Болезни Военный билет Призыв

Как решить биквадратное уравнение. Биквадратное уравнение, решение биквадратных уравнений

Перед тем, как решать биквадратные уравнения, необходимо разобраться, что собой являет данное выражение. Итак, это уравнение четвертой степени, которое можно записать в таком виде: «(ах 4) + (bx 2) + с = 0 ». Его общий вид можно записать в виде «ах ». Чтобы решить уравнение подобного рода, необходимо применить метод под названием «подстановка неизвестных». Согласно ему, выражение «х 2 » необходимо заменить другой переменной. После такой подстановки получается простое квадратное уравнение, решение которого в дальнейшем не составляет особого труда.

Необходимо:

— чистый лист бумаги;
— пишущая ручка;
— элементарные математические навыки.

Инструкция:

  • Итак, необходимо изначально записать выражение на листке бумаги. Первый этап его решения состоит в простой процедуре замены выражения «х 2 » на простую переменную (например «к »). После того, как Вы это сделали, у Вас должно получиться новое уравнение: «(ак 2) – (bк) + с = 0 ».
  • Далее, чтобы правильно решить биквадратное уравнение, нужно вначале найти корни для «(ак 2 ) – (bк) + с = 0 », которое у Вас получилось после замены. Чтобы это сделать, необходимо будет посчитать значение дискриминанта по известной формуле: «D = (b 2 ) − 4*ас ». При этом все эти переменные (а , b и с ) являются коэффициентами вышеприведенного уравнения.
  • В ходе расчета дискриминанта мы можем узнать, имеет ли решение наше биквадратное уравнение, ведь если в итоге данное значение получится со знаком минус, то оно просто-напросто может не иметь решения в дальнейшем. В случае же если дискриминант будет равняться нулю, тогда у нас будет одно единственное решение, определенное такой формулой: «к = — (b / 2 * а) ». Ну и в случае, если наш дискриминант окажется больше нуля, тогда у нас получится два решения. Для нахождения двух решений необходимо будет взять квадратный корень от «D » (то есть с дискриминанта). Полученное значение нужно будет записать в виде переменной «QD ».
  • Следующий шаг – непосредственное решение квадратного уравнения , которое у Вас получилось. Для этого Вам необходимо будет подставить в формулу уже известные значения. Для одного из решений: «к1 = (-b + QD) / 2 * а », а для другого: «к2 = (-b — QD) / 2 * а ».
  • И, наконец, завершающий этап – нахождение корней биквадратного уравнения . Для этого необходимо будет взять квадратный корень из полученных до этого решений обычного квадратного уравнения. Если же дискриминант был равен нулю, и у нас было только одно решение, тогда в этом случае корней получится два (с отрицательным и с положительным значением квадратного корня). Соответственно, если дискриминант был больше нуля, то наше биквадратное уравнение будет иметь целых четыре корня.

Всем еще со школы известно такое понятие, как уравнения. Уравнение - это равенство, содержащее одну или несколько переменных. Зная то, что одна из частей данного равенства равна другой, можно вычленять отдельные части уравнения, перенося те или иные его составляющие за знак равенства по четко оговоренным правилам. Можно упростить уравнение до необходимого логического завершения в виде х=n, где n - это любое число.

С начальной школы все дети проходят курс изучения различной сложности. Позже в программе появляются более сложные линейные уравнения - квадратные, затем идут кубические уравнения. Каждый последующий вид уравнений имеет новые методики решения, становится труднее в изучении и повторении.

Однако после этого возникает вопрос о решении такого вида уравнений, как биквадратные уравнения. Данный вид, несмотря на кажущуюся сложность, решается достаточно просто: главное - уметь привести такие уравнения в должный вид. Их решение изучается за один-два урока вместе с практическими заданиями, если у учащихся имеются базовые знания о решении квадратных уравнений.

Что необходимо знать человеку, столкнувшемуся с этим типом уравнений? Для начала то, что они включают в себя только четные степени переменной «икс»: четвертая и, соответственно, вторая. Чтобы биквадратное уравнение было решаемо, необходимо привести его к виду Как это сделать? Достаточно просто! Нужно всего лишь заменить «икс» в квадрате на «игрек». Тогда устрашающий для многих школьников «икс» в четвертой степени превратится в «игрек» в квадрате, а уравнение примет вид обычного квадратного.

Далее оно решается как обычное квадратное уравнение: раскладывается на множители, после чего находится значение таинственного «игрека». Чтобы решить биквадратное уравнение до конца, нужно найти из числа «игрек» - это и будет искомая величина «икс», после нахождения значений которого можно будет поздравить себя с успешным завершением расчетов.

Что же следует помнить, решая уравнения данного вида? Первое и самое главное: игрек не может быть отрицательным числом! Само условие, что игрек - это квадрат числа икс, исключает подобный вариант решения. Поэтому если при первичном решении биквадратного уравнения одно из значений «игрек» получается у вас положительным, а второе - отрицательным, необходимо взять только его положительный вариант, иначе биквадратное уравнение будет решено неверно. Лучше сразу ввести правило, что переменная «игрек» больше либо равна нулю.

Второй немаловажный нюанс: число «икс», являясь квадратным корнем числа «игрек», может быть как положительным, так и отрицательным. Допустим, если «игрек» равен четырем, то биквадратное уравнение будет иметь два решения: два и минус два. Это происходит по той причине, что отрицательное число, возведенное в четную степень, равно числу того же модуля, но отличного знака, возведенному в ту же степень. Поэтому всегда стоит помнить об этом немаловажном моменте, иначе можно попросту потерять один или несколько ответов уравнения. Лучше всего сразу писать, что «икс» равен плюс-минус квадратному корню от «игрек».

В общем и целом, решение биквадратных уравнений - это достаточно просто и не требует больших временных затрат. На изучение этой темы в школьной программе хватает двух академических часов - не считая, конечно, повторений и контрольных работ. Биквадратные уравнения стандартного вида решаются очень легко, если соблюдать перечисленные выше правила. Их решение не составит для вас никакого труда, потому что оно подробно расписано в учебниках математики. Удачной вам учебы и успехов в решении любых, не только математических, задач!

Впервые квадратные уравнения сумели решить математики древнего Египта. Вавилоняне умели решать неполные квадратные уравнения, так же частные виды полных квадратных уравнений около 2 тысяч лет до нашей эры. Древнегреческие математики умели решать некоторые виды квадратных уравнений, сводя их к геометрическим построениям. Примеры решения уравнений без использования геометрических знаний дает Диофант Александрийский (3 век). Диофант в своих книгах «Арифметика» изложил способ решения полных квадратных уравнений, однако эти книги не сохранились. В Европе формулы для решения квадратных уравнений были впервые изложены итальянским математиком Леонардо Фибоначчи в 1202 году.

Общее правило решения квадратных уравнений, преобразованных в вид х 2 + bх = с , было описано немецким математиком М. Штифелем. Он и сформулировал в 1544 году общее правило решения квадратных уравнений, приведенных к единому каноническому виду
х 2 + bх + с = 0 при всевозможных вариациях знаков и коэффициентов b и с.

Франсуа Виет вывел формулы квадратного уравнения в общем виде, однако он работал только с положительными числами.

Тарталья, Кардано, Бомбелли – итальянские ученые, которые среди первых в XVI веке учитывают кроме положительных еще и отрицательные корни.

Выводом формулы решения квадратных уравнений общего вида занимался Виет. Одно свое утверждение он высказывал лишь для положительных корней (отрицательных чисел он не признавал).

После трудов нидерландского математика Альберта Жирара, а также Декарта и Ньютона, методы решения квадратных уравнений приняли современный вид.

Квадратные уравнения

1. Вспомним уже знакомые способы решения и исследования квадратных уравнений:

  • выделение полного квадрата;
  • по формуле корней для квадратного уравнения;
  • по теореме Виета;
  • на основании свойств квадратичной функции.

В процессе решения уравнений необходимо следить за множеством допустимых значений неизвестного, т.к. оно может изменяться. В случае его расширения следует проверять найденное решение, не является ли оно посторонним для данного уравнения. В случае, если произошло сужение, необходимо убедиться, не являются ли потерянные значения неизвестных решениями данного уравнения. Процесс нахождения выпавших решений не всегда легко выполним, поэтому желательно избегать сужение множества допустимых значений неизвестных уравнения.

2. Типичные ошибки при решении уравнений.

По правилам можно преобразовывать исходное уравнение в равносильное ему, при этом, вы знаете, что: обе части уравнения можно делить или умножать на одно и то же, отличное от нуля, число.

1) Если уравнение имеет вид f(х) · g(х) = p(х) · g(х), то деление обеих частей на одинаковый множитель g(x), как правило, недопустимо. Данное действие может привести к потере корней: могут быть потеряны корни уравнения g(х) = 0, если ни существуют.

Пример 1.

Решить уравнение 2(х – 3) = (х – 3)(х + 5).

Решение.

Здесь нельзя сокращать на множитель (х – 3).

2(х – 3) – (х – 3)(х + 5) = 0, вынесем общую скобку:

(х – 3)(-х – 3) = 0, теперь

х – 3 = 0 или -х – 3 = 0;

х = 3 или х = -3.

Ответ: -3; 3.

2) Уравнение вида f(х) / g(х) = 0 можно заменить системой:

{f(x) = 0,
{g(x) ≠ 0.

Она равносильна исходному уравнению.

Или можно решить уравнение f(x) = 0, а уже затем исключить найденных корней те, которые обращают в нуль знаменатель g(x).

Встречаются дробно-рациональные уравнения, которые сводятся к квадратным уравнениям.

Пример 2.

Решить уравнение: (х + 3) / (х – 3) + (х – 3) / (х + 3) = 10/3 + 36/(х – 3)(х + 3).

Решение.

Умножив обе части уравнения на общий знаменатель и заменив исходное уравнение целым, получим равносильную систему:

{3(х + 3) 2 + 3(х – 3) 2 = 10(х – 3)(х + 3) + 3 · 36;
{(х – 3)(х +3) ≠ 0.

В результате получим два корня: х = 3 или х = -3, но х ≠ 3 и х ≠ -3.

Ответ: уравнение корней не имеет.

Пример 3.

Решить уравнение: (х + 5)(х 2 + 4х - 5)/(х + 5)(х + 2) = 0.

Решение.

Часто ограничиваются таким решением:

(х 2 + 4х – 5) / (х + 2) = 0.
{х = -5, х = 1,
{х ≠ -2.

Ответ: -5; 1.

Правильный ответ: 1.

Пример 4.

При выполнении распространенных заданий на исследование квадратного уравнения следующего вида: «Не вычисляя действительных корней х 1 и х 2 уравнения 2х 2 + 3х + 2 = 0, найти значение х 1 2 + х 2 2 » банальная невнимательность приводит к грубой ошибке.

Действительно, по теореме Виета,

х 1 2 + х 2 2 = (х 1 + х 2) 2 – х 1 х 2 = (-3/2) 2 – 2 · 1 = 1/4.

Однако, теоремой можно было воспользоваться при существовании действительных корней. В данном примере D < 0 и корней нет.

Ответ: значение х 1 2 + х 2 2 не существует.

Пример 5.

Вычислить отрицательный коэффициент b и корни уравнения х 2 + bх – 1 = 0, если с увеличением каждого из этих корней на единицу они становятся корнями уравнения х 2 – b 2 х – b = 0.

Решение.

Пусть х 1 и х 2 – корни уравнения х 2 + bх – 1 = 0. Тогда по т. Виета

х 1 + х 2 = -b и х 1 х 2 = -1 (*). С другой стороны, по условию

(х 1 + 1) + (х 2 + 1) = b 2 и (х 1 + 1)(х 2 + 1) = -b.

Перепишем:

х 1 + х 2 = b 2 – 2 и (х 1 + 1)(х 2 + 1) = -b.

Теперь, учитывая условия (*), получим b 2 – 2 = -b, следовательно,

b 1 = -2, b 2 = 1. По условию подходит b 1 = -2.

Значит, исходное уравнение имеет вид х 2 – 2х – 1 = 0, корнями являются числа х 1,2 = 1 ± √2.

Ответ: b 1 = -2, х 1,2 = 1 ± √2.

Уравнения, приводимые к квадратным. Биквадратные уравнения

Уравнения вида ах 4 + bх 2 + c = 0, где а ≠ 0 , называются биквадратными уравнениями с одной переменной.

Для решения биквадратного уравнения нужно сделать подстановку х 2 = t, найти корни t 1 и t 2 квадратного уравнения аt 2 + bt + c = 0 и решить уравнения х 2 = t 1 и х 2 = t 2 . Они имеют решения лишь в случае, когда t 1,2 ≥ 0.

Пример 1.

Решить уравнение х 4 + 5х 2 – 36 = 0.

Решение.

Подстановка: х 2 = t.

t 2 + 5t – 36 = 0. По т. Виета t 1 = -9 и t 2 = 4.

х 2 = -9 или х 2 = 4.

Ответ: В первом уравнении корней нет, из второго: х = ±2.

Пример 2.

Решить уравнение (2х – 1) 4 – 25(2х – 1) 2 + 144 = 0.

Решение.

Подстановка: (2х – 1) 2 = t.

t 2 – 25t + 144 = 0. По т. Виета t 1 = 9 и t 2 = 16.

(2х – 1) 2 = 9 или (2х – 1) 2 = 16.

2х – 1 = ±3 или 2х – 1 = ±4.

Из первого уравнения два корня: х = 2 и х = -1, из второго тоже: х = 2,5 и х = -1,5.

Ответ: -1,5; -1; 2; 2,5.

Таким образом, процесс решения любых уравнений состоит в последовательной замене данного уравнения другим, равносильным ему и более простым уравнением.

Остались вопросы? Не знаете, как решать уравнения?
Чтобы получить помощь репетитора – .
Первый урок – бесплатно!

blog.сайт, при полном или частичном копировании материала ссылка на первоисточник обязательна.