Болезни Военный билет Призыв

Как происходят колебания груза на пружине. Изучение нового материала

Свободные колебания совершаются под действием внутренних сил системы после того, как система была выведена из положения равновесия.

Для того, чтобы свободные колебания совершались по гармоническому закону, необходимо, чтобы сила, стремящаяся возвратить тело в положение равновесия, была пропорциональна смещению тела из положения равновесия и направлена в сторону, противоположную смещению:

Силы любой другой физической природы, удовлетворяющие этому условию, называются квазиупругими .

Таким образом, груз некоторой массы m , прикрепленный к пружине жесткости k , второй конец которой закреплен неподвижно (рис. 2.2.1), составляют систему, способную в отсутствие трения совершать свободные гармонические колебания. Груз на пружине называют линейным гармоническим осциллятором .

Круговая частота ω 0 свободных колебаний груза на пружине находится из второго закона Ньютона:

следовательно

Частота ω 0 называется собственной частотой колебательной системы.

Период T гармонических колебаний груза на пружине равен

При горизонтальном расположении системы пружина-груз сила тяжести, приложенная к грузу, компенсируется силой реакции опоры. Если же груз подвешен на пружине, то сила тяжести направлена по линии движения груза. В положении равновесия пружина растянута на величину x 0 , равную

и колебания совершаются около этого нового положения равновесия. Приведенные выше выражения для собственной частоты ω 0 и периода колебаний T справедливы и в этом случае.

Строгое описание поведения колебательной системы может быть дано, если принять во внимание математическую связь между ускорением тела a и координатой x : ускорение является второй производной координаты тела x по времени t :

Поэтому второй закон Ньютона для груза на пружине может быть записан в виде

(*)

Все физические системы (не только механические), описываемые уравнением (*), способны совершать свободные гармонические колебания, так как решением этого уравнения являются гармонические функции вида

x = x m cos (ωt + φ 0).

Уравнение (*) называется уравнением свободных колебаний . Следует обратить внимание на то, что физические свойства колебательной системы определяют только собственную частоту колебаний ω 0 или период T . Такие параметры колебательного процесса, как амплитуда x m и начальная фаза φ 0 , определяются способом, с помощью которого система была выведена из состояния равновесия в начальный момент времени.

Если, например, груз был смещен из положения равновесия на расстояние Δl и затем в момент времени t = 0 отпущен без начальной скорости, то x m = Δl , φ 0 = 0.

Если же грузу, находившемуся в положении равновесия, с помощью резкого толчка была сообщена начальная скорость , то

Таким образом, амплитуда x m свободных колебаний и его начальная фаза φ 0 определяются начальными условиями .

Существует много разновидностей механических колебательных систем, в которых используются силы упругих деформаций. На рис. 2.2.2 показан угловой аналог линейного гармонического осциллятора, совершающий крутильные колебания. Горизонтально расположенный диск висит на упругой нити, закрепленной в его центре масс. При повороте диска на угол θ возникает момент сил M упр упругой деформации кручения:

Это соотношение выражает закон Гука для деформации кручения. Величина χ аналогична жесткости пружины k . Второй закон Ньютона для вращательного движения диска записывается в виде

где I = I C - момент инерции диска относительно оси, проходящий через центр масс, ε - угловое ускорение.

По аналогии с грузом на пружине можно получить:

Крутильный маятник широко используется в механических часах. Его называют балансиром. В балансире момент упругих сил создается с помощью спиралевидной пружинки.

Рассмотрим колебания груза на пружине, при условии, что пружина не деформирована за пределы упругости. Покажем, что такой груз будет совершать гармонические колебания относительно положения равновесия (рис.1.1.3). Действительно, согласно закону Гука, сжатая или растянутая пружина создаёт гармоническую силу:

где – коэффициент жёсткости пружины, – координата положения равновесия, х – координата груза (материальной точки) в момент времени , - смещение от положения равновесия.

Поместим начало отсчета координаты в положение равновесия системы. В этом случае .

Если пружину растянуть на величину х , после чего отпустить в момент времени t =0, то уравнение движения груза согласно второму закону Ньютона примет вид -kx =ma , или , и

(1.1.6)

Это уравнение совпадает по виду с уравнением движения (1.1.3) системы, совершающей гармонические колебания, его решение будем искать в виде:

. (1.1.7)

Подставим (1.17) в (1.1.6), имеем: то есть выражение (1.1.7) является решением уравнения (1.1.6) при условии, что

Если в начальный момент времени положение груза было произвольным, то уравнение движения примет вид:

.

Рассмотрим, как меняется энергия груза, совершающего гармонические колебания в отсутствие внешних сил (рис.1.14). Если в момент времени t =0 грузу сообщить смещение х=А , то его полная энергия станет равной потенциальной энергии деформированной пружины , кинетическая энергия равна нулю (точка 1).

На груз действует сила F= -kx , стремящаяся вернуть его в положение равновесия, поэтому груз движется с ускорением и увеличивает свою скорость, а, следовательно, и кинетическую энергию. Эта сила сокращает смещение груза х, потенциальная энергия груза убывает, переходя в кинетическую. Система «груз - пружина» замкнутая, поэтому её полная энергия сохраняется, то есть:

. (1.1.8)

В момент времени груз находится в положении равновесия (точка 2), его потенциальная энергия равна нулю, а кинетическая максимальна . Максимальную скорость груза найдём из закона сохранения энергии (1.1.8):

За счёт запаса кинетической энергии груз совершает работу против упругой силы и пролетает положение равновесия. Кинетическая энергия постепенно переходит в потенциальную. При груз имеет максимальное отрицательное смещение –А, кинетическая энергия Wk =0, груз останавливается и начинает движение к положению равновесия под действием упругой силы F= -kx . Далее движение происходит аналогично.

Маятники

Под маятником понимают твёрдое тело, которое совершает под действием силы тяжести колебания вокруг неподвижной точки или оси. Различают физический и математический маятники.

Математический маятник – это идеализированная система, состоящая из невесомой нерастяжимой нити, на которой подвешена масса, сосредоточенная в одной материальной точке.

Математическим маятником, например, является шарик на длинной тонкой нити.

Отклонение маятника от положения равновесия характеризуется углом φ , который образует нить с вертикалью (рис.1.15). При отклонении маятника от положения равновесия возникает момент внешних сил (силы тяжести) : , где m – масса, – длина маятника

Этот момент стремится вернуть маятник в положение равновесия (аналогично квазиупругой силе) и направлен противоположно смещению φ , поэтому в формуле стоит знак «минус».

Уравнение динамики вращательного движения для маятника имеет вид: Iε= ,

.

Будем рассматривать случай малых колебаний, поэтому sin φ ≈φ , обозначим ,

имеем: , или , и окончательно

Это уравнение гармонических колебаний, его решение:

.

Частота колебаний математического маятника определяется только его длиной и ускорением силы тяжести, и не зависит от массы маятника. Период равен:

Если колеблющееся тело нельзя представить, как материальную точку, то маятник называют физическим (рис.1.1.6). Уравнение его движения запишем в виде:

.

В случае малых колебаний , или =0 , где . Это уравнение движения тела, совершающего гармонические колебания. Частота колебаний физического маятника зависит от его массы, длины и момента инерции относительно оси, проходящей через точку подвеса.

Обозначим . Величина называется приведённой длинной физического маятника. Это длина математического маятника, период колебаний которого совпадает с периодом данного физического маятника. Точка на прямой, соединяющей точку подвеса с центром масс, лежащая на расстоянии приведённой длины от оси вращения, называется центром качания физического маятника (О’ ). Если маятник подвесить в центре качания, то приведённая длина и период колебаний будут теми же, что и в точке О . Таким образом, точка подвеса и центр качания обладают свойствами взаимности: при переносе точки подвеса в центр качения прежняя точка подвеса становится новым центром качения.

Математический маятник, который качается с таким же периодом, как и рассматриваемый физический, называется изохронным данному физическому маятнику.

1.1.4. Сложение колебаний (биения, фигуры Лиссажу). Векторное описание сложения колебаний

Сложение одинаково направленных колебаний можно производить методом векторных диаграмм. Любое гармоническое колебание можно представить в виде вектора следующим образом. Выберем ось х с началом отсчета в точке О (рис.1.1.7)

Из точки О построим вектор , который составляет угол с осью х . Пусть этот вектор поворачивается с угловой скоростью . Проекция вектора на ось Х равна:

то есть она совершает гармонические колебания с амплитудой а.

Рассмотрим два гармонических колебания одинакового направления и одинаковой циклической малой , заданные векторами и . Смещения по оси Х равны:

результирующий вектор имеет проекцию и представляет собой результирующее колебание (рис.1.1.8), по теореме косинусов Таким образом, сложение гармонических колебаний производится сложением векторов.

Проведем сложение взаимно перпендикулярных колебаний. Пусть материальная точка совершает два взаимно перпендикулярных колебания частотой :

.

Сама материальная точка при этом будет двигаться по некоторой криволинейной траектории.

Из уравнения движения следует: ,

. (1.1.9)

Из уравнения (1.1.9) можно получить уравнение эллипса (рис.1.1.9):

Рассмотрим частные случаи этого уравнения:

1. Разность фаз колебаний α= 0. При этом т.е. или Это уравнение прямой, и результирующее колебание происходит вдоль этой прямой с амплитудой (рис.1.1.10).

2. Если разность фаз то уравнение (1.1.9) переходит в уравнение эллипса, приведенного к координатным осям, При материальная точка движется по окружности, уравнение которой (рис.1.1.11).

3. Если частоты колебаний неодинаковы, то материальная точка описывает фигуры Лиссажу (рис.1112).

Рассмотрим сложение колебаний одного направления, частоты которых мало отличаются друг от друга. В этом случае результирующее движение можно рассматривать как гармоническое колебание с пульсирующей амплитудой. Такие колебания называются биениями.

Пусть частота одного колебания , второго . Амплитуды обоих колебаний одинаковы и равны а. Начальные фазы равны нулю. В таком случае уравнения колебаний имеют вид:

Сложим эти выражения:

График функции х(t) представлен на рис. 1.1.13. Множитель меняется гораздо медленнее, чем , поэтому (1.1.10) можно рассматривать как гармоническое колебание частоты , амплитуда которого меняется по некоторому периодическому закону

Свободные колебания совершаются под действием внутренних сил системы после того, как система была выведена из положения равновесия.

Для того, чтобы свободные колебания совершались по гармоническому закону, необходимо, чтобы сила, стремящаяся возвратить тело в положение равновесия, была пропорциональна смещению тела из положения равновесия и направлена в сторону, противоположную смещению (см. §2.1):

Силы любой другой физической природы, удовлетворяющие этому условию, называются квазиупругими .

Таким образом, груз некоторой массы m , прикрепленный к пружине жесткости k , второй конец которой закреплен неподвижно (рис. 2.2.1), составляют систему, способную совершать в отсутствие трения свободные гармонические колебания. Груз на пружине называют линейным гармоническим осциллятором .

Круговая частота ω 0 свободных колебаний груза на пружине находится из второго закона Ньютона :

При горизонтальном расположении системы пружина-груз сила тяжести, приложенная к грузу, компенсируется силой реакции опоры. Если же груз подвешен на пружине, то сила тяжести направлена по линии движения груза. В положении равновесия пружина растянута на величину x 0 , равную

Поэтому второй закон Ньютона для груза на пружине может быть записан в виде

Уравнение (*) называется уравнением свободных колебаний . Следует обратить внимание на то, что физические свойства колебательной системы определяют только собственную частоту колебаний ω 0 или период T . Такие параметры процесса колебаний, как амплитуда x m и начальная фаза φ 0 , определяются способом, с помощью которого система была выведена из состояния равновесия в начальный момент времени.


Если, например, груз был смещен из положения равновесия на расстояние Δl и затем в момент времени t = 0 отпущен без начальной скорости, то x m = Δl , φ 0 = 0.

Если же грузу, находившемуся в положении равновесия, с помощью резкого толчка была сообщена начальная скорость ± υ 0 , то ,

Таким образом, амплитуда x m свободных колебаний и его начальная фаза φ 0 определяются начальными условиями .

Существует много разновидностей механических колебательных систем, в которых используются силы упругих деформаций. На рис. 2.2.2 показан угловой аналог линейного гармонического осциллятора. Горизонтально расположенный диск висит на упругой нити, закрепленной в его центре масс. При повороте диска на угол θ возникает момент сил M упр упругой деформации кручения:

где I = I C - момент инерции диска относительно оси, проходящий через центр масс, ε - угловое ускорение.

По аналогии с грузом на пружине можно получить:


Свободные колебания. Математический маятник

Математическим маятником называют тело небольших размеров, подвешенное на тонкой нерастяжимой нити, масса которой пренебрежимо мала по сравнению с массой тела. В положении равновесия, когда маятник висит по отвесу, сила тяжести уравновешивается силой натяжения нити . При отклонении маятника из положения равновесия на некоторый угол φ появляется касательная составляющая силы тяжести F τ = -mg sin φ (рис. 2.3.1). Знак «минус» в этой формуле означает, что касательная составляющая направлена в сторону, противоположную отклонению маятника.

Если обозначить через x линейное смещение маятника от положения равновесия по дуге окружности радиуса l , то его угловое смещение будет равно φ = x / l . Второй закон Ньютона, записанный для проекций векторов ускорения и силы на направление касательной, дает:

Это соотношение показывает, что математический маятник представляет собой сложную нелинейную систему, так как сила, стремящаяся вернуть маятник в положение равновесия, пропорциональна не смещению x , а

Только в случае малых колебаний , когда приближенно можно заменить на математический маятник является гармоническим осциллятором, т. е. системой, способной совершать гармонические колебания. Практически такое приближение справедливо для углов порядка 15-20°; при этом величина отличается от не более чем на 2 %. Колебания маятника при больших амплитудах не являются гармоническими.

Для малых колебаний математического маятника второй закон Ньютона записывается в виде

Эта формула выражает собственную частоту малых колебаний математического маятника .

Следовательно,

Любое тело, насаженное на горизонтальную ось вращения, способно совершать в поле тяготения свободные колебания и, следовательно, также является маятником. Такой маятник принято называть физическим (рис. 2.3.2). Он отличается от математического только распределением масс. В положении устойчивого равновесия центр масс C физического маятника находится ниже оси вращения О на вертикали, проходящей через ось. При отклонении маятника на угол φ возникает момент силы тяжести, стремящийся возвратить маятник в положение равновесия:

и второй закон Ньютона для физического маятника принимает вид (см. §1.23)

Здесь ω 0 - собственная частота малых колебаний физического маятника .

Следовательно,

Поэтому уравнение, выражающее второй закон Ньютона для физического маятника, можно записать в виде

Окончательно для круговой частоты ω 0 свободных колебаний физического маятника получается выражение:


Превращения энергии при свободных механических колебаниях

При свободных механических колебаниях кинетическая и потенциальная энергии периодически изменяются. При максимальном отклонении тела от положения равновесия его скорость, а следовательно, и кинетическая энергия обращаются в нуль. В этом положении потенциальная энергия колеблющегося тела достигает максимального значения. Для груза на пружине потенциальная энергия - это энергия упругих деформаций пружины. Для математического маятника - это энергия в поле тяготения Земли.

Когда тело при своем движении проходит через положение равновесия, его скорость максимальна. Тело проскакивает положение равновесия по закону инерции. В этот момент оно обладает максимальной кинетической и минимальной потенциальной энергией. Увеличение кинетической энергии происходит за счет уменьшения потенциальной энергии. При дальнейшем движении начинает увеличиваться потенциальная энергия за счет убыли кинетической энергии и т. д.

Таким образом, при гармонических колебаниях происходит периодическое превращение кинетической энергии в потенциальную и наоборот.

Если в колебательной системе отсутствует трение, то полная механическая энергия при свободных колебаниях остается неизменной.

Для груза на пружине (см. §2.2):

В реальных условиях любая колебательная система находится под воздействием сил трения (сопротивления). При этом часть механической энергии превращается во внутреннюю энергию теплового движения атомов и молекул, и колебания становятся затухающими (рис. 2.4.2).

Скорость затухания колебаний зависит от величины сил трения. Интервал времени τ, в течении которого амплитуда колебаний уменьшается в e ≈ 2,7 раз, называется временем затухания .

Частота свободных колебаний зависит от скорости затухания колебаний. При возрастании сил трения собственная частота уменьшается. Однако, изменение собственной частоты становится заметным лишь при достаточно больших силах трения, когда собственные колебания быстро затухают.

Важной характеристикой колебательной системы, совершающей свободные затухающие колебания, является добротность Q . Этот параметр определяется как число N полных колебаний, совершаемых системой за время затухания τ, умноженное на π:

Таким образом, добротность характеризует относительную убыль энергии колебательной системы из-за наличия трения на интервале времени, равном одному периоду колебаний.

Вынужденные колебания. Резонанс. Автоколебания

Колебания, совершающиеся под воздействием внешней периодической силы, называются вынужденными .

Внешняя сила совершает положительную работу и обеспечивает приток энергии к колебательной системе. Она не дает колебаниям затухать, несмотря на действие сил трения.

Периодическая внешняя сила может изменяться во времени по различным законам. Особый интерес представляет случай, когда внешняя сила, изменяющаяся по гармоническому закону с частотой ω, воздействует на колебательную систему, способную совершать собственные колебания на некоторой частоте ω 0 .

Если свободные колебания происходят на частоте ω 0 , которая определяется параметрами системы, то установившиеся вынужденные колебания всегда происходят на частоте ω внешней силы .

После начала воздействия внешней силы на колебательную систему необходимо некоторое время Δt для установления вынужденных колебаний. Время установления по порядку величины равно времени затухания τ свободных колебаний в колебательной системе.

В начальный момент в колебательной системе возбуждаются оба процесса - вынужденные колебания на частоте ω и свободные колебания на собственной частоте ω 0 . Но свободные колебания затухают из-за неизбежного наличия сил трения. Поэтому через некоторое время в колебательной системе остаются только стационарные колебания на частоте ω внешней вынуждающей силы.

Рассмотрим в качестве примера вынужденные колебания тела на пружине (рис. 2.5.1). Внешняя сила приложена к свободному концу пружины. Она заставляет свободный (левый на рис. 2.5.1) конец пружины перемещаться по закону

Если левый конец пружины смещен на расстояние y , а правый - на расстояние x от их первоначального положения, когда пружина была недеформирована, то удлинение пружины Δl равно:

В этом уравнении сила, действующая на тело, представлена в виде двух слагаемых. Первое слагаемое в правой части - это упругая сила, стремящаяся возвратить тело в положение равновесия (x = 0). Второе слагаемое - внешнее периодическое воздействие на тело. Это слагаемое и называют вынуждающей силой .

Уравнению, выражающему второй закон Ньютона для тела на пружине при наличии внешнего периодического воздействия, можно придать строгую математическую форму, если учесть связь между ускорением тела и его координатой: Тогда запишется в виде

Уравнение (**) не учитывает действия сил трения. В отличие от уравнения свободных колебаний (*) (см. §2.2) уравнение вынужденных колебаний (**) содержит две частоты - частоту ω 0 свободных колебаний и частоту ω вынуждающей силы.

Установившиеся вынужденные колебания груза на пружине происходят на частоте внешнего воздействия по закону

x (t ) = x m cos (ωt + θ).

Амплитуда вынужденных колебаний x m и начальная фаза θ зависят от соотношения частот ω 0 и ω и от амплитуды y m внешней силы.

На очень низких частотах, когда ω << ω 0 , движение тела массой m , прикрепленного к правому концу пружины, повторяет движение левого конца пружины. При этом x (t ) = y (t ), и пружина остается практически недеформированной. Внешняя сила приложенная к левому концу пружины, работы не совершает, т. к. модуль этой силы при ω << ω 0 стремится к нулю.

Если частота ω внешней силы приближается к собственной частоте ω 0 , возникает резкое возрастание амплитуды вынужденных колебаний. Это явление называется резонансом . Зависимость амплитуды x m вынужденных колебаний от частоты ω вынуждающей силы называется резонансной характеристикой или резонансной кривой (рис. 2.5.2).

При резонансе амплитуда x m колебания груза может во много раз превосходить амплитуду y m колебаний свободного (левого) конца пружины, вызванного внешним воздействием. В отсутствие трения амплитуда вынужденных колебаний при резонансе должна неограниченно возрастать. В реальных условиях амплитуда установившихся вынужденных колебаний определяется условием: работа внешней силы в течение периода колебаний должна равняться потерям механической энергии за то же время из-за трения. Чем меньше трение (т. е. чем выше добротность Q колебательной системы), тем больше амплитуда вынужденных колебаний при резонансе.

У колебательных систем с не очень высокой добротностью (< 10) резонансная частота несколько смещается в сторону низких частот. Это хорошо заметно на рис. 2.5.2.

Явление резонанса может явиться причиной разрушения мостов, зданий и других сооружений, если собственные частоты их колебаний совпадут с частотой периодически действующей силы, возникшей, например, из-за вращения несбалансированного мотора.

Вынужденные колебания - это незатухающие колебания. Неизбежные потери энергии на трение компенсируются подводом энергии от внешнего источника периодически действующей силы. Существуют системы, в которых незатухающие колебания возникают не за счет периодического внешнего воздействия, а в результате имеющейся у таких систем способности самой регулировать поступление энергии от постоянного источника. Такие системы называются автоколебательными , а процесс незатухающих колебаний в таких системах - автоколебаниями . В автоколебательной системе можно выделить три характерных элемента - колебательная система, источник энергии и устройство обратной связи между колебательной системой и источником. В качестве колебательной системы может быть использована любая механическая система, способная совершать собственные затухающие колебания (например, маятник настенных часов).

Источником энергии может служить энергия деформация пружины или потенциальная энергия груза в поле тяжести. Устройство обратной связи представляет собой некоторый механизм, с помощью которого автоколебательная система регулирует поступление энергии от источника. На рис. 2.5.3 изображена схема взаимодействия различных элементов автоколебательной системы.

Примером механической автоколебательной системы может служить часовой механизм с анкерным ходом (рис. 2.5.4). Ходовое колесо с косыми зубьями жестко скреплено с зубчатым барабаном, через который перекинута цепочка с гирей. На верхнем конце маятника закреплен анкер (якорек) с двумя пластинками из твердого материала, изогнутыми по дуге окружности с центром на оси маятника. В ручных часах гиря заменяется пружиной, а маятник - балансиром - маховичком, скрепленным со спиральной пружиной. Балансир совершает крутильные колебания вокруг своей оси. Колебательной системой в часах является маятник или балансир.

Источником энергии - поднятая вверх гиря или заведенная пружина. Устройством, с помощью которого осуществляется обратная связь, является анкер, позволяющий ходовому колесу повернуться на один зубец за один полупериод. Обратная связь осуществляется взаимодействием анкера с ходовым колесом. При каждом колебании маятника зубец ходового колеса толкает анкерную вилку в направлении движения маятника, передавая ему некоторую порцию энергии, которая компенсирует потери энергии на трение. Таким образом, потенциальная энергия гири (или закрученной пружины) постепенно, отдельными порциями передается маятнику.

Механические автоколебательные системы широко распространены в окружающей нас жизни и в технике. Автоколебания совершают паровые машины, двигатели внутреннего сгорания, электрические звонки, струны смычковых музыкальных инструментов, воздушные столбы в трубах духовых инструментов, голосовые связки при разговоре или пении и т. д.

Рисунок 2.5.4. Часовой механизм с маятником.

В технике и окружающем нас мире часто приходится сталкиваться с периодическими (или почти периодическими ) процессами, которые повторяются через одинаковые промежутки времени. Такие процессы называют колебательными .

Колебания – один из самых распространенных процессов в природе и технике. Крылья насекомых и птиц в полете, высотные здания и высоковольтные провода под действием ветра, маятник заведенных часов и автомобиль на рессорах во время движения, уровень реки в течение года и температура человеческого тела при болезни, звук - это колебания плотности и давления воздуха, радиоволны - периодические изменения напряженностей электрического и магнитного полей, видимый свет - тоже электромагнитные колебания, только с несколько иными длиной волны и частотой, землетрясения - колебания почвы, биение пульса - периодические сокращения сердечной мышцы человека и т.д.

Колебания бывают механические, электромагнитные, химические, термодинамические и различные другие. Несмотря на такое разнообразие, все они имеют между собой много общего.

Колебательные явления различной физической природы подчиняются общим закономерностям. Например, колебания тока в электрической цепи и колебания математического маятника могут описываться одинаковыми уравнениями. Общность колебательных закономерностей позволяет рассматривать колебательные процессы различной природы с единой точки зрения. Признаком колебательного движения является его периодичность .

Механические колебания – это движения, которые точно или приблизительно повторяются через одинаковые промежутки времени .

Примерами простых колебательных систем могут служить груз на пружине (пружинный маятник) или шарик на нити (математический маятник).

При механических колебаниях кинетическая и потенциальная энергии периодически изменяются.

При максимальном отклонении тела от положения равновесия его скорость, а следовательно, и кинетическая энергия обращаются в нуль . В этом положении потенциальная энергия колеблющегося тела достигает максимального значения . Для груза на пружине потенциальная энергия – это энергия упругих деформаций пружины. Для математического маятника – это энергия в поле тяготения Земли.

Когда тело при своем движении проходит через положение равновесия , его скорость максимальна. Тело проскакивает положение равновесия по закону инерции. В этот момент оно обладает максимальной кинетической и минимальной потенциальной энергией . Увеличение кинетической энергии происходит за счет уменьшения потенциальной энергии.

При дальнейшем движении начинает увеличиваться потенциальная энергия за счет убыли кинетической энергии и т. д.

Таким образом, при гармонических колебаниях происходит периодическое превращение кинетической энергии в потенциальную и наоборот .

Если в колебательной системе отсутствует трение, то полная механическая энергия при механических колебаниях остается неизменной.

Для груза на пружине :

В положении максимального отклонения полная энергия мятника равна потенциальной энергии деформированной пружины:

При прохождении положения равновесия полная энергия равна кинетической энергии груза:

Для малых колебаний математического маятника :

В положении максимального отклонения полная энергия мятника равна потенциальной энергии поднятого на высоту h тела:

При прохождении положения равновесия полная энергия равна кинетической энергии тела:

Здесь h m – максимальная высота подъема маятника в поле тяготения Земли, x m и υ m = ω 0 x m – максимальные значения отклонения маятника от положения равновесия и его скорости.

Гармонические колебания и их характеристики. Уравнение гармонического колебания.

Простейшим видом колебательного процесса являются простые гармонические колебания , которые описываются уравнением

x = x m cos (ωt + φ 0).

Здесь x – смещение тела от положения равновесия,
x m – амплитуда колебаний, то есть максимальное смещение от положения равновесия,
ω – циклическая или круговая частота колебаний,
t – время.

Характеристики колебательного движения.

Смещение х – отклонение колеблющейся точки от положения равновесия. Единица измерения – 1 метр.

Амплитуда колебаний А – максимальноеотклонение колеблющейся точки от положения равновесия. Единица измерения – 1 метр.

Период колебаний T – минимальный интервал времени, за который происходит одно полное колебание, называется. Единица измерения – 1 секунда.

T=t/N

где t - время колебаний, N - количество колебаний, совершенных за это время.

По графику гармоническихколебаний можно определить период и амплитуду колебаний:

Частота колебаний ν – физическая величина, равная числу колебаний за единицу времени.

ν=N/t

Частота – величина, обратная периоду колебаний:

Частота колебаний ν показывает, сколько колебаний совершается за 1 с.Единица частоты – герц (Гц).

Циклическая частота ω – число колебаний за 2π секунды.

Частота колебаний ν связана с циклической частотой ω и периодом колебаний T соотношениями:

Фаза гармонического процесса – величина, стоящая под знаком синуса или косинуса в уравнении гармонических колебаний φ = ωt + φ 0 . При t = 0 φ = φ 0 , поэтому φ 0 называют начальной фазой .

График гармонических колебаний представляет собой синусоиду или косинусоиду.

Во всех трех случаях для синих кривых φ 0 = 0:



только большей амплитудой (x" m > x m);



красная кривая отличается от синей только значением периода (T" = T / 2);



красная кривая отличается от синей только значением начальной фазы (рад).

При колебательном движении тела вдоль прямой линии (ось OX ) вектор скорости направлен всегда вдоль этой прямой. Скорость движения тела определяется выражением

В математике процедура нахождения предела отношения Δх/Δt при Δt → 0 называется вычислением производной функции x (t ) по времени t и обозначается как x" (t ).Скорость равна производной функции х(t ) по времени t.

Для гармонического закона движения x = x m cos (ωt + φ 0) вычисление производной приводит к следующему результату:

υ х =x" (t )= ωx m sin (ωt + φ 0)

Аналогичным образом определяется ускорение a x тела при гармонических колебаниях. Ускорение a равно производной функции υ(t ) по времени t , или второй производной функции x (t ). Вычисления дают:

а х =υ х "(t) =x"" (t )= -ω 2 x m cos (ωt + φ 0)=-ω 2 x

Знак минус в этом выражении означает, что ускорение a (t ) всегда имеет знак, противоположный знаку смещения x (t ), и, следовательно, по второму закону Ньютона сила, заставляющая тело совершать гармонические колебания, направлена всегда в сторону положения равновесия (x = 0).

На рисунке приведены графики координаты, скорости и ускорения тела, совершающего гармонические колебания.

Графики координаты x(t), скорости υ(t) и ускорения a(t) тела, совершающего гармонические колебания.

Пружинный маятник.

Пружинным маятником называют груз некоторой массы m, прикрепленный к пружине жесткости k, второй конец которой закреплен неподвижно .

Собственная частота ω 0 свободных колебаний груза на пружине находится по формуле:

Период T гармонических колебаний груза на пружине равен

Значит, период колебаний пружинного маятника зависит от массы груза и от жесткости пружины.

Физические свойства колебательной системы определяют только собственную частоту колебаний ω 0 и период T . Такие параметры процесса колебаний, как амплитуда x m и начальная фаза φ 0 , определяются способом, с помощью которого система была выведена из состояния равновесия в начальный момент времени.

Математический маятник.

Математическим маятником называют тело небольших размеров, подвешенное на тонкой нерастяжимой нити, масса которой пренебрежимо мала по сравнению с массой тела.

В положении равновесия, когда маятник висит по отвесу, сила тяжести уравновешивается силой натяжения нити N. При отклонении маятника из положения равновесия на некоторый угол φ появляется касательная составляющая силы тяжести F τ = –mg sin φ. Знак «минус» в этой формуле означает, что касательная составляющая направлена в сторону, противоположную отклонению маятника.

Математический маятник.φ – угловое отклонение маятника от положения равновесия,

x = lφ – смещение маятника по дуге

Собственная частота малых колебаний математического маятника выражается формулой:

Период колебаний математического маятника:

Значит, период колебаний математического маятника зависит отдлины нити и от ускорения свободного падения той местности, где установлен маятник.

Свободные и вынужденные колебания.

Механические колебания, как и колебательные процессы любой другой физической природы, могут быть свободными и вынужденными .

Свободные колебания – это колебания, которые возникают в системе под действием внутренних сил, после того, как система была выведена из положения устойчивого равновесия.

Колебания груза на пружине или колебания маятника являются свободными колебаниями.

Для того, чтобы свободные колебания совершались по гармоническому закону, необходимо, чтобы сила, стремящаяся возвратить тело в положение равновесия, была пропорциональна смещению тела из положения равновесия и направлена в сторону, противоположную смещению .

В реальных условиях любая колебательная система находится под воздействием сил трения (сопротивления). При этом часть механической энергии превращается во внутреннюю энергию теплового движения атомов и молекул, и колебания становятся затухающими .

Затухающими называют колебания, амплитуда которых уменьшается со временем .

Чтобы колебания не затухали, необходимо сообщать системе дополнительную энегрию, т.е. воздействовать на колебательную систему периодической силой (например, для раскачивания качели).

Колебания, совершающиеся под воздействием внешней периодически изменяющейся силы, называются вынужденными .

Внешняя сила совершает положительную работу и обеспечивает приток энергии к колебательной системе. Она не дает колебаниям затухать, несмотря на действие сил трения.

Периодическая внешняя сила может изменяться во времени по различным законам. Особый интерес представляет случай, когда внешняя сила, изменяющаяся по гармоническому закону с частотой ω, воздействует на колебательную систему, способную совершать собственные колебания на некоторой частоте ω 0 .

Если свободные колебания происходят на частоте ω 0 , которая определяется параметрами системы, то установившиеся вынужденные колебания всегда происходят на частоте ω внешней силы .

Явление резкого возрастания амплитуды вынужденных колебаний при совпадении частоты собственных колебаний с частотой внешней вынуждающей силы называется резонансом .

Зависимость амплитуды x m вынужденных колебаний от частоты ω вынуждающей силы называется резонансной характеристикой или резонансной кривой .

Резонансные кривые при различных уровнях затухания:

1 – колебательная система без трения; при резонансе амплитуда x m вынужденных колебаний неограниченно возрастает;

2, 3, 4 – реальные резонансные кривые для колебательных систем с различным трением.

В отсутствие трения амплитуда вынужденных колебаний при резонансе должна неограниченно возрастать. В реальных условиях амплитуда установившихся вынужденных колебаний определяется условием: работа внешней силы в течение периода колебаний должна равняться потерям механической энергии за то же время из-за трения. Чем меньше трение, тем больше амплитуда вынужденных колебаний при резонансе.

Явление резонанса может явиться причиной разрушения мостов, зданий и других сооружений, если собственные частоты их колебаний совпадут с частотой периодически действующей силы, возникшей, например, из-за вращения несбалансированного мотора.

Определение

Частота колебаний ($\nu$) является одним из параметров, которые характеризуют колебания Это величина обратная периоду колебаний ($T$):

\[\nu =\frac{1}{T}\left(1\right).\]

Таким образом, частотой колебаний называют физическую величину, равную числу повторений колебаний за единицу времени.

\[\nu =\frac{N}{\Delta t}\left(2\right),\]

где $N$ - число полных колебательных движений; $\Delta t$ - время, за которые произошли данные колебания.

Циклическая частота колебаний (${\omega }_0$) связана с частотой $\nu $ формулой:

\[\nu =\frac{{\omega }_0}{2\pi }\left(3\right).\]

Единицей измерения частоты в Международной системе единиц (СИ) является герц или обратная секунда:

\[\left[\nu \right]=с^{-1}=Гц.\]

Пружинный маятник

Определение

Пружинным маятником называют систему, которая состоит из упругой пружины, к которой прикреплен груз.

Допустим, что масса груза равна $m$, коэффициент упругости пружины $k$. Масса пружины в таком маятнике обычно не учитывается. Если рассматривать горизонтальные движения груза (рис.1), то он движется под действием силы упругости, если систему вывели из состояния равновесия и предоставили самой себе. При этом часто считают, что силы трения можно не учитывать.

Уравнения колебаний пружинного маятника

Пружинный маятник, который совершает свободные колебания - это пример гармонического осциллятора. Пусть он выполняет колебания вдоль оси X. Если колебания малые, выполняется закон Гука, то уравнение движения груза запишем как:

\[\ddot{x}+{\omega }^2_0x=0\left(4\right),\]

где ${\omega }^2_0=\frac{k}{m}$ - циклическая частота колебаний пружинного маятника. Решение уравнения (4) это функция синуса или косинуса вида:

где ${\omega }_0=\sqrt{\frac{k}{m}}>0$- циклическая частота колебаний пружинного маятника, $A$ - амплитуда колебаний; ${(\omega }_0t+\varphi)$ - фаза колебаний; $\varphi $ и ${\varphi }_1$ - начальные фазы колебаний.

Частота колебаний пружинного маятника

Из формулы (3) и ${\omega }_0=\sqrt{\frac{k}{m}}$, следует, что частота колебаний пружинного маятника равна:

\[\nu =\frac{1}{2\pi }\sqrt{\frac{k}{m}}\ \left(6\right).\]

Формула (6) справедлива в случае, если:

  • пружина в маятнике считается невесомой;
  • груз, прикрепленный к пружине, является абсолютно твердым телом;
  • крутильные колебания отсутствуют.

Выражение (6) показывает, что частота колебаний пружинного маятника увеличивается с уменьшением массы груза и увеличением коэффициента упругости пружины. Частота колебаний пружинного маятника не зависит от амплитуды. Если колебания не являются малыми, сила упругости пружины не подчиняется закону Гука, то появляется зависимость частоты колебаний от амплитуды.

Примеры задач с решением

Пример 1

Задание. Период колебаний пружинного маятника составляет $T=5\cdot {10}^{-3}с$. Чему равна частота колебаний в этом случае? Какова циклическая частота колебаний этого груза?

Решение. Частота колебаний - это величина обратная периоду колебаний, следовательно, для решения задачи достаточно воспользоваться формулой:

\[\nu =\frac{1}{T}\left(1.1\right).\]

Вычислим искомую частоту:

\[\nu =\frac{1}{5\cdot {10}^{-3}}=200\ \left(Гц\right).\]

Циклическая частота связана с частотой $\nu $ как:

\[{\omega }_0=2\pi \nu \ \left(1.2\right).\]

Вычислим циклическую частоту:

\[{\omega }_0=2\pi \cdot 200\approx 1256\ \left(\frac{рад}{с}\right).\]

Ответ. $1)\ \nu =200$ Гц. 2) ${\omega }_0=1256\ \frac{рад}{с}$

Пример 2

Задание. Массу груза, висящего на упругой пружине (рис.2), увеличивают на величину $\Delta m$, при этом частота уменьшается в $n$ раз. Какова масса первого груза?

\[\nu =\frac{1}{2\pi }\sqrt{\frac{k}{m}}\ \left(2.1\right).\]

Для первого груза частота будет равна:

\[{\nu }_1=\frac{1}{2\pi }\sqrt{\frac{k}{m}}\ \left(2.2\right).\]

Для второго груза:

\[{\nu }_2=\frac{1}{2\pi }\sqrt{\frac{k}{m+\Delta m}}\ \left(2.2\right).\]

По условию задачи ${\nu }_2=\frac{{\nu }_1}{n}$, найдем отношение $\frac{{\nu }_1}{{\nu }_2}:\frac{{\nu }_1}{{\nu }_2}=\sqrt{\frac{k}{m}\cdot \frac{m+\Delta m}{k}}=\sqrt{1+\frac{\Delta m}{m}}=n\ \left(2.3\right).$

Получим из уравнения (2.3) искомую массу груза. Для этого обе части выражения (2.3) возведем в квадрат и выразим $m$:

Ответ. $m=\frac{\Delta m}{n^2-1}$