Болезни Военный билет Призыв

Как появились кратеры на луне. Самые большие кратеры на Луне. Что является причиной образования кратеров на Луне. Именованные кратеры на видимой стороне Луны

Как образовались лунные кратеры

Со времени открытия кольцеобразных гор (кратеров) на Луне Галилеем в 1610 г. ученых не оставлял вопрос об их происхождении. На его решение ушло три с половиной столетия. Представлялось удивительным обилие кольцевых гор на Луне и полное отсутствие их на Земле. Какие причины могли привести к их образованию?

Размеры лунных кратеров (см. фото) были самые разнообразные: от 200-километровых гигантов, как Байи, Гримальди, до находившихся на пределе различимости, который зависел от мощности телескопа (у наиболее мощных современных телескопов он составлял 1 км).

Лунная поверхность резко подразделялась по рельефу на два типа: сравнительно светлые возвышенности, получившие название «материков», и обширные темные гладкие пространства, которые были названы «морями». Несомненно, в начальный период исследования Луны их и считали морями, но, как только астрономы поняли, что Луна лишена атмосферы, название «моря» приобрело условный характер.

Дело в том, что жидкая вода может существовать только при вполне определенных давлениях атмосферы. По мере понижения давления точка кипения воды понижается (это явление хорошо знакомо альпинистам) и при некотором критическом давлении достигает точки плавления льда. Это давление близко к 10 мбар. Поэтому даже на Марсе, где среднее давление атмосферы равно 6 мбар, жидкая вода существовать не может; твердая фаза воды (лед) непосредственно переходит там в газообразную (пар) и обратно.

На Луне ситуация несколько иная. Там атмосферы нет, давление практически равно нулю и даже лед, если бы он там был, должен был бы постепенно испариться под действием солнечных лучей, а пар из-за малой силы тяжести должен был рассеяться, улетучиться в мировое пространство, как улетучилась когда-то вся лунная атмосфера. Так что на Луне (по крайней мере, на ее поверхности) нет и воды.

Лунные «моря» хорошо видны даже невооруженным глазом, особенно в полнолуние. Они образуют на лунном диске характерные фигуры, которые одним кажутся похожими на двух людей, другим - на человеческое лицо, третьим - на зайца. Уже в хороший бинокль видны крупнейшие кратеры. Они лучше различимы в фазах первой или последней четверти, когда солнечные лучи освещают поверхность Луны под косым углом и кратеры (а также горные хребты, имеющиеся на Луне) отбрасывают длинные тени.

В телескоп можно заметить, что на «материках» кратеров значительно больше, чем на «морях». Это связано с тем, что «материки» - более древние образования, чем «моря». В настоящее время природа тех и других, равно как и лунных кратеров, выяснена окончательно. Но для этого потребовалось полтора столетия напряженных усилий.

«Столетняя война» гипотез

Для объяснения происхождения лунных кратеров было выдвинуто немало гипотез. Большинство из них быстро сошло со сцены, предоставив ее двум основным «соперницам»: вулканической и метеоритной гипотезам. Сторонники этих двух гипотез, сменяя друг друга, вели между собой, по меткому выражению испанского астронома А. Палюзи-Бореля, «столетнюю войну». (В действительности эта борьба продолжалась около 150 лет, но ведь и историческая столетняя война между Англией и Францией длилась 116 лет).

Вулканическая гипотеза старше своей соперницы, хотя ненамного. Впервые ее высказал в конце 80-х годов XVIII в. немецкий астроном И. Шретер. По его мнению, кольцеобразные горы на Луне были созданы силами, исходившими из недр лунного шара и проявлявшимися в виде извержений. Возможность вулканических извержений на Луне предполагал в те же годы известный английский астроном В. Гершель. Правда, никаких доказательств столь активного вулканизма на Луне (хотя бы в прошлом) никто из них привести не мог.

Метеоритная гипотеза была предложена в 1824 г. немецким астрономом Ф. Груитуйзеном (Еще в 1667 г., за полтора столетия до Груитуйзена, метеоритную гипотезу высказывал известный физик Р. Гук. Однако эта гипотеза не получила в те годы развития и вскоре была предана забвению). По его мнению, космические массы, падавшие на Луну, были гораздо больше современных метеоритов и вызывали продавливание кольцевых участков лунной коры с образованием кратеров. Взгляды Груитуйзена были вскоре забыты, и лишь через полвека, в 1873 г., английский астроном Р. Проктор вновь высказал идею о проламывании лунной коры ударами метеоритов. Однако позже он отказался от своих взглядов.

В 1892 г. президент Американского геологического общества Г. Джильберт дал первое серьезное обоснование метеоритной гипотезы. Он впервые высказал идею, что не только кратеры, но и лунные «моря» образованы лавовыми излияниями, вызванными падениями больших масс метеоритов. Увы, статья Джильберта осталась не замеченной в астрономических кругах, и о ней вспомнили лишь полвека спустя.

В 20-х годах нашего столетия известный немецкий геофизик А. Вегенер предложил новый вариант метеоритной гипотезы. Согласно его гипотезе метеориты падали на Луну под действием лунного притяжения, а до этого обращались вокруг Луны, образуя некое «метеоритное кольцо», подобное кольцу Сатурна. Такое предположение понадобилось Вегенеру, чтобы объяснить круговую форму кратеров и отсутствие среди них кратеров с эллиптическими очертаниями. Именно этот аргумент противопоставляли доводам «метеоритчиков» их противники, резонно заявляя, что косых ударов метеоритов о лунную поверхность должно было быть гораздо больше, чем отвесных.

В то время теория сверхскоростных соударений еще не была разработана, не было и соответствующих экспериментов. Образование кратеров приписывалось в основном механическому воздействию падающего метеорита. О взрывных явлениях, сопровождающих удар твердого тела с космической скоростью, никто не имел ни малейшего представления.

А. Вегенер производил другие эксперименты. Он сбрасывал на слой цемента комья цементного порошка, получая при этом отличные модели лунных кратеров, даже с центральной горкой. В дальнейшем, уже в 50-е годы, эти эксперименты были повторены советскими любителями астрономии П. Ф. Сабанеевым и А. М. Беневоленским (см. фото).

В конце XIX и начале XX в. сторонники вулканической гипотезы тоже предприняли ряд попыток ее обоснования. В 1874 г. английские инженеры Дж. Нэсмит и Дж. Карпентер в большой книге, посвященной Луне, выдвинули фонтанно-вулканическую гипотезу, согласно которой извержение из центральной горки приводит к постепенному насыпанию вала кратера. В 1896 г. французский астроном П. Пюизё попытался обосновать вулканическую гипотезу учетом приливов, вызываемых на Луне Землей (нетрудно подсчитать, что они в 20 раз сильнее, чем те, что вызывает на Земле Луна). По мнению Пюизё, приливы и являлись причиной лавовых излияний, образовавших лунные кратеры.

Не остались безучастными к этой дискуссии и геологи. Еще в 1843 г. известный французский геолог Э. де Бомон посвятил одну из своих работ сравнению горных массивов Земли и Луны. Спустя три года американский геолог Д. Дана опубликовал статью «О вулканах на Луне». В это же время изучением форм лунного рельефа занимался такой известный геолог, как Э. Зюсс. Основная идея Зюсса об образовании морей в результате частичного расплавления поверхностного слоя Луны подтвердилась в ходе новейших исследований.

В начале XX в. проблемой происхождения лунных кратеров интересовался академик А. П. Павлов, предложивший остроумную модификацию вулканической гипотезы. По его схеме раскаленная лава, поднимаясь из недр Луны, расплавляла части лунной поверхности, что привело к образованию в этих местах круглых лавовых озер, окаймленных правильными кольцевыми валами. Взгляды Павлова имели много общего с идеями Зюсса. Но никто из геологов не дал четкой картины механизма образования лунных кратеров. Высказывались в основном лишь общие соображения.

В 1949 г. советский геолог А. В. Хабаков выпустил книгу «Об основных вопросах истории развития поверхности Луны», в которой дал подробный анализ структуры лунного рельефа. На основании этого анализа он сделал вывод о том, что происхождение всех форм лунного рельефа можно объяснить только внутренними причинами, в том числе вулканическими процессами. Но как, в ходе какого физического механизма могли образоваться кольцевые структуры, геолог Хабаков, как и его коллеги, объяснить не мог. Для этого нужно было применить методы механики и математики.

Как образуются метеоритные кратеры

О том, что метеорит, ударяясь с большой скоростью о поверхность планеты, может произвести взрывные явления, первым догадался новозеландский ученый А. Джиффорд в 1924 г., давший правильную качественную картину явлений, сопровождающих удар. В результате практически мгновенного торможения при ударе вся кинетическая энергия метеорита переходит в тепло и происходит взрыв. Давление горячих газов, равное по всем направлениям, из-за различного сопротивления среды приведет к уплотнению пород под местом взрыва, к сжатию и раздвижению пород в боковых направлениях, сопровождаемому выбросами материи, к сильному дроблению и разрушению вещества верхних слоев и к выбросу его на большие расстояния и, наконец, к образованию блюдцеобразной выемки, т. е. кратера.

Работа Джиффорда не содержала развитой математической теории образования кратеров при ударах метеоритов и осталась, как это нередко случается в науке, незамеченной.

Прошло 13 лет. На механико-математическом факультете Московского университета студент выпускного курса Кирилл Станюкович готовился к защите дипломной работы. Работа называлась «О происхождении лунных кратеров». В ней была построена первая математическая теория взрывных явлений, сопровождающих удар метеорита о лунную (и любую другую) поверхность. Впервые было строго доказано, что при ударе метеорита с космической скоростью и сам метеорит, и значительная часть вещества мишени мгновенно испаряются. Громадные массы вещества оказываются выброшенными на большие расстояния. На месте взрыва образуется чашеобразное углубление - кратер. Разумеется, форма кратера не зависит от угла падения метеорита.

Готовя свою дипломную работу, Станюкович ничего не знал о статье Джиффорда. Не знал о ней и эстонский астроном Э. Эпик, который за год до Станюковича опубликовал в трудах Тартуской обсерватории статью под названием «Теория образования лунных кратеров». В этой работе проникновение метеорита в грунт при ударе, выброс вещества и образование кратера рассматривались на основе уравнений гидродинамики несжимаемой среды. Как было показано позднее, такой подход приводит к переоценке энергии удара, необходимой для образования кратера данных размеров, на один-два порядка.

Подход Эпика не удовлетворял Станюковича. Но прежде чем выставить свою дипломную работу на защиту, Станюкович сделал о ней доклад на Второй кометно-метеорной конференции, собравшейся в Москве в начале 1937 г. Работа была встречена с интересом и получила одобрение участников конференции. Краткое сообщение о ней было опубликовано в «Астрономическом журнале» ученым секретарем конференции И. С. Астаповичем. Эта небольшая заметка закрепила приоритет молодого ученого, потому что дипломная работа, которую Станюкович успешно защитил весной того же года, осталась неопубликованной. А она вполне заслуживала публикации.

Лишь через 10 лет К. П. Станюкович (ставший к тому времени уже доктором наук) опубликовал совместно с В. В. Федынским статью «О разрушительном действии метеоритных ударов», в которой изложил основы теории и главнейшие результаты, Переключение научных интересов на другие проблемы привело к тому, что до войны опубликовать свой труд Станюкович не успел и сделал это лишь вскоре после войны.

Статья К. П. Станюковича и В. В. Федынского, опубликованная в «Докладах Академии наук СССР», по праву и в настоящее время считается классической работой по проблеме образования кратеров на планетах в результате метеоритных ударов. Она развивает результаты дипломной работы Станюковича на более новой основе. В 1946 г. независимо друг от друга Л. И. Седов (будущий академик) и К. П. Станюкович вывели очень важное соотношение, связывающее давление на фронте ударной волны и энергию взрыва. Кроме того, в 1945 г. была опубликована совместная работа Л. Д. Ландау и К. П. Станюковича по теории нестационарных процессов, из которой можно было вычислить среднюю скорость масс, выброшенных при взрыве, и распределение скоростей выбросов. Были опубликованы за это время и результаты некоторых экспериментальных работ по взрывам. Все эти результаты были использованы в работе К. П. Станюковича и В. В. Федынского.

В этой работе был сделан важный прогноз о том, что кратеры, подобные лунным, должны быть на Марсе, астероидах и вообще на всех телах Солнечной системы, лишенных атмосферы. Лишь через три года аналогичный прогноз сделали Э. Эпик и К. Томбо.

К. П. Станюкович и В. В. Федынский сделали еще один важный вывод: метеоритная бомбардировка приводит к уменьшению массы малых тел Солнечной системы. Потерянная масса в тысячи раз превосходит массу ударяющего метеорита. Эта дезинтеграция планетного и кометного вещества в Солнечной системе может иметь космическое значение.

Это значение сразу понял академик В. Г. Фесенков. В изданной в следующем году монографии «Метеорная материя в междупланетном пространстве» он посвятил процессу дезагрегации астероидов, как он его назвал, целую главу. В отличие от К. П. Станюковича и В. В. Федынского, В. Г. Фесенков не интересовался физикой соударений, а рассматривал судьбу пылинок, отделяющихся от астероидов при метеоритной бомбардировке. Он показал, что именно в этом процессе формируется пылевое облако, наблюдаемое нами в виде зодиакального света.

Вернемся, однако, к теории образования лунных кратеров. К. П. Станюкович продолжал ее разрабатывать дальше. В 1950 г. он опубликовал большую статью «Элементы физической теории метеоров и кратерообразующих метеоритов». В начале 60-х годов К. П. Станюкович подытожил результаты своих многолетних исследований в специальной главе (написанной совместно с автором этой книги) монографии «Луна». Вдвоем мы разработали такие вопросы, как образование светлых лучей и венцов вокруг некоторых кратеров (это насыпные образования, результаты «веерных» выбросов из кратера), а также образование лунных «морей» в ходе грандиозных лавовых излияний из недр Луны при ударах о лунную поверхность крупных тел астероидальных размеров.

В начале 60-х годов активизировались теоретические исследования кратерообразования за рубежом. Большой вклад в теорию формирования кратеров на планетах внесли американские ученые Р. Бьорк и Ю. Шумейкер. С помощью ЭВМ были рассчитаны все деформации вещества метеорита и грунта после удара, движения частиц породы и формирование кратера (рис. 38).

Рис. 38. Процесс образования ударного кратера на Луне (по Ю. Шумейкеру)

Продолжали исследования в этом направлении и советские ученые. С разных точек зрения анализировали процесс кратерообразования Э. И. Андрианкин, Б. А. Иванов, А. К. Мухаметжанов. Они сняли всякие сомнения с ответа на вопрос: могут ли падающие метеориты образовывать кратеры, подобные лунным? Да, могут!

Метеоритные кратеры на Земле

В начале главы был поставлен вопрос: почему кратеры имеются только на Луне и их нет на Земле? Да, так ставился вопрос около ста лет назад. Но в XX в. на поверхности Земли был обнаружен целый ряд структур, которые оказались метеоритными кратерами.

Еще в 1891 г. был впервые описан знаменитый Аризонский кратер (Каньон Дьябло) диаметром 1200 м и глубиной 175 м (см. фото). Но даже такой сторонник метеоритного происхождения лунных кратеров, как Г. Джильберт, не понял, что этот кратер имеет метеоритное происхождение.

В 1905 г. начал свои исследования Аризонского кратера Д. Барринджер, получивший в ходе двадцатилетних исследований неопровержимые доказательства его метеоритного (ударного) происхождения. Были обнаружены вторичные выбросы, расположенные симметрично относительно центра кратера, радиальный сдвиг пластов горных пород, в кратере была найдена так называемая горная мука и куски шлаковидного стекла - продукты расплавления пород при ударе метеорита. В самом кратере и в его окрестностях еще с 1866 г. находили осколки метеоритного железа, но долгое время это не производило впечатления на ученых. Теперь стало ясным не только происхождение кратера, но и то, что метеорит был железным. Был установлен и возраст кратера - 30 тыс. лет.

Вслед за Аризонским были обнаружены другие метеоритные кратеры: в 1921 г.- Одесса (штат Техас, США) диаметром 160 м, в 1927 г.- группа кратеров Каали на острове Саарема (Эстония) с главным кратером диаметром 110 м, в 1931 г.- группа из 13 кратеров в Хенбери (Австралия) с эллипсовидным центральным кратером 220х110 м, в 1932 г.-два кратера Вабар в Саудовской Аравии (диаметр большего 100 м). За ними последовали другие открытия. К 1965 г. на Земле было известно уже 115 метеоритных кратеров.

Но почему среди них не было таких крупных кратеров, как на Луне? Сотни метров, самое большее километр, а не десятки и сотни километров, как на Луне. «Большие кратеры должны были образоваться в очень давние времена,- рассуждали ученые,- а за миллионы лет действие воды и ветра, тектонические процессы стерли с лица Земли их следы». Но все оказалось не так, как думали в те годы. Большие кратеры лежали у нас под ногами.

Марс, Меркурий, кто следующий?

В 1965 г. американский космический аппарат «Маринер-4» передал первые фотографии поверхности Марса с близкого расстояния. На этих снимках было обнаружено более 300 кратеров размерами от 3 до 176 км. Лишь девять из них имели центральную горку. Характерным отличием марсианских кратеров от лунных было явное уменьшение количества малых кратеров (меньше 4 км).

Как известно, количество лунных кратеров убывает с увеличением их размера по степенному закону вида N ~ D - n , где D - диаметр вала кратера, п =2. Этот закон, полностью подобный закону распределения по размерам метеорных тел, сам по себе является доводом (хотя еще не доказательством) в пользу метеоритной гипотезы образования кратеров.

На Марсе, как было установлено по снимкам «Маринеров-6, 7», до некоторого D min распределение кратеров по размерам следует тому же закону, что и на Луне, но число кратеров с D = 1 км уступает лунному почти на порядок. Это обстоятельство можно было объяснить двояко: либо малые кратеры разрушает эрозия (на Марсе есть атмосфера, а в прошлом, вероятно, на его поверхности была жидкая вода), либо кратерообразование за последние миллионы лет почему-то ослабело.

Решению этой дилеммы помогло обнаружение кратеров на спутниках Марса - Фобосе и Деймосе (см. фото). Когда было изучено распределение кратеров по их поверхности, выяснилось, что оно в точности следует закону распределения кратеров на лунных материках (рис. 39). Это показывало, что поверхность Фобоса и Деймоса столь же древняя, как поверхность материков Луны (старше 4 млрд. лет). Таким оказался космический «возраст» обоих спутников Марса.

Рис. 39. Распределение по размерам кратеров на Луне, Марсе, Фобосе и Деймосе

Открытие кратеров на Фобосе и Деймосе стало окончательным доказательством того, что Марс, как и Луна, перенес в прошлом интенсивную метеоритную бомбардировку, но наличие атмосферы и гидросферы (а возможно, и тектоническая активность) привело к исчезновению некоторой или даже значительной части кольцевых структур на Марсе и на Земле по сравнению с Луной, Фобосом и Деймосом.

Тщательное исследование поверхности Марса по снимкам, полученным с советских и американских космических аппаратов в 70-е годы, позволило положить конец «столетней войне». Дело в том, что на Марсе были обнаружены и настоящие вулканы. Да еще какие! Вулкан Олимп имеет высоту 25 км, а радиус его подножия - около 250 км (см. фото). Это самый высокий вулкан в Солнечной системе. Несколько уступают ему три других гиганта: вулканы Арский, Аскрейский и Павлиний. Их высоты - от 11 до 16 км. В отличие от ударных кратеров марсианские вулканы имеют форму конуса с кальдерой наверху. Подобно Эльбрусу, Казбеку и Арарату, марсианские вулканы потухшие.

Итак, «вулканисты» были вознаграждены. В дальнейшем они были вознаграждены еще более, после того как американский космический аппарат «Вояджер-1» передал на Землю снимки восьми действующих вулканов на спутнике Юпитера Ио, а советские межпланетные станции серии «Венера» принесли веские доказательства активного вулканизма на нашей соседке в Солнечной системе - на планете Венере. Оправдалось предвидение советского астронома профессора С. К. Всехсвятского о развитии вулканизма на планетах.

Вулканы Марса поставили перед учеными новую проблему: почему именно на этой планете образовались столь грандиозные вулканы? Мы знаем, что вулканы на Земле (включая потухшие) не превышают в высоту 5,5 км, а самая высокая гора Эверест немного «не дотягивает» до 9 км. Аналогичная ситуация на Луне и, как потом выяснилось, на Меркурии. Высочайшая вершина на Венере имеет высоту 11 км.

В природе не бывает ничего случайного (кроме действительно случайных событий, например, столкновений Земли с крупными телами, хотя и они подчиняются определенным закономерностям). Необычайную высоту вулканов Марса требовалось объяснить.

Вулканизм связан с формированием в недрах планеты расплавленной магмы, а оно, в свою очередь, с внутренним теплом планеты. Основной источник этого тепла - радиоактивный распад. Количество тепла, которое этот процесс выделяет, пропорционально (при прочих равных условиях) массе планеты, т. е. кубу ее радиуса. Площадь поверхности планеты пропорциональна квадрату радиуса. Поэтому выделение внутреннего тепла на единицу площади будет пропорционально радиусу планеты. Итак, силы, порождающие вулканизм, растут с размерами планеты, что находит подтверждение на вулканически активных Земле и Венере и в угасшем уже вулканизме Марса.

Но есть сила, ограничивающая высоту гор на планете. Это сила тяжести, не позволяющая горе расти неограниченно. Высокая сила тяжести на Земле и Венере ограничила высоту гор на этих планетах соответственно в 9 и 11 км, а на Марсе, где ускорение свободного падения меньше (3,73 м/с 2), образовались горы до 25 км. Любопытно, что высота h крупнейших гор на планетах Земля, Венера и Марс обратно пропорциональна ускорению свободного падения g на их поверхности (в среднем произведение gh = 92,9):

Планета

Земля

Венера

Марс

h , км

11,1

g , м/с 2

9,81

8,86

3,73

gh , км м/с 2

87,3

98,3

93,2

Но этот «закон» сразу нарушается, как только мы переходим к Меркурию и к Луне. На них нет гор выше 9 км. Это значит, что тектоническая (в том числе горообразовательная) активность на этих телах значительно слабее, чем на Земле, Марсе и Венере.

Кстати, а как выглядит Меркурий? Первые его снимки из космоса были переданы американским космическим аппаратом «Маринер-10» в 1974 г. Перед взорами астрономов предстала... вторая Луна! Вид поверхности Меркурия (см. фото) до того напоминает Луну, что только астроном, хорошо знающий расположение лунных кратеров, сможет отличить их друг от друга.

Подсчеты кратеров в области Калорис показали, что ее возраст не менее 4 млрд. лет. Еще древнее возвышенности Меркурия, но и там число малых кратеров отклоняется от закона N ~ D -2 , как на Марсе, что можно объяснить их разрушением за счет размягчения поверхности в период ее интенсивной бомбардировки.

Радиолокационные изображения поверхности Венеры, и станциями «Венера-15, -16», а также американским аппаратом «Пионер-Венера», позволили выявить на этой планете как вулканические образования, так и ударные кратеры размерами от 4-5 до 130 км. По плотности кратеров возраст поверхности Венеры составляет от 500 млн. до 1 млрд. лет, но это возраст преобладающих вулканических равнин. Более древние кратеры на Венере, по-видимому, уничтожены тектоническими процессами либо в ходе интенсивной бомбардировки, либо после ее завершения. Как и на Земле, активные вулканотектонические процессы на Венере продолжаются и в нашу эпоху.

Обширные сведения были получены за последние годы о поверхностях спутников Юпитера и Сатурна, благодаря передаче их изображений американскими космическими аппаратами «Пионер-10, -11» и «Вояджер-1, -2». Четыре галилеевых спутника Юпитера оказались совершенно разными. На ближайшем к Юпитеру спутнике Ио обнаружено, как мы уже говорили, восемь действующих вулканов, а на поверхности - оранжевые отложения продуктов вулканических извержений. Поверхность Ио очень молодая (несколько миллионов лет), и поэтому ударных кратеров на ней очень мало. Поверхность следующего спутника - Европы - покрыта толстой ледяной корой и испещрена длинными трещинами. Кратеров на ней практически нет. Зато Ганимед и Каллисто покрыты многочисленными кратерами, причем на Каллисто их гораздо больше, чем на Ганимеде. Поверхность Каллисто весьма древняя и может вполне сравниться по степени насыщения кратерами с Луной и Меркурием (см. фото). Очевидно, что тектоническая активность на Каллисто в течение последних 3 млрд. лет была весьма слабой. Напротив, Ганимед несет следы активной тектонической деятельности, в частности крупных разломов коры. Поэтому его поверхность значительно моложе, чем у Каллисто, хотя встречаются участки более древней коры, гуще покрытые ударными кратерами, чем остальные.

Причины различий в структуре поверхностей четырех галилеевых спутников Юпитера еще не вполне ясны. Сделано несколько попыток их объяснения, которые мы здесь обсуждать не будем.

Густо покрыта кратерами поверхность спутника Сатурна Мимаса (диаметр 390 км), причем крупнейший из них имеет диаметр 130 км. Столь же обильны кратеры на Дионе (диаметр 1120 км), некоторые из них имеют системы светлых лучей, как на Луне. На Рее (диаметр 1530 км) плотность кратеров такая же, как на Луне и Меркурии, а диаметр крупнейшего из них достигает 300 км. Еще больший кратер (400 км) обнаружен на поверхности Тефии (диаметр спутника 1050 км). На поверхности Энцелада (диаметр 510 км) заметны следы сравнительно недавних течений в коре, разрушивших древний рельеф. Удалось выявить не менее пяти этапов геологической эволюции Энцелада. Районы, лишенные кратеров, имеют возраст менее 10 млн. лет, поэтому не исключено, что недра Энцелада активны и сейчас.

Этих примеров достаточно, чтобы показать, как изучение кратерных структур на планетах и их спутниках помогает выяснить пути эволюции их рельефа под действием как внутренних, так и внешних сил.

Новые открытия на Земле

А как же Земля? Неужели тектоника, вода и ветер полностью стерли с лица Земли гигантские ударные кратеры, которые ну просто не могли на ней не образоваться; ведь Земля - куда более удобная мишень для встречных астероидов, ядер комет и метеоритов, чем, скажем, Луна. Большая масса, а значит, и сила притяжения Земли разгоняют эти тела до больших скоростей, чем притяжение Луны. Кроме того, у Земли больше радиус захвата - на нее упадут не только те тела, которые летят прямо на Землю, но и часть тех, которые пролетели бы мимо, если бы Земля их не притягивала.

Нет, метеоритные кратеры должны существовать на Земле в гораздо больших количествах, чем было известно, и они должны иметь существенно большие размеры. Еще в конце 30-х годов английские геологи Дж. Бун и К. Олбриттон пытались доказать метеоритное происхождение ряда структур, считавшихся тогда криптовулканическими (криптовулканическими называют почти круговые, сложные куполообразные структуры, характеризующиеся сильными деформациями с дроблением пород. Многие специалисты считают, что они не связаны с проявлениями вулканизма). Но в то время еще было трудно доказать их ударное происхождение.

В 1950 г. канадский геолог В. Мин, обследовав круглое озеро Нью-Квебек, установил по ряду признаков, что это крупный метеоритный кратер диаметром 3,4 км. До этого самым большим метеоритным кратером на Земле считался Аризонский, диаметр которого был втрое меньше.

В 1951 г. в Канаде был открыт кратер Брент (3,5 км). Это заставило канадских ученых предпринять систематические поиски структур, которые могут быть метеоритными кратерами. Их выявление производилось по аэрофотоснимкам, причем первыми признаками метеоритной природы считались круговая форма, наличие вала, центральная депрессия. Более определенные критерии были связаны с наличием под дном кратера брекчий (мелкораздробленных осколков пород) и следов ударного метаморфизма: импактитов, плотных модификаций пород - коэсита и стишовита, наконец, конусов разрушения.

Что представляют собой эти образования? Термином импактит (от англ. impact - удар) обозначают горные породы, непосредственно связанные с ударными кратерами и претерпевшие изменения при ударе. Сюда относятся брекчии разных типов, породы, испытавшие плавление, и другие.

Конусы разрушения (см. фото) образуются при взаимодействии ударной волны, идущей от центра взрыва, с границами пластов пород, которые дробятся на конусообразные фрагменты с поверхностями, покрытыми ветвящимися бороздами. Если конусы разрушения не перемещены взрывной волной, они всегда направлены вершиной к центру взрыва. Образуются они при давлениях 20- 100 кбар.

Коэсит и стишовит - это модификации кремнезема, образующиеся при высоких давлениях. У них иная кристаллическая структура и более высокая плотность, чем у обыкновенного кварца. В частности, более плотный стишовит обнаруживается только в метеоритных кратерах, в них он и был впервые открыт. Коэсит образуется при давлениях, превышающих 30-40 кбар, стишовит - 100 кбар.

Реже встречаются высокобарные модификации углерода - алмаз и лонсдейлит. Они обнаружены пока только в двух метеоритных кратерах. (Вспомним, что и в Тунгусской тайге были обнаружены алмазно-графитовые сростки.) Для их образования нужны давления в 500- 700 кбар.

В результате тщательных поисков на территории Канады были обнаружены 24 структуры несомненно ударного происхождения. Среди них были кратеры Клируотер (32 и 20 км), Кутюр (12 км), Дип Бэй (13,5 км), Холлефорд (2,5 км), Кили (13 км) и другие (рис. 40). Этой работой руководили М. Денс, К. Биле и другие ученые.

Рис. 40. Контуры некоторых канадских метеоритных кратеров (по К. Билсу и М. Денсу)

Поисками метеоритных кратеров занялись и в других странах, что привело к открытию метеоритных структур Нордлингер Рис (ФРГ, 21х24 км), Босумтви (Гана, 10 км), Уэллс Крик (США, 10 км), Госсес Блаф (Австралия, 22 км), Деллен (Швеция, 12 км), Лаппаярви (Финляндия, 10 км) и других. На территории ЮАР был обнаружен гигантский кратер Вредефорт диаметром 100 км, имеющий надежно установленный возраст в 2 млрд. лет.

Начиная с 70-х годов крупные кольцевые структуры были, обнаружены и на территории нашей страны. Большая заслуга в открытии и изучении астроблем (слово астроблема означает «звездная рана». Это название все шире применяется к структурам ударного (космического) происхождения) в СССР принадлежит ленинградскому геологу В. Л. Масайтису. Он доказал, что гигантская (100-километровая) котловина в районе течения р. Попигай на Таймыре представляет собой метеоритный кратер. Его возраст 180 млн. лет. Вслед за Попигайским кратером были открыты и исследованы астроблемы: Болтышская (24 км), Каменская (25 км), Карская (50 км), Пучеж-Катункская (80 км), Янисъярви (13х17 км), Эльгыгытгын (18 км). Выяснилось, что город Калуга расположен в гигантском метеоритном кратере диаметром 15 км, образовавшемся около 400 млн. лет назад.

Очень интересным оказался метеоритный кратер Жаманшин (диаметр 5 км) в Казахстане, изученный геологом П. В. Флоренским. Вблизи этого кратера впервые на территории СССР были найдены тектиты - черные оплавленные стекла, происхождение которых несомненно связано с падениями крупных метеоритов. До этого тектиты находили только на территории Чехословакии, в Индокитае, в Южной Африке и в Австралии.

Исследование крупных астроблем на территории нашей страны привлекло большую группу исследователей. Свой вклад в их изучение внесли геологи Б. С. Зейлик, А. А. Вальтер, Е. П. Гуров, А. О. Аалоэ, геофизики А. И. Дабижа, М. С. Красе и другие.

Таким образом, на Земле оказалось много крупных кольцевых структур, несомненно имеющих ударное происхождение. Их количество пока составляет 230, но каждый год приносит новые открытия. Эти структуры в буквальном смысле слова лежали у нас под ногами, но мы долго не могли этого понять.

Земля как космическая мишень приняла свою долю ударов небесных странников: метеоритов, астероидов, ядер комет. В этом отношении она ничем не отличается от других планет и их спутников. Но, конечно, тектонические процессы, водная и ветровая эрозия сделали свое дело, и многие астроблемы не сохранились.

От гигантских «морей» к микрократерам

Мы уже говорили, что распределение кратеров по размерам на густо усеянных этими структурами поверхностях тел Солнечной системы следует степенной зависимости вида N ~ D -2 . Этот факт сам по себе доказывал метеоритное происхождение кратеров, поскольку распределение метеорных тел по размерам подчиняется той же закономерности. Правда, энергия удара тела зависит не только от его массы, но и от скорости, будучи пропорциональна ее квадрату. Однако скорости удара заключены в сравнительно узких пределах (11-73 км/с), а если учесть, что все астероиды и метеориты имеют в Солнечной системе прямое движение, то этот диапазон еще более сокращается. Разброс же по массе громаден: от триллионов тонн до миллиграммов и их долей.

В 1949 г. американский исследователь Р. Болдуин построил интересную диаграмму, на которой представил структурные особенности лунных кратеров и заведомо взрывных структур: воронок от бомб, снарядов и крупных наземных взрывов. По вертикальной оси он отложил (в логарифмическом масштабе) диаметр кратера или воронки, по горизонтальной - их глубину. Все воронки от взрывов, земные метеоритные кратеры (их тогда было известно немного) и лунные кратеры легли на одну плавную кривую (рис. 41). Это было веским доводом в пользу метеоритного происхождения лунных кратеров.

Рис. 41. Кривая Болдуина для взрывных кратеров и воронок. 1 - вулканические кальдеры по данным автора; 2 -земные метеоритные кратеры

Еще в 1892 г. Г. Джильберт полагал, что не только кратеры, но и округлые лунные «моря» образовались в результате ударов тел астероидальных размеров. Джильберт обратил внимание на систему радиальных разломов, расходящихся от Моря Дождей. Эта идея была в 50-е годы разработана видным американским космогонистом лауреатом Нобелевской премии Г. Юри. В 1960 г. К. П. Станюкович и автор этой книги предложили свой вариант образования «морей»: после удара крупного тела о поверхность Луны в глубинных частях лунной коры под местом удара происходит откол большого фрагмента коры и расплавленная магма из недр получает выход на поверхность. Происходит лавовое излияние, и образуется «море». По мнению ряда ученых, выход лавы на поверхность Луны мог произойти не сразу после удара, а значительно позже, через много миллионов лет.

После фотографирования обратной стороны Луны советскими лунными станциями были открыты гигантские кольцевые структуры: Море Восточное, окруженное несколькими концентрическими валами (внешний диаметр 500 км), кратер Королев (диаметр 300 км), Море Москвы и другие. На Меркурии были открыты бассейны типа Калорис. Создалось общее мнение, что эти, хотя и немногочисленные, образования тоже последствия бомбардировки Луны и Меркурия космическими «снарядами».

Благодаря доставке образцов лунных пород (в том числе и с поверхности «морей») на Землю американскими астронавтами и советскими лунными станциями «Луна-16, -20, -24» оказалось возможным точно датировать эпоху формирования лунных «морей». Это был период от 4,25 до 3,85 млрд. лет назад. Именно тогда образовались бассейны типа Моря Дождей на Луне, а также, по-видимому, Калорис на Меркурии, Эллада на Марсе и другие. После этого, 3,85 млрд. лет назад, бомбардировка Луны прекратилась и начался период интенсивного вулканизма, продолжавшийся на Луне и Меркурии около 1 млрд. лет.

Почему же так внезапно прекратилась бомбардировка Луны? Видимо, был исчерпан запас «снарядов». Что же это были за «снаряды»? Ответ на этот вопрос дают космогонические теории академика О. Ю. Шмидта и Г. Юри. Согласно взглядам этих ученых, планеты Солнечной системы образовались в результате объединения протопланетных тел меньшего размера, которые, в свою очередь, должны были образоваться в ходе слипания частиц пыли из околопланетного газово-пылевого облака. Возраст планет Солнечной системы теперь определяется однозначно путем анализа содержания радиоактивных изотопов и продуктов их распада в древнейших земных и лунных породах, а также в метеоритах,- это 4,6 млрд. лет назад. Значит, вскоре после формирования древнейших частей лунной поверхности последовала интенсивная бомбардировка Луны оставшимися плапетезималями. Это были как раз тела астероидальных размеров - километры и десятки километров. Они двигались по слабо вытянутым орбитам прямым движением и время от времени падали на Луну, на Землю, на Марс, Венеру, Меркурий, на спутники Юпитера и Сатурна (читателя не должно удивлять, что мы здесь не упоминаем самые планеты-гиганты. Ведь у них пет твердых поверхностей и кратеры на них образоваться не могли), образуя кратеры и «моря». Но за 400 млн. лет запас планетезималей был исчерпан, массовая бомбардировка прекратилась, остались лишь пояс астероидов и система комет, которые время от времени продолжали наносить удары по поверхностям планет и их спутников. Впрочем, не подлежит сомнению, что и поверхности самих астероидов усеяны кратерами в не меньшей степени, чем, например, Фобос и Деймос.

Полеты к Луне американских космических зондов «Рейнджер», начиная с 1964 г. показали, что поверхность Луны покрыта множеством мелких кратеров. До этого мы могли видеть в телескопы на Луне кратеры не менее 1 км в диаметре. Снимки «Рейнджеров» понизили этот предел в сторону меньших размеров - до 1 м. А на доставленных с Луны образцах лунных пород, а также на специально выставлявшихся там на некоторое время пластинках были обнаружены мельчайшие кратеры, размерами уже в несколько микрометров. Такие же кратеры обнаруживаются на специальных пластинках-датчиках, помещаемых на спутниках и орбитальных станциях.

Нанесение малых кратеров на Луне на диаграмму Болдуина показало, что они хорошо ложатся на продолжение в сторону малых размеров кривой, построенной для больших кратеров. Подтвердилась и степенная функция распределения кратеров по размерам. Стало ясно, что все они - результаты ударов метеороидов.

Луна — единственный естественный спутник Земли. Второй по яркости объект на земном небосводе после Солнца и пятый по величине естественный спутник планет Солнечной системы. Также является первым и единственным небесным телом, помимо Земли, на котором побывал человек. Среднее расстояние между центрами Земли и Луны — 384 467 км (0,00257 а.е).

Видимая звёздная величина полной Луны на земном небе -12m,71. Освещённость, создаваемая полной Луной возле поверхности Земли при ясной погоде, составляет 0,25 — 1 лк.

Слово луна восходит к праслав. *luna < пра-и.е. *louksna? «светлая» (ж. р. прилагательного *louksnos), к этой же индоевропейской форме восходит и лат. luna «луна». Греки называли спутник Земли Селеной, древние египтяне — Ях (Иях).

С древних времён люди пытались описать и объяснить движение Луны, используя всё более точные теории.

Основой современных расчётов является теория Брауна. Созданная на рубеже XIX—XX веков, она объясняла движение Луны с точностью измерительных приборов того времени. При этом в расчёте использовалось более 1400 членов (коэффициентов и аргументов при тригонометрических функциях).

Современная наука может рассчитывать движение Луны и проверять расчёты на практике с ещё более высокой точностью. Так, для расчёта позиции Луны с точностью измерений лазерной локации применяются выражения с десятками тысяч членов и не существует предела количества членов в выражении, если потребуется ещё более высокая точность.

В первом приближении можно считать, что Луна двигается по эллиптической орбите с эксцентриситетом 0,0549 и большой полуосью 384 399 км. Реальное движение Луны довольно сложно, при его расчёте необходимо учитывать множество факторов, например, сплюснутость Земли и сильное влияние Солнца, которое притягивает Луну в 2,2 раза сильнее, чем Земля. Более точно движение Луны вокруг Земли можно представить как сочетание нескольких движений:

вращение вокруг Земли по эллиптической орбите с периодом 27,32166 суток, это так называемый сидерический месяц (то есть движение измерено относительно звёзд);
поворот плоскости лунной орбиты, её узлов (точек пересечения орбиты с эклиптикой) с периодом 18,6 лет. Движение прецессионное, то есть долготы узлов уменьшаются;
поворот большой оси лунной орбиты (линии апсид) с периодом 8,8 лет (происходит в противоположном направлении, чем указанное выше движение узлов, то есть долгота перигея увеличивается);
периодическое изменение наклона лунной орбиты по отношению к эклиптике от 4°59 до 5°19;
периодическое изменение размеров лунной орбиты: перигея от 356,41 Мм до 369,96 Мм, апогея от 404,18 Мм до 406,74 Мм;
постепенное удаление Луны от Земли вследствие приливного ускорения (примерно на 4 см в год), при этом непериодическая составляющая её орбиты представляет собой медленно раскручивающуюся спираль.

Общее строение

Луна состоит из коры, верхней мантии, средней мантии, нижней мантии (астеносферы) и ядра. Атмосфера практически отсутствует. Поверхность Луны покрыта так называемым реголитом — смесью тонкой пыли и скалистых обломков, образующихся в результате столкновений метеороидов с лунной поверхностью. Ударно-взрывные процессы, сопровождающие метеоритную бомбардировку, способствуют взрыхлению и перемешиванию грунта, одновременно спекая и уплотняя частицы грунта. Толщина слоя реголита составляет от долей метра до десятков метров.

Толщина коры Луны меняется в широких пределах от 0 до 105 км.

Условия на поверхности Луны

Атмосфера Луны — крайне разрежена. Когда поверхность не освещена Солнцем, cодержание газов над ней не превышает 2,0·105 частиц/см? (для Земли этот показатель составляет 2,7·1019 частиц/см?), а после восхода Солнца увеличивается на два порядка за счёт дегазации грунта. Разреженность атмосферы приводит к высокому перепаду температур на поверхности планеты (от -160 °C до +120 °C)[источник не указан 59 дней], в зависимости от освещённости, хотя температура пород залегающая на глубине 1 м постоянная и равна?35 °C. Ввиду практического отсутствия атмосферы небо на Луне всегда чёрное со звёздами, даже когда Солнце над линией горизонта.

Земной диск висит в небе Луны почти неподвижно. Причины небольших ежемесячных колебаний Земли по высоте над лунным горизонтом и по азимуту (примерно по 7°) такие же, как у либраций. Угловой размер Земли в 3,7 раз больше, чем лунный при наблюдении с Земли, а закрываемая Землей площадь небесной сферы в 13,5 раз больше, чем закрываемая Луной. Степень освещённости Земли, видимая с Луны, обратно пропорциональна лунным фазам на Земле, в полнолуние c Луны видна неосвещённая часть Земли, и наоборот. Освещение отражённым светом Земли примерно в 50 раз сильнее, чем освещение лунным светом на Земле, максимальная видимая звёздная величина Земли на Луне составляет приблизительно?16m.

Приливы и отливы

Гравитационные силы между Землёй и Луной вызывают некоторые интересные эффекты. Наиболее известный из них — морские приливы и отливы. Если бы мы взглянули на Землю со стороны, мы увидели бы две выпуклости, находящиеся на противоположных сторонах планеты. Причём одна точка — со стороны, ближайшей к Луне, а другая — с противоположной стороны Земли, наиболее удалённой от Луны. В мировом океане этот эффект выражен намного сильнее, чем в твёрдой коре, поэтому выпуклость воды больше. Амплитуда приливов (разность уровней прилива и отлива) на открытых пространствах океана невелика и составляет 30—40 см. Однако вблизи берегов вследствие набега приливной волны на твёрдое дно, приливная волна увеличивает высоту точно так же, как обычные ветровые волны прибоя. Учитывая направление вращения Луны вокруг Земли, можно составить картину следования приливной волны по океану. Сильным приливам больше подвержены восточные побережья материков. Максимальная амплитуда приливной волны на Земле наблюдается в заливе Фанди в Канаде и составляет 18 метров.

Хотя для земного шара сила тяготения Солнца почти в 200 раз больше, чем сила тяготения Луны, прили?вные силы, порождаемые Луной, почти вдвое больше порождаемых Солнцем. Это происходит из-за того, что приливные силы зависят не от величины гравитационного поля, а от степени его неоднородности (градиента). При увеличении расстояния до источника поля градиент уменьшается быстрее, чем величина самого поля. Поскольку Солнце почти в 400 раз дальше от Земли, чем Луна, то и приливные силы, вызываемые солнечным притяжением, слабее.

Магнитное поле

Считается, что источником магнитного поля планет является тектоническая активность. Например, у Земли поле создаётся движением расплавленного металла в ядре, у Марса — последствия прошлой активности.

«Луна-1» в 1959 году установила отсутствие однородного магнитного поля на Луне:24. Результаты исследований учёных Массачусетского технологического института подтверждают гипотезу, что у Луны было жидкое ядро. Это укладывается в рамки самой популярной гипотезы происхождения естественного спутника — столкновение примерно 4,5 миллиарда лет назад Земли с космическим телом размером с Марс, «выбило» из Земли огромный кусок расплавленной материи, который позже превратился в Луну. Экспериментально удалось доказать, что на раннем этапе существования у Луны было аналогичное земному магнитное поле.

Наблюдение Луны с Земли

Видимый диаметр Луны сравним с солнечным и составляет около половины градуса. Луна отражает только 7 % падающего на неё солнечного света. Так как Луна не светится сама, а лишь отражает солнечный свет, с Земли видна только освещённая Солнцем часть лунной поверхности. (В фазах Луны, близких к новолунию, то есть в начале первой четверти и в конце последней четверти, при очень узком серпе можно наблюдать т. н. пепельный свет Луны — видимое свечение неосвещённой прямым солнечным светом поверхности характерного пепельного цвета). Луна обращается по орбите вокруг Земли, и тем самым угол между Землёй, Луной и Солнцем изменяется; мы наблюдаем это явление как цикл лунных фаз. Период времени между последовательными новолуниями составляет 29,5 дней (709 часов) и называется синодический месяц. То, что длительность синодического месяца больше, чем сидерического, объясняется движением Земли вокруг Солнца: когда Луна относительно звёзд совершает полный оборот вокруг Земли, Земля к этому времени проходит уже 1/13 часть своей орбиты, и чтобы Луна снова оказалась между Землёй и Солнцем, ей нужно дополнительно около двух суток.

Связь фаз Луны с её положением относительно Солнца и Земли. Зелёным цветом выделен угол, на который Луна повернётся с момента начала сидерического месяца до момента окончания синодического месяца.

Хотя Луна и вращается вокруг своей оси, она всегда обращена к Земле одной и той же стороной, то есть вращение Луны вокруг Земли и вокруг собственной оси синхронизировано. Эта синхронизация вызвана трением приливов, которые производила Земля в оболочке Луны. Согласно законам механики, Луна ориентирована в поле тяготения Земли так, что на Землю направлена большая полуось лунного эллипсоида.

Лунные либрации

Явление либрации, открытое Галилео Галилеем в 1635 году, позволяет наблюдать около 52 % лунной поверхности. Дело в том, что вокруг Земли Луна обращается с переменной угловой скоростью вследствие эксцентриситета лунной орбиты (вблизи перигея движется быстрее, вблизи апогея медленнее), в то время как вращение спутника вокруг собственной оси равномерно. Это позволяет увидеть с Земли западный и восточный края обратной стороны Луны (оптическая либрация по долготе). Кроме того, в связи с наклоном оси вращения Луны к плоскости земной орбиты с Земли можно увидеть северный и южный края обратной стороны Луны (оптическая либрация по широте). Существует ещё физическая либрация, обусловленная колебанием спутника вокруг положения равновесия в связи со смещённым центром тяжести, а также в связи с действием приливных сил со стороны Земли. Эта физическая либрация имеет величину 0,02° по долготе с периодом 1 год и 0,04° по широте с периодом 6 лет.

Из-за неровностей рельефа на поверхности Луны во время полного солнечного затмения можно наблюдать чётки Бейли. Когда же, наоборот, Луна попадает в тень Земли можно наблюдать другой оптический эффект, она краснеет будучи подсвеченной рассеянным в атмосфере Земли светом.

Cеленология

Благодаря её размеру и составу Луну иногда относят к планетам земной группы наряду с Меркурием, Венерой, Землёй и Марсом. Поэтому, изучая геологическое строение Луны, можно многое узнать о строении и развитии Земли.

Толщина коры Луны в среднем составляет 68 км, изменяясь от 0 км под лунным морем Кризисов до 107 км в северной части кратера Королёва на обратной стороне. Под корой находится мантия и, возможно, малое ядро из сернистого железа (радиусом приблизительно 340 км и массой, составляющей 2 % массы Луны). Любопытно, что центр масс Луны располагается примерно в 2 км от геометрического центра по направлению к Земле. На той стороне, которая повёрнута к Земле, кора более тонкая.

Измерения скорости спутников «Лунар Орбитер» позволили создать гравитационную карту Луны. С её помощью были обнаружены уникальные лунные объекты, названные масконами (от англ. mass concentration) — это массы вещества повышенной плотности.

Луна не имеет магнитного поля, хотя некоторые из горных пород на её поверхности проявляют остаточный магнетизм, что указывает на возможность существования магнитного поля Луны на ранних стадиях развития.

Не имеющая ни атмосферы, ни магнитного поля, поверхность Луны подвержена непосредственному воздействию солнечного ветра. В течение 4 млрд лет водородные ионы из солнечного ветра внедрялись в реголит Луны. Таким образом, образцы реголита, доставленные миссиями «Аполлон», оказались очень ценными для исследования солнечного ветра. Этот лунный водород также может быть когда-нибудь использован как ракетное топливо.

В феврале 2012 года американские астрономы обнаружили на темной стороне Луны несколько геологических новообразований. Это свидетельствует о том, что лунные тектонические процессы продолжались ещё как минимум 950 миллионов лет после предполагаемой даты геологической «смерти» Луны.

Пещеры

Японским зондом Кагуя обнаружено отверстие в поверхности Луны, расположенное недалеко от вулканического плато Холмы Мариуса, предположительно ведущее в тоннель под поверхностью. Диаметр отверстия составляет около 65 метров, а глубина, предположительно, 80 метров.

Учёные считают, что подобные тоннели сформированы путём затвердевания потоков расплавленной породы, где в центре застыла лава. Данные процессы происходили в период вулканической активности на Луне. Подтверждением данной теории является наличие извилистых борозд на поверхности спутника.

Подобные тоннели могут послужить для колонизации, благодаря защите от солнечной радиации и замкнутости пространства, в котором проще поддерживать условия жизнеобеспечения.

Похожие отверстия имеются и на Марсе.

Сейсмология

Оставленные на Луне экспедициями «Аполлон-12», «Аполлон-14», «Аполлон-15» и «Аполлон-16» четыре сейсмографа показали наличие сейсмической активности. Исходя из последних расчетов учёных, лунное ядро состоит главным образом из раскалённого железа. Из-за отсутствия воды колебания лунной поверхности продолжительны по времени, могут длиться более часа.

Лунотрясения можно разделить на четыре группы:

  • приливные, случаются дважды в месяц, вызваны воздействием приливных сил Солнца и Земли.
  • тектонические — нерегулярные, вызваны подвижками в грунте Луны,
  • метеоритные — из-за падения метеоритов,
  • термальные — их причиной служит резкий нагрев лунной поверхности с восходом Солнца.

Вода на Луне

В июле 2008 года группа американских геологов из Института Карнеги и Университета Брауна обнаружила в образцах грунта Луны следы воды, в большом количестве выделявшейся из недр спутника на ранних этапах его существования. Позднее большая часть этой воды испарилась в космос.

Российские учёные, с помощью созданного ими прибора LEND, установленного на зонде LRO, выявили участки Луны, наиболее богатые водородом. На основании этих данных НАСА выбрало место для проведения бомбардировки Луны зондом LCROSS. После проведения эксперимента, 13 ноября 2009 года НАСА сообщило об обнаружении в кратере Кабеус в районе южного полюса воды в виде льда.

Согласно данным, переданным радаром Mini-SAR, установленном на индийском лунном аппарате Чандраян-1, всего в регионе северного полюса обнаружено не менее 600 млн. тонн воды, большая часть которой находится в виде ледяных глыб, покоящихся на дне лунных кратеров. Всего вода была обнаружена в более чем 40 кратерах, диаметр которых варьируется от 2 до 15 км. Сейчас у учёных уже нет никаких сомнений в том, что найденный лёд — это именно водный лёд.

Химия лунных пород

Состав лунного грунта существенно отличается в морских и материковых районах Луны. Лунные породы обеднены железом, водой и летучими компонентами.

Химический состав лунного реголита в процентах

Элементы Доставлен «Луной-20» Доставлен «Луной-16»
Кремний 20,0 20,0
Титан 0,28 1,9
Алюминий 12,5 8,7
Хром 0,11 0,20
Фтор 5,1 13,7
Магний 5,7 5,3
Кальций 10,3 9,2
Натрий 0,26 0,32
Калий 0,05 0,12

Селенография

Основные детали на лунном диске, видимые невооружённым глазом.
Z — «лунный заяц», A — кратер Тихо, B — кратер Коперник, C — Кратер Кеплер, 1 — Океан Бурь, 2 — Море Дождей, 3 — Море Спокойствия, 4 — Море Ясности, 5 — Море Облаков, 6 — Море Изобилия, 7 — Море Кризисов, 8 — Море Влажности

Поверхность Луны можно разделить на два типа: очень старая гористая местность (лунный материк) и относительно гладкие и более молодые лунные моря. Лунные моря, которые составляют приблизительно 16 % всей поверхности Луны, — это огромные кратеры, возникшие в результате столкновений с небесными телами, которые были позже затоплены жидкой лавой. Большая часть поверхности покрыта реголитом. Лунные моря, под которыми лунными спутниками обнаружены более плотные, тяжёлые породы, сконцентрированы на обращённой к Земле стороне из-за влияния гравитационного момента при формировании Луны.

Большинство кратеров на обращённой к нам стороне названо по имени знаменитых людей в истории науки, таких как Тихо Браге, Коперник и Птолемей. Детали рельефа на обратной стороне имеют более современные названия типа Аполлон, Гагарин и Королёв. На обратной стороне Луны расположена огромная впадина (бассейн) диаметром 2250 км и глубиной 12 км — это самый большой бассейн в Солнечной системе, появившийся в результате столкновения. Море Восточное в западной части видимой стороны (его можно видеть с Земли) является отличным примером многокольцевого кратера.

Также выделяют второстепенные детали лунного рельефа — купола, хребты, рилли (от нем. Rille — борозда, жёлоб) — узкие извилистые долиноподобные понижения рельефа.

Происхождение кратеров

Попытки объяснить происхождение кратеров на Луне начались с конца 80-х годов XVIII века. Основных гипотез было две — вулканическая и метеоритная.

Следуя постулатам вулканической теории, выдвинутой в 80-х годах XVIII века немецким астрономом Иоганном Шрётером, лунные кратеры были образованы вследствие мощных извержений на поверхности. Но в 1824 году также немецкий астроном Франц фон Груйтуйзен сформулировал метеоритную теорию, согласно которой при столкновении небесного тела с Луной происходит продавливание поверхности спутника и образование кратера.

До 20-х годов XX века против метеоритной гипотезы выдвигали тот факт, что кратеры имеют круглую форму, хотя косых ударов по поверхности должно быть больше чем прямых, а значит при метеоритном происхождении кратеры должны иметь форму эллипса. Однако в 1924 году новозеландский учёный Джиффорд впервые дал качественное описание удара о поверхность планеты метеорита, двигающегося с космической скоростью. Получалось, что при таком ударе большая часть метеорита испаряется вместе с породой на месте удара, и форма кратера не зависит от угла падения. Также в пользу метеоритной гипотезы говорит то, что совпадает зависимость количества лунных кратеров от их диаметра и зависимость количества метеорных тел от их размера. Чуть позже, в 1937 году, данную теорию привёл к обобщённому научному виду советский студент Кирилл Петрович Станюкович, впоследствии ставший доктором наук и профессором. Данная «взрывная теория» разрабатывалась им самим и группой учёных с 1947 по 1960 года, а дорабатывалась в дальнейшем и другими исследователями.

Полёты к спутнику Земли с 1964 года, совершенные американскими аппаратами «Рейнджер», а также открытие кратеров на других планетах Солнечной системы (Марс, Меркурий, Венера) подвели итог этому вековому спору о происхождении кратеров на Луне. Дело в том, что открытые вулканические кратеры (например, на Венере) сильно отличаются от лунных, схожих с кратерами на Меркурии, которые, в свою очередь, были образованы ударами небесных тел. Поэтому метеоритная теория ныне считается общепринятой.

Благодаря столкновению Луны с астероидом мы можем наблюдать с Земли метеоритные кратеры на Луне. Учёные из Парижского института физики Земли полагают, что 3,9 миллиарда лет назад столкновение Луны с крупным астероидом заставило Луну повернуться.

Внутренняя структура

Луна — дифференцированное тело, она имеет геохимически различную кору, мантию и ядро. Оболочка внутреннего ядра богата железом, она имеет радиус 240 км, жидкое внешнее ядро состоит в основном из жидкого железа с радиусом примерно 300—330 километров. Вокруг ядра находится частично расплавленный пограничный слой с радиусом около 480—500 километров. Эта структура, как полагают, появилось в результате фракционной кристаллизации из глобального океана магмы вскоре после образования Луны 4,5 миллиарда лет назад. Лунная кора имеет в среднем толщину ~ 50 км.

Луна второй спутник по плотности в Солнечной системе после Ио. Однако, внутреннее ядро Луны мало, его радиус около 350 км; это только ~ 20 % от размера Луны, в отличие от ~ 50 % у большинства других землеподобных тел. Состоит лунное ядро из железа, легированного небольшим количеством серы и никеля].

Карта Луны

Карта Луны обоих полушарий

Лунный ландшафт своеобразен и уникален. Луна вся покрыта кратерами разного размера — от сотен километров до пары миллиметров. Долгое время учёные не могли заглянуть на обратную сторону Луны, это стало возможно с развитием технологий. Сейчас учёные уже создали очень подробные карты обеих поверхностей Луны. Подробные лунные карты составляют для того, чтобы в ближайшем будущем подготовиться для высадки человека на Луну, удачного расположения лунных баз, телескопов, транспорта, поиска полезных ископаемых и т. п.

Происхождение Луны

Орбита луны за последние 4,36 миллиарда лет

До того, как учёные получили образцы лунного грунта, они ничего не знали о том, когда и как образовалась Луна. Существовало три принципиально разных теории:

  • Луна и Земля сформировались в одно и то же время из газо-пылевого облака;
  • Луна образовалась в результате столкновения Земли с другим объектом;
  • Луна сформировалась в другом месте и впоследствии была захвачена Землёй.

Однако новая информация, полученная путём детального изучения образцов с Луны, привела к созданию теории Гигантского столкновения: 4,36 миллиарда лет назад протопланета Земля (Гея) столкнулась с протопланетой Тейя. Удар пришёлся не по центру, а под углом (почти по касательной). В результате большая часть вещества ударившегося объекта и часть вещества земной мантии были выброшены на околоземную орбиту. Из этих обломков собралась прото-Луна и стала обращаться по орбите с радиусом около 60 000 км. Земля, в результате удара, получила резкий прирост скорости вращения (один оборот за 5 часов) и заметный наклон оси вращения. Хотя у этой теории тоже есть недостатки, в настоящее время она считается основной[неавторитетный источник?].

По оценкам, основанным на содержании стабильного радиогенного изотопа вольфрама-182 (возникающего при распаде относительно короткоживущего гафния-182) в образцах лунного грунта, в 2005 году учёные-минералоги из Германии и Великобритании определили возраст лунных пород в 4 млрд 527 млн лет (±10 млн лет), а в 2011 году её возраст был определён в 4,36 млрд лет (±3 млн лет). Это самое точное на сегодняшний день значение.

Исследования Луны

Дедал (кратер). Диаметр: 93 км Глубина: 3 км (фото НАСА)

Луна привлекала внимание людей с древних времён. Во II в. до н. э. Гиппарх исследовал поведение Луны в звёздном небе, определив наклон лунной орбиты относительно земной эклиптики, размеры Луны и расстояние от Земли, а также выявил ряд особенностей движения.

Выведенную Гиппархом теорию развил впоследствии астроном из Александрии Клавдий Птолемей во II в. н. э., написав об этом книгу «Альмагест». Данная теория множество раз уточнялась, и в 1687 году, после открытия Ньютоном закона всемирного тяготения, из чисто кинематической, описывающей геометрические свойства движения, теория стала динамической, учитывающей движение тел под действием приложенных к ним сил.

Изобретение телескопов позволило различать более мелкие детали рельефа Луны. Одну из первых лунных карт составил Джованни Риччиоли в 1651 году, он же дал названия крупным тёмным областям, именовав их «морями», чем мы и пользуемся до сих пор. Данные топонимы отражали давнее представление, будто погода на Луне схожа с Земной, и тёмные участки якобы были заполнены лунной водой, а светлые участки считались сушей. Однако в 1753 году хорватский астроном Руджер Бошкович доказал, что Луна не имеет атмосферы. Дело в том, что при покрытии звёзд Луной, те исчезают мгновенно. Но если бы у Луны была атмосфера, то звезды бы погасали постепенно. Это свидетельствовало о том, что у спутника нет атмосферы. А в таком случае жидкой воды на поверхности Луны быть не может, так как она мгновенно бы испарилась.

С лёгкой руки того же Джованни Риччиоли кратерам стали давать имена известных учёных: от Платона, Аристотеля и Архимеда до Вернадского, Циолковского и Павлова.

XIX век

Фотография Луны, сделанная Льюисом Резерфордом в 1865 году

Новым этапом исследования Луны стало применение фотографии в астрономических наблюдениях, начиная с середины XIX века. Это позволило более детально анализировать поверхность Луны по подробным фотографиям. Такие фотографии были сделаны, в частности, Уорреном де ла Рю (1852) и Льюисом Резерфордом (1865). В 1881 Пьер Жансен составил детальный «Фотографический атлас Луны».

В 1811 году французский астроном Франсуа Араго открыл явление поляризации света, отражённого поверхностью Луны. Причина данного явления заключается в наличии на поверхности раздробленного грунта, который отражает свет в целом лучше, чем окружающая его территория. Этим и объясняются светлые лучи вокруг тёмных лунных кратеров, оставленные выбросом грунта при ударе.

В 1822 году немецкий астроном Франц фон Груйтуйзен обнаружил, а затем и сообщил об открытии лунного города, расположенного к северу от кратера Шрётер (англ.)русск., названного им Валлверк (сейчас это образование известно под названием Город Груйтуйзена). Это открытие вызвало большую сенсацию, и множество споров; после наблюдений более мощными телескопами, искусственная природа этого образования была опровергнута.

XX век

Первая фотография, сделанная Нилом Армстронгом на Луне.

С началом космической эры количество наших знаний о Луне значительно увеличилось. Стал известен состав лунного грунта, учёные получили его образцы, составлена карта обратной стороны.

Впервые удалось заглянуть на обратную сторону Луны в 1959 году, когда советская станция «Луна-3» пролетела над ней и сфотографировала невидимую с Земли часть её поверхности. Обратная сторона Луны представляет собой идеальное место для астрономической обсерватории. Размещённым здесь оптическим телескопам не пришлось бы пробиваться сквозь плотную земную атмосферу. А для радиотелескопов Луна послужила бы естественным щитом из твёрдых горных пород толщиной 3500 км, который надёжно прикрыл бы их от любых радиопомех с Земли.

В начале 1960-х годов было очевидно, что в освоении космоса США отстают от СССР. Дж. Кеннеди заявил — высадка человека на Луну состоится до 1970 года. Для подготовки к пилотируемому полёту НАСА выполнило несколько космических программ: «Рейнджер» — фотографирование поверхности, «Сервейер» (1966—1968) — мягкая посадка и съёмки местности и «Лунар орбитер» (1966—1967) — детальное изображение поверхности Луны.

Американская программа пилотируемого полёта на Луну называлась «Аполлон». Первая посадка произошла 20 июля 1969 года; последняя — в декабре 1972 года, первым человеком, ступившим на поверхность Луны, стал американец Нил Армстронг (21 июля 1969 года), вторым — Эдвин Олдрин. Третий член экипажа Майкл Коллинз оставался в орбитальном модуле. Таким образом, Луна — единственное небесное тело, на котором побывал человек, и первое небесное тело, образцы которого были доставлены на Землю (США доставили 380 килограммов, СССР — 324 грамма лунного грунта).

«Восход Земли», впервые сфотографированный с лунной орбиты Аполлоном-8

Луноход-1 — первый автоматический планетоход на Луне

Астронавт Юджин Сернан, командир экипажа Аполлона-17 на лунном автомобиле «Лунар Ровер»

СССР проводил исследования на поверхности Луны с помощью двух радиоуправляемых самоходных аппаратов, «Луноход-1», запущенный к Луне в ноябре 1970 года и «Луноход-2» — в январе 1973. «Луноход-1» работал 10,5 земных месяцев, «Луноход-2» — 4,5 земных месяцев (то есть 5 лунных дней и 4 лунные ночи). Оба аппарата собрали и передали на Землю большое количество данных о лунном грунте и множество фотоснимков деталей и панорам лунного рельефа.

После того как в августе 1976 года советская станция «Луна-24» доставила на Землю образцы лунного грунта, следующий аппарат — японский спутник «Hiten» — полетел к Луне лишь в 1990 году. А два американских космических аппарата — Clementine в 1994 году и Lunar Prospector в 1998 году.

XXI век

После окончания советской космической программы «Луна» и американской «Аполлон» исследования Луны с помощью космических аппаратов были практически прекращены. Но в начале XXI века Китай опубликовал свою программу освоения Луны, включающую кроме доставки лунохода (в 2011 году) и отправки грунта на Землю (в 2012), в том числе и постройку обитаемых лунных баз (2030). Считается, что это заставило остальные космические державы снова развернуть лунные программы. Так, например, Европейское космическое агентство 28 сентября 2003 года запустило первый лунный зонд «Смарт-1», а Дж. Буш 14 января 2004 года объявил, что в планы США входит создание новых пилотируемых космических кораблей, способных доставить на Луну людей и луноход, с целью заложить к 2020 году первые лунные базы.

14 сентября 2007 года Япония запустила автоматический космический аппарат (КА) для исследования Луны «Кагуя», а 24 октября 2007 года в лунную гонку официально вступила и КНР. С космодрома Сичан был запущен первый китайский спутник Луны «Чанъэ-1». С помощью станции учёные планируют сделать объёмную карту лунной поверхности, что в будущем может поспособствовать амбициозному проекту колонизации Луны.

18 июня 2009 года, НАСА были запущены лунные орбитальные зонды — Lunar Reconnaissance Orbiter (LRO) и Lunar Crater Observation and Sensing Satellite (LCROSS). Запуск был произведён с помощью ракеты-носителя Атлас 5 со Станции Военно-Воздушных сил Мыса Канаверал во Флориде. Спутник предназначен для сбора информации о лунной поверхности, поиска воды и подходящих мест для будущих лунных экспедиций.

К сорокалетию полёта Аполлона-11 автоматическая межпланетная станция LRO выполнила специальное задание — провела съёмку районов посадок лунных модулей земных экспедиций. В период с 11 по 15 июля LRO произвела съёмку и передала на Землю первые в истории детальные снимки самих лунных модулей, посадочных площадок, элементов оборудования, оставленных экспедициями на поверхности и, даже, следов самих землян от тележки и ровера. За это время были отсняты 5 из 6 мест посадок: экспедиции Аполлон-11, 14, 15, 16, 17.

Позднее КА LRO выполнил ещё более подробные снимки поверхности, где можно чётко дешифрировать не только посадочные модули и аппаратуру со следами лунного автомобиля, но и пешие следы самих космонавтов.

9 октября 2009 космический аппарат LCROSS и разгонный блок «Центавр» совершили запланированное падение на поверхность Луны в кратер Кабеус, расположенный примерно в 100 км от южного полюса Луны, а потому постоянно находящийся в глубокой тени. 13 ноября НАСА сообщило о том, что с помощью этого эксперимента на Луне обнаружена вода.

Не исключено, что на Луне может находиться не только серебро, ртуть и спирты, но и прочие химические элементы и соединения. Водяной лёд, молекулярный водород, найденные благодаря миссии LCROSS и LRO в лунном кратере Кабеус указывают на то, что на Луне действительно есть ресурсы, которые могут быть использованы в будущих миссиях.

Анализ топографических данных, присланных аппаратом LRO, и гравитационные измерения «Кагуя» показали, что толщина коры на обратной стороне Луны не постоянна и меняется с широтой места. Самые толстые участки коры соответствуют наибольшим возвышенностям, что характерно и для планеты Земля, а самые тонкие обнаружены в приполярных широтах.

Лунные кратеры, с самого открытия Галилеем, не перестают удивлять ученых и любителей астрономии. изучаются до сих пор. Они дают представление о том, какой хаос был в начале существования Солнечной системы.

  1. Лунные кратеры – ровесники Солнечной системы . Большая часть их возникла на стадии формирования Солнечной системы. Тогда в ней было множество осколков и частей не сформировавшихся планет. Падая на Луну, они образовали выбоины.
  2. Самая большая система кратеров расположена на обратной стороне Луны . Герцшпрунг, диаметр которого равен 591 км нельзя увидеть с Земли, потому что он расположен на обратной стороне нашего спутника. Это образование ударного происхождения.

  3. Лучи Тихо – это след ужасного столкновения . В нижней части видимого с Земли диска Луны виден яркий кратер, от которого расходятся в стороны светлые полосы, которые видны с земли даже в бинокль. Светлые полосы – это ничто иное, как следы катастрофы, которая произошла много миллионов лет назад. От чудовищного удара порода разлетелась и осела на расстояния в тысячи километров.

  4. Это образование древней, чем Тихо, и тоже имеет лучи, но не такие заметные . Лучше всего их видно в полнолуние. Стены Коперника возвышаются над поверхностью на 2,2 км, а его диаметр равен 60 км.

  5. Аристарх – один из самых таинственных кратеров Луны . У этого образования сложная структура. Также ученые зафиксировали исходящий от него поток альфа-частиц и предположили наличие там залежей радиоактивных материалов.

  6. Одинокая гора, похожая по форме на пирамиду, возвышается на 1600 м над равниной . Она входит в цепь гор, расположенных вокруг огромного кратера. В древности он был залит лавой, которая образовала так называемое Море Дождей.

  7. В 53 году прошлого столетия астроном-любитель зафиксировал на фото вспышку на лунной поверхности . Это была фотография столкновения спутника Земли с крупным космическим объектом. Через некоторое время, когда к Луне отправили аппараты, сделавшие качественные снимки поверхности, на месте вспышки обнаружили кратер.

  8. Новый кратер, впервые за сотни лет наблюдений, обнаружили на обращенной к Земле стороне Луны . Его назвали в честь отважной женщины-летчицы, преодолевшей Атлантику Эмилии Эрхарт.

  9. При правильном освещении сеть разломов в поверхности этого естественного образования создает довольно правильный рисунок . Увидеть такое чудо можно у края видимого диска планеты. Рисунок возник вследствие постепенного заливания лавой и неравномерного остывания породы.

  10. Изучая некоторые ударные кратеры, ученые получили шанс заглянуть под плотную мантию Луны . Сталкиваясь на огромных скоростях с нашим спутником, некоторые астероиды повреждали его верхний слой. Основываясь на спектрограммах можно понять состав внутренней «начинки» Луны.

  11. Обнаруженный астрономами на обратной стороне Луны кратер, имеет странную форму, которая говорит об ударе космического тела по касательной . Ученые высказали предположение, что это след падения на планету американского Lunar Orbiter 2. Этот аппарат упал в октябре 67 года.

  12. На нашей планете тоже обнаружены крупные кратеры ударного типа . Несмотря на распространенное мнение, что атмосфера земли это своеобразный шит планеты, защищающий от астероидов, это не совсем так. На Луне это след попадания крупных объектов, диаметром в десятки километров. Наша атмосфера не может защитить планету от такой бомбардировки. Доказательством тому служит наличие на поверхности Земли крупных кратеров, открытых сравнительно недавно.

  13. Еще недавно считалось, что геологическая активность закончилась на Луне очень давно, но исследования некоторых кратеров показывают, что они совсем новы, по космическим меркам . Таким образом, под поверхностью спутника Земли продолжается активность.

  14. Почти в самом центре видимого диска Луны находится Альфонс , дно которого иногда становится плохо различимо даже в хорошую оптику. На его дне скапливается газ, выбрасываемый из недр нашего спутника.

  15. Большая часть лунных кратеров названа в честь ученых и исследователей . С началом эпохи космонавтики, им стали давать имена известных космонавтов.

Но сначала фотография Луны с анонсом и местоположением тех объектов, о которых пойдёт речь с этой статье:

Наверное самый известный кратер на Луне, многие не знают его название, но точно видят его на луне. Его можно "угадать" даже невооружённом взглядом в полнолуние, потому что в полнолуние это ярчайшее пятно на Луне за счёт лучей, исходящих от кратера до 1500 км в длину


Кратер образовался на луне примерно 100 миллионов лет назад, средний диаметр 85 км и максимальна глубина почти 5 км. По Лунным меркам, кратер считается молодым. В приближении 5000 мм, отчётливо прорисовываются ступенчатая структура внутреннего вала на стенах кратера. А так же на отдельные скалы разделяется центральная горка кратера, которая достигает высоты порядка 2 км.

Думаю, что вторым по узнаваемости, является кратер Коперник. Он отчётливо виден, как в полнолуние, так и в другие фазы Луны, когда освещается светом Солнца. Его хорошая видимость обусловлена, тем, что кратер находится посередине океана Бурь, в тёмной вулканической породе, а те выбросы, которые появились в результате столкновения имеют более светлый цвет, за счёт этого он и контрастирует на поверхности Луны.


На мой взгляд, очень интересный кратер. При различных фазах Луны, выглядит совершенно по разному, за счёт игры света и теней. В этот раз он был почти полностью освещён, и кажется немного плоским, но зато тени не скрывают всей его внутренней террасовидной структуры. Возраст оценивается в 800 миллионов лет, глубиной почти 4 км и в диаметре около 96 км. Вокруг Коперника можно наблюдать огромную сеть вторичных мелких кратеров, образованных осколками горных пород в результате взрыва при падении метеорита, создавшего Коперник. Занимательная деталь, заключается в том, что астронавты "Аполлона-12" брали пробы грунта из лучевой структуры этого кратера.

По своей видимой природе очень похож на Коперник, да и расположены они по соседству.


Кратер относительно не большой, в диаметре порядка 30 км и глубиной 2,5 км. Но за счёт тёмного базальтового плато океана Бурь и моря Островов, он сильно выделяется на поверхности Луны своей светлой лучевой системой.

4) Кратер Клавий
Красивейший кратер на Луне. Красив именно из-за своей структуры вторичных кратеров, легко узнаваем, напоминает мне забавное мультяшное лицо.


Находится на южном полюсе Луны, под кратером Тихо. Является очень древним кратером с возрастом порядка 4 миллиардов лет, диаметром 230 км и средней глубиной около 2 км, а максимальной около 5. Два кратера, которые ударили по Луне позже и разбили стены Клавия, называются Портер (верхний) и Резерфорд (нижний). У них почти одинаковые размеры по 50 км в диаметре.
Интересной особенностью Клавия является его дно. Оно достаточно плоское не считая падений более молодых метеоритов. Немного левее от центра кратера расположена "центральная горка", которая почему-то смещенная от центра. Предполагается, что дно кратера формировалось много позже его образования.

Кратер с очень интересным дном, с многочисленными бороздами и разломами


Расположен на северном крае Моря Влажности. Древний разрушенный кратер с диаметром 110 км. и сравнительно небольшой глубиной: 1,5 км. На этом фоне центральная горка выглядит выше стен кратера, хотя на самом деле её высота чуть менее 1400 метров. Структурированное дно кратера обязано своим видом формированию Моря Влажности. В этот период кратер подвергся лавовой коррозии.

Небольшое круглое лунное море с диаметром 420 км.


Возраст оценивается примерно в 4 миллиарда лет. Затоплено заставшей лавой, глубина которой достигает 3 км. Интересными кратерами на южной стороне моря являются кратер Вителло (на фото немного ниже и правее от центра), центральная часть которого напоминает подиум, на котором находится пика кратера. И почти полностью разрушенный кратер Доппельмаейр, с центральной пикой с ровными треугольными сторонами.

Древний кратер, находится чуть левее и выше от кратера Клавий


Диаметр почти 150 км, глубина 4,5 км. По природе напоминает Клавий. Так же смещена центральная горка левее от центра. Предположительно дно кратера формировалось так же после образования самого кратера.

Необычное Лунной образование. Множество гипотез об искусственном происхождении данной стены ходило в интернете.


На самом же деле это тектонический разлом на Луне. В длину стена достигает 120 км. Предположительно высота стены от 200 до 400 метров. Лучше всего стену наблюдать на 8-й или 22-й день возрастания Луны.
Другие объекты на снимке: левее от стены можно видеть трещину в виде червя, длинной около 50 км, имеет закруглённые концы. Трещина образовалась, скорее всего, от лавовых потоков. И крупнейшие кратеры: сверху Арзахель, ниже двойной кратер Фебит и древний кратер внизу фотографии - Пурбах.

9) Борозды Гигина и Ариадеус
Образования загадочного происхождения - длинные борозды на поверхности Луны, а так же цепочки лунных кратеров. Особенно загадочно, когда цепочки лунных кратеров точно совпадают с бороздой, как видно на этой фотографии


Борозда Ариадеус (правая полоса на снимке) в длину достигает 250 км. Является одной их самых известных борозд на видимой части лунной поверхности. Происхождение борозды не известно. Предположительно - результат лавовых потоков.
Борозда Гигина, находится на левой части фотографии. Не менее длинная борозда - 203 км в длину. Интересна тем, что цепочка кратеров точь в точь совпала с направлением самой борозды. По теории вероятности такое событие ничтожно мало, а вернее сказать невозможно. Мало того, что цепочки кратеров являются редким и загадочным явлением (могут образовываться от хвоста комет), так чтобы эта цепочка попала на борозду и поворачивала по направлению точно, как борозда, это действительно не объяснимо на данный момент.

Романтичная гавань на Луне. Жаль, вместо моря засохшая и отвердевшая лава.


Изначально это был огромный ударный кратер диаметром 250 км. Сейчас Юго-восточная часть залива соединена с морем дождей. Края радужного залива образуют мыс Лапласа на севере, высотой 2,5 км и мыс Гераклида на юге, высотой 1,3 км. А валы бывшего кратера называют Юрскими Горами или Горы Юра. Высота этих гор достигает трёх километров. Образование залива соизмеряют с образованием моря дождей, это примерно составляет 3,5-4 миллиарда лет назад. Однако, у берегов залива находится более древняя магма, отличающееся по цвету от основной застывшей магмы моря Дождей, что может говорить о более раннем происхождении залива Радуги. Залив находится на северном полушарии Луны и виден даже невооружённым глазом. В заливе побывал советский Луноход-1 в 1970 году и китайский луноход Чаньэ-3 в 2013 году.

11) Кратер Платон и Альпийская долина
Фотография ещё одного интересного участка поверхности Луны (по клику доступен оригинал 1214 пикселей по ширине)


Данный участок интересен как кратером Платон так и горной сетью лунных Альп.
Кратер Платон с возрастом почти 4 миллиарда лет, диаметром 100 км и глубиной 2 км, имеет очень плоское дно, залитое магмой. Не осталось даже и следа от центральной горки кратера, а его стены подверглись обрушению из-за лавового воздействия. Удивительно, что на дно кратера в более поздние периоды не падали крупные метеориты. В 5000 мм можно различить только несколько мелких кратеров на его площади. От северной стороны кратера можно видеть "борозду Платона", напоминающие извилистое русло реки. Предположительно, метеорит, образовавший кратер упал в горный массив, тем самым полностью разрушив их.
Альпы и Альпийская долина, которые находятся правее Платона образуют лунные горы, разделяющие огромным каньоном. Этот каньон и есть Альпийская долина.
Как предполагают, Альпы образовались в результате падения астероида. Самую высокую гору лунных Альп назвали Монблан, по аналогии с земными Альпами. На Луне высота горы Монблан более трёх километров. А вся горная сеть в длину занимает около 260 км со средней высотой гор 2,5 км. Но главной достопримечательностью Альп, конечно же, является Альпийская долина. Эта долина простирается на 160 км со средней шириной 10 км. Учёные объясняют образование долины как грабен, образовавшийся в результате оседания лунной коры вдоль разлома, который возник при формировании бассейна Моря Дождей, и впоследствии впадина была залита лавой. На дне долины имеется узкая борозда шириной не более 1 км (на фото зафиксировалась, только центральная часть этой борозды), она тянется почти на 140 км.

12) Северный полюс Луны
Северный полюс Луны полностью покрыт кратерами различного диаметра.


Но что интересного в северном полюсе? А то, что специалисты NASA обнаружили в 40 кратерах северного полюса Луны замёрзшую воду, то есть лёд. Образцов пока нет и доказательство существования льда основано на анализах орбитальной станции LRO и российского прибора LEND, а так же станций LCROSS и "Чандраян-1".
Узнаваемыми кратерами на северном полюсе являются Анаксагор и Гольдшмидт. Последний, это древний разрушенный кратер размером 115 км и глубиной 3,5 км. Анаксагор относительно молодой кратер, возрастом 1 миллиард лет, размером 50 км и глубиной в три километра. На фотографии они ниже и левее от центра, узнаваемы тем, что метеорит, образовавший Анаксагор, упал на западную стену Гольдшмидта.

13) Кратер Гершель Дж. и Гарпал
Два хорошо заметных кратера вблизи северного полюса. Находятся над заливом радуги.


Кратер Гершель Дж. (на фото в правой части) почти разрушился и исчез. Его стены уже не такие чёткие как у молодых кратеров. Сегодня глубина кратера составляет всего 900 метров, а диаметр 155 км.
Кратер Гарпал (на фото слева) - молодой ударный кратер. Диаметром 40 км, глубиной 3,5 км. и центральной горкой всего 350 метров.

14) Кратеры Архимед, Автолик и Аристилл
Три известных лунных кратера.


Самый нижний кратер на фотографии это Архимед. Возраст 3,5 миллиарда лет, диаметр 81 км и глубина 1,5 км. Находится в море Дождей. Как и у кратера Платон, его дно наполняет лава, и поэтому является довольно плоским с несколькими мелкими кратерами. Архимед имеет систему борозд, на фотографии видны, как еле заметные линии идущие на север более чем на 150 км.
Средний кратер - Автолик. 40 км в диаметре и 3,5 км в глубину. Возраст оценивается от 1 до 2 миллиардов лет
Верхний кратер - Аристилл. Примерно такого же возраста, как и Автолик, немного пошире, примерно 55 км в диаметре, а глубина чуть поменьше - 3,3 км.
Интересной деталью снимка является система борозд в нижней правой части. Это борозды Хедли, граничащие с горными массивами Апеннин. Борозда имеет длину 116 км и ширину около 1,2 км. с глубиной 300 метров. Предполагается, что борозда образовалась в результате подземных лавовых потоков с последующим обрушением потолка.

На этом всё. В завершении хочу показать, как эти объекты располагаются в полнолуние для большей узнаваемости:


по клику доступен размер побольше. Фотография полнолуния сделана ещё в 2011 году

Очень надеюсь, что теперь вам будет ещё интереснее смотреть на Луну, особенно тёплыми вечерами и ночами. И может быть вы поделитесь с кем-нибудь о том, что сегодня узнали:)

Немного о технической стороне съёмок. Все фотографии получены на зеркально линзовый объектив Celestron SCT 8" c апертурой 203 мм и светосилой F/10. Фокусной расстояние 5000 мм достигалось при помощи телекэтендера Televue Powermate 2,5x. Видеоролики записывались на чёрнобелую камеру VAC-136 в инфракрасном спектре с фильтром Astronomic IR-pass 742.
Обработка осуществлялась в программах:
1) стекинг кадров - AutoStakkert 2. Registax 6
2) доводка резкости (деконволюция и вейвлеты) - AstroImage 3 Pro
3) финальная цветокорреция гистограммы - Photoshop CS
П.С.: почему не одиночные кадры и не "зеркалка" можно почитать

Лунный кратер

Лунным кратером называется чашеобразное углубление в поверхности Луны , имеющее сравнительно плоское дно и окруженное кольцевидным приподнятым валом. В соответствии с современными представлениями абсолютное большинство лунных кратеров являются кратерами ударного типа . Незначительная часть лунных кратеров до сих пор считается вулканическими кальдерами .

История и происхождение кратеров

Тип Типичный представитель Морфологические признаки Диаметр кратера Изображение
ALC Аль-Баттани C Кратер сферической формы с острым валом, гладким внутренним склоном и сферической формой дна чаши кратера до 10 км
BIO Био То же что тип ALC но с плоским дном в центральной части чаши кратера 10 - 15 км
SOS Созиген Кратер с плоским дном чаши, террасы внутреннего склона и центральный пик отсутствуют 15 - 25 км
TRI Триснеккер Наличие центрального пика (начиная с диаметра 26 км), внутренний склон утрачивает гладкость и имеет следы обрушения 15 - 50 км
TYC Тихо Террасовидный внутренний склон, сравнительно плоское дно чаши, часто имеют развитый центральный пик свыше 50 км

Кратеры диаметром свыше 200 км утрачивают центральный пик и называются бассейнами. В отдельную группу выделяют талласоиды - крупные кратерные образования, по размерам близкие к круглым лунным морям, но в отличие от них имеющее светлое дно, не залитое тёмной лавой.

Примечания

Ссылки

  • Wood, C.A. and L. Andersson (1978) New morphometric data for fresh lunar craters. Lunar and Planetary Science Conference, 9th, Proceedings. New York, Pergamon Press, Inc., p. 3669-3689.
  • Lunar Impact Crater Database (2011) Losiak et al, LPI Lunar Exploration Intern Program (2009). Revised by Ohman, LPI (2011).

См. также


Wikimedia Foundation . 2010 .