Болезни Военный билет Призыв

Как определить радиан. Что такое угол. Понятие угла: радиан, градус. Защита персональной информации

Градусы в радианы. Друзья, данный пост короткий, но для многих полезный. Как вы знаете, школьный курс математики знакомит нас с двумя основными мерами углов: градусной и радианной. С использованием этих мер решаются практически все задачи, как в математике, так и в физике.

Понимать как они взаимосвязаны между собой — крайне необходимо. Хорошо если вы легко оперируете вычислениями с использованием любой из этих мер. Но с лёгкостью это могут делать далеко не все.

Для осуществления расчётов (различных преобразований) с использованием радианной меры необходима хорошая практика. Например, хорошего навыка требует выделение периода из дроби при решении тригонометрических выражений. Для кого-то будет проще и понятнее решать задачи используя градусную меру. Для половины учащихся проблемы перевода градусов в радианы (или наоборот) не существует. Если же вам необходимо это повторить, то этот материал для вас.

Таблица соответствия угловых мер


Итак, базовая информация, которая необходима. Это соответствие нужно уяснить и запомнить раз и навсегда!


Примеры перевода радиан в градусы:

Если угол задан в радианной мере, и в его выражении имеется число Пи, то подставляем его градусный эквивалент, то есть 180 градусов и вычисляем:

Если же радианы даны в виде целого числа, дроби либо целого числа с дробной частью, то решаем через пропорцию. Про неё я писал в о задачах на проценты. Например, определим, сколько в градусной мере составляют 2 радиана и 5 радиан. Составляем пропорцию:


Примеры перевода градусной меры в радианную.

Переведём в радианы 510 градусов. Для данной операции необходимо составить пропорцию. Для этого установим соответствие. Известно, что 180 градусам соответствует Пи радиан. А 510 градусов обозначаем как х радиан (так как нам необходимо определить радианы), значит:

Переведём в радианы 340, 220, 1210 градусов:


Успеха Вам!

С уважением, Александр Крутицких

P.S: Буду вам благодарен, если расскажете о сайте в социальных сетях.

    Тригонометрические функции представляют собой элементарные функции, аргументом которых является угол . С помощью тригонометрических функций описываются соотношения между сторонами и острыми углами в прямоугольном треугольнике. Области применения тригонометрических функций чрезвычайно разнообразны. Так, например, любые периодические процессы можно представить в виде суммы тригонометрических функций (ряда Фурье). Данные функции часто появляются при решениидифференциальныхи функциональных уравнений.

    К тригонометрическим функциям относятся следующие 6 функций: синус , косинус , тангенс , котангенс , секанс и косеканс . Для каждой из указанных функций существует обратная тригонометрическая функция.

    Геометрическое определение тригонометрических функций удобно ввести с помощью единичного круга . На приведенном ниже рисунке изображен круг радиусом r = 1. На окружности обозначена точка M (x,y ). Угол между радиус-вектором OM и положительным направлением оси Ox равен α .

    Синусом угла α y точки M (x,y ) к радиусу r : sin α = y /r . Поскольку r = 1, то синус равен ординате точки M (x,y ).

    Косинусом угла α x точки M (x,y ) к радиусу r : cos α = x /r = x

    Тангенсом угла α называется отношение ординаты y точки M (x,y ) к ee абсциссе x : tan α = y /x , x ≠ 0

    Котангенсом угла α называется отношение абсциссы x точки M (x,y ) к ее ординате y : cot α = x /y , y ≠ 0

    Секанс угла α − это отношение радиуса r к абсциссе x точки M (x,y ): sec α = r /x = 1/x , x ≠ 0

    Косеканс угла α − это отношение радиуса r к ординате y точки M (x,y ): cosec α = r /y = 1/y , y ≠ 0

    В единичном круге проекции x , y точки M (x,y ) и радиус r образуют прямоугольный треугольник, в котором x, y являются катетами, а r − гипотенузой. Поэтому, приведенные выше определения тригонометрических функций в приложении к прямоугольному треугольнику формулируются таким образом: Синусом угла α называется отношение противолежащего катета к гипотенузе. Косинусом угла α называется отношение прилежащего катета к гипотенузе. Тангенсом угла α называется противолежащего катета к прилежащему. Котангенсом угла α называется прилежащего катета к противолежащему.

    График функции синус y = sin x , область определения: x , область значений: −1 ≤ sin x ≤ 1

    График функции косинус y = cos x , область определения: x , область значений: −1 ≤ cos x ≤ 1

    График функции тангенс y = ttg x , область определения: x , x ≠ (2k + 1)π /2, область значений: −∞ < tg x < ∞

    График функции котангенс y = ctg x , область определения: x , x , область значений: −∞ < ctg x < ∞

Давай посмотрим на рисунке. Вектор \(AB \) «повернулся» относительно точки \(A \) на некую величину. Так вот мерой этого поворота относительно начального положения и будет выступать угол \(\alpha \) .

Что же ещё необходимо знать о понятии угла? Ну, конечно же, единицы измерения угла!

Угол, как в геометрии, так и в тригонометрии, может измеряться в градусах и радианах.

Углом в \(1{}^\circ \) (один градус) называют центральный угол в окружности, опирающийся на круговую дугу, равную \(\dfrac{1}{360} \) части окружности.

Таким образом, вся окружность состоит из \(360 \) «кусочков» круговых дуг, или угол, описываемый окружностью, равен \(360{}^\circ \) .

То есть на рисунке выше изображён угол \(\beta \) , равный \(50{}^\circ \) , то есть этот угол опирается на круговую дугу размером \(\dfrac{50}{360} \) длины окружности.

Углом в \(1 \) радиан называют центральный угол в окружности, опирающийся на круговую дугу, длина которой равна радиусу окружности.

Итак, на рисунке изображён угол \(\gamma \) , равный \(1 \) радиану, то есть этот угол опирается на круговую дугу, длина которой равна радиусу окружности (длина \(AB \) равна длине \(BB" \) или радиус \(r \) равен длине дуги \(l \) ). Таким образом, длина дуги вычисляется по формуле:

\(l=\theta \cdot r \) , где \(\theta \) - центральный угол в радианах.

Ну что, можешь, зная это, ответить, сколько радиан содержит угол, описываемый окружностью? Да, для этого надо вспомнить формулу длины окружности. Вот она:

\(L=2\pi \cdot r \)

Ну вот, теперь соотнесём эти две формулы и получим, что угол, описываемый окружностью равен \(2\pi \) . То есть, соотнеся величину в градусах и радианах, получаем, что \(2\pi =360{}^\circ \) . Соответственно, \(\pi =180{}^\circ \) . Как можно заметить, в отличие от «градусов», слово «радиан» опускается, так как единица измерения обычно ясна из контекста.

Пусть у нас имеется единичная окружность с центром в точке О. Проведем к ней вертикальную касательную в точке Р. Положим, что эта касательная числовая ось, с началом в точке Р и положительное направление пусть будет вверх. За единицу длины на числовой оси возьмем радиус нашей окружности. Теперь на числовой оси отметим несколько точек ±1, ±pi/2, ± 3, ±pi. Тут pi ≈3.1415 иррациональное число.

Что означает радианная мера

Теперь, будем мысленно наматывать числовую прямую на окружность. Тогда точки с координатами 1, pi/2, -1, -2 и другие перейдут соответственно в точки М1,М2, М3, М4 на окружности. При этом длинна дуги РМ1 будет равна 1, длинна РМ2 =pi/2 и т.д.

Мы сопоставили каждой точке на прямой некоторую точку на окружности.

В таком случае говорят, что углы измеряются в радианной мере, а угол РОМ1 считают углом в 1 радиан (1 рад).

Рассмотрим некоторую окружность с радиусом R и отметим на ней дугу РМ длинной равной R. Отметим так же угол РОМ.

Центральный угол, который опирается на дугу, длина которой равна радиусу, называется углом в один радиан (1 рад).

Вычислим градусную меру угла в 1 радиан.

Длина дуги полуокружности равна pi*R. На эту дугу опирается центральный угол равный 180 градусам. Следовательно, дуга равная по длине R стягивает угол в pi раз меньший чем 180 градусов. То есть,

1 радиан = (180/pi) градусов.

Известно, что pi≈3.14, тогда 1 рад ≈ 57.3 градуса.

Если известно что угол содержит х радиан, то для вычисления его градусной меры используют следующую формулу:

Х радиан = ((180*х)/pi) градусов.

Таблица основных углов, выраженных в радианной мере

Когда обозначают радианную меру углов, обычно наименование «рад» опускают.

Зная радианную меру угла (a), можно вычислить длину дугу (l), которую стягивает этот угол, по следующей формуле: l=a*R.

Углы измеряются в градусах или в радианах. Важно понимать связь между этими единицами измерения. Понимание этой связи позволяет оперировать углами и осуществлять переход от градусов к радианам и обратно. В данной статье выведем формулу для перевода градусов в радианы и радианов в градусы, а также разберем несколько примеров из практики.

Yandex.RTB R-A-339285-1

Связь между градусами и радианами

Чтобы установить связь между градусами и радианами, необходимо узнать градусную и радианную меру какого-либо угла. Например, возьмем центральный угол, который опирается на диаметр окружности радиуса r. Чтобы вычислить радианную меру этого угла необходимо длину дуги разделить на длину радиуса окружности. Рассматриваемому углу соответствует длина дуги, равная половине длины окружности π · r . Разделим длину дуги на радиус и получим радианную меру угла: π · r r = π рад.

Итак, рассматриваемый угол равен π радиан. С другой стороны, это развернутый угол, равный 180 ° . Следовательно 180 ° = π рад.

Связь градусов с радианами

Связь между радианами и градусами выражается формулой

π радиан = 180 °

Формулы перевода радианов в градусы и наоборот

Из формулы, полученной выше, можно вывести другие формулы для перевода углов из радианов в градусы и из градуов в радианы.

Выразим один радиан в градусах. Для этого разделим левую и правую части радиуса на пи.

1 р а д = 180 π ° - градусная мера угла в 1 радиан равна 180 π .

Также можно выразить один градус в радианах.

1 ° = π 180 р а д

Можно произвести приблизтельные вычисления величин угла в радианах и наоборот. Для этого возьмем значения числа π с точностью до десятитысячных и подставим в полученные формулы.

1 р а д = 180 π ° = 180 3 , 1416 ° = 57 , 2956 °

Значит, в одном радиане примерно 57 градусов

1 ° = π 180 р а д = 3 , 1416 180 р а д = 0 , 0175 р а д

Один градус содержит 0,0175 радиана.

Формула перевода радианов в градусы

x р а д = х · 180 π °

Чтобы перевести угол из радианов в градусы, нужно значение угла в радианах умножить на 180 и разделить на пи.

Примеры перевода градусов в радианы и радианов в градусы

Рассмотрим пример.

Пример 1. Перевод из радианов в градусы

Пусть α = 3 , 2 рад. Нужно узнать градусную меру этого угла.