомбинации). Рекомбинация происходит в профазе первого деления мейоза , когда две сестринские хроматиды так тесно сближены друг с другом, что их невозможно увидеть в отдельности. Гораздо позже в этой растянутой профазе становятся ясно различимы две отдельные хроматиды каждой хромосомы. В это время видно, что они связаны своими центромерами и тесно сближены по всей длине. Два гомолога остаются связанными в тех точках, где произошел кроссинговер между отцовской и материнской хроматидами. В каждой такой точке, которую называют хиазмой , две из четырех хроматид перекрещиваются Таким образом, это морфологический результат произошедшего кроссинговера, который сам по себе недоступен для наблюдения.

Кроссинговер (от англ. crossing–over – перекрёст) – это обмен гомологичными участками гомологичных хромосом (хроматид).

Механизм кроссинговера «разрыв–воссоединение»

Согласно теории Янссенса–Дарлингтона, кроссинговер происходит в профазе мейоза. Гомологичные хромосомы с гаплотипами хроматид АВ и ab образуют биваленты. В одной из хроматид в первой хромосоме происходит разрыв на участке А–В , тогда в прилежащей хроматиде второй хромосомы происходит разрыв на участке a–b . Клетка стремится исправить повреждение с помощью ферментов репарации–рекомбинации и присоединить фрагменты хроматид. Однако при этом возможно присоединение крест–накрест (кроссинговер), и образуются рекомбинантные гаплотипы (хроматиды) Ab и аВ . В анафазе первого деления мейоза происходит расхождение двухроматидных хромосом, а во втором делении – расхождение хроматид (однохроматидных хромосом). Хроматиды, которые не участвовали в кроссинговере, сохраняют исходные сочетания аллелей. Такие хроматиды (однохроматидные хромосомы) называются некроссоверными ; с их участием разовьются некроссоверные гаметы, зиготы и особи. Рекомбинантные хроматиды, которые образовались в ходе кроссинговера, несут новые сочетания аллелей. Такие хроматиды (однохроматидные хромосомы) называются кроссоверными , с их участием разовьются кроссоверные гаметы, зиготы и особи.

Таким образом, вследствие кроссинговера происходит рекомбинация – появление новых сочетаний (гаплотипов) наследственных задатков в хромосомах.

Примечание. Согласно другим теориям, кроссинговер связан с репликацией ДНК: или в пахитене мейоза, или в интерфазе (см. ниже). В частности, возможна смена матрицы в вилке репликации.

Интерференция – это подавление кроссинговера на участках, непосредственно прилегающих к точке происшедшего обмена. Рассмотрим пример, описанный в одной из ранних работ Моргана. Он исследовал частоту кроссинговера между генами w (white – белые глаза), у (yellow – желтое тело) и m (miniature – маленькие крылья), локализованными в Х-хромосоме D. melanogaster. Расстояние между генами w и у в процентах кроссинговера составило 1,3, а между генами у и m – 32,6. Если два акта кроссинговера наблюдаются случайно, то ожидаемая частота двойного кроссинговера должна быть равна произведению частот кроссинговера между генами у и w и генами w и m . Другими словами, частота двойных кроссинговеров будет 0,43%. В действительности в опыте был обнаружен лишь один двойной кроссинговер на 2205 мух, т. е. 0,045%. Ученик Моргана Г. Меллер предложил определять интенсивность интерференции количественно, путем деления фактически наблюдаемой частоты двойного кроссинговера на теоретически ожидаемую (при отсутствии интерференции) частоту. Он назвал этот показатель коэффициентом коинциденции, т. е. совпадения. Меллер показал, что в Х-хромосоме дрозофилы интерференция особенно велика на небольших расстояниях; с увеличением интервала между генами интенсивность ее уменьшается и на расстоянии около 40 морганид и более коэффициент коинциденции достигает 1 (максимального своего значения).



Виды кроссинговера:

1.Двойной и множественный кроссинговер

2.Соматический (митотический) кроссинговер

3.Неравный кроссинговер

Эволюционное значение кроссинговера

В результате кроссинговера неблагоприятные аллели, первоначально сцепленные с благоприятными, могут переходить в другую хромосому. Тогда возникают новые гаплотипы, не содержащие неблагоприятных аллелей, и эти неблагоприятные аллели элиминируются из популяции.

Биологическое значение кроссинговера

Благодаря сцепленному наследованию удачные сочетания аллелей оказываются относительно устойчивыми. В результате образуются группы генов, каждая из которых функционирует как единый суперген , контролирующий несколько признаков. В то же время, в ходе кроссинговера возникают рекомбинации – т.е. новые комбинации аллелей. Таким образом, кроссинговер повышает комбинативную изменчивость организмов.

Это означает, что…

а) в ходе естественного отбора в одних хромосомах происходит накопление «полезных» аллелей (и носители таких хромосом получают преимущество в борьбе за существование), а в других хромосомах скапливаются нежелательные аллели (и носители таких хромосом выбывают из игры – элиминируются из популяций)

б) в ходе искусственного отбора в одних хромосомах накапливаются аллели хозяйственно-ценных признаков (и носители таких хромосом сохраняются селекционером), а в других хромосомах скапливаются нежелательные аллели (и носители таких хромосом выбраковываются).