Болезни Военный билет Призыв

Как определить четный или нечетный график. Четные и нечетные функции. Периодические функции. Словесное описание функции

Четная функция.

Четной называется функция, знак которой не меняется при изменении знака x .

x выполняется равенство f (–x ) = f (x ). Знак x не влияет на знак y .

График четной функции симметричен относительно оси координат (рис.1).

Примеры четной функции:

y = cos x

y = x 2

y = –x 2

y = x 4

y = x 6

y = x 2 + x

Пояснение:
Возьмем функцию y = x 2 или y = –x 2 .
При любом значении x функция положительная. Знак x не влияет на знак y . График симметричен относительно оси координат. Это четная функция.

Нечетная функция.

Нечетной называется функция, знак которой меняется при изменении знака x .

Говоря иначе, для любого значения x выполняется равенство f (–x ) = –f (x ).

График нечетной функции симметричен относительно начала координат (рис.2).

Примеры нечетной функции:

y = sin x

y = x 3

y = –x 3

Пояснение:

Возьмем функцию y = –x 3 .
Все значения у в ней будут со знаком минус. То есть знак x влияет на знак y . Если независимая переменная – положительное число, то и функция положительная, если независимая переменная – отрицательное число, то и функция отрицательная: f (–x ) = –f (x ).
График функции симметричен относительно начала координат. Это нечетная функция.

Свойства четной и нечетной функций:

ПРИМЕЧАНИЕ:

Не все функции являются четными или нечетными. Есть функции, которые не подчиняются такой градации. К примеру, функция корня у = √х не относится ни к четным, ни к нечетным функциям (рис.3). При перечислении свойств подобных функций следует давать соответствующее описание: ни четна, ни нечетна.

Периодические функции.

Как вы знаете, периодичность – это повторяемость определенных процессов с определенным интервалом. Функции, описывающие эти процессы, называют периодическими функциями . То есть это функции, в чьих графиках есть элементы, повторяющиеся с определенными числовыми интервалами.

Для этого воспользуйтесь миллиметровкой или графическим калькулятором. Выберите несколько любых числовых значений независимой переменной x {\displaystyle x} и подставьте их в функцию, чтобы вычислить значения зависимой переменной y {\displaystyle y} . Найденные координаты точек нанесите на координатную плоскость, а затем соедините эти точки, чтобы построить график функции.

  • В функцию подставьте положительные числовые значения x {\displaystyle x} и соответствующие отрицательные числовые значения. Например, дана функция . Подставьте в нее следующие значения x {\displaystyle x} :
    • f (1) = 2 (1) 2 + 1 = 2 + 1 = 3 {\displaystyle f(1)=2(1)^{2}+1=2+1=3} (1 , 3) {\displaystyle (1,3)} .
    • f (2) = 2 (2) 2 + 1 = 2 (4) + 1 = 8 + 1 = 9 {\displaystyle f(2)=2(2)^{2}+1=2(4)+1=8+1=9} . Получили точку с координатами (2 , 9) {\displaystyle (2,9)} .
    • f (− 1) = 2 (− 1) 2 + 1 = 2 + 1 = 3 {\displaystyle f(-1)=2(-1)^{2}+1=2+1=3} . Получили точку с координатами (− 1 , 3) {\displaystyle (-1,3)} .
    • f (− 2) = 2 (− 2) 2 + 1 = 2 (4) + 1 = 8 + 1 = 9 {\displaystyle f(-2)=2(-2)^{2}+1=2(4)+1=8+1=9} . Получили точку с координатами (− 2 , 9) {\displaystyle (-2,9)} .
  • Проверьте, симметричен ли график функции относительно оси Y. Под симметрией подразумевается зеркальное отображение графика относительно оси ординат. Если часть графика справа от оси Y (положительные значения независимой переменной) совпадает с частью графика слева от оси Y (отрицательные значения независимой переменной), график симметричен относительно оси Y. Если функция симметрична относительно оси ординат, такая функция четная.

    • Проверить симметричность графика можно по отдельным точкам. Если значение y {\displaystyle y} x {\displaystyle x} , совпадает со значением y {\displaystyle y} , которое соответствует значению − x {\displaystyle -x} , функция является четной. В нашем примере с функцией f (x) = 2 x 2 + 1 {\displaystyle f(x)=2x^{2}+1} мы получили следующие координаты точек:
      • (1,3) и (-1,3)
      • (2,9) и (-2,9)
    • Обратите внимание, что при x=1 и x=-1 зависимая переменная у=3, а при x=2 и x=-2 зависимая переменная у=9. Таким образом, функция четная. На самом деле, чтобы точно выяснить вид функции, нужно рассмотреть более двух точек, но описанный способ является хорошим приближением.
  • Проверьте, симметричен ли график функции относительно начала координат. Начало координат – это точка с координатами (0,0). Симметрия относительно начала координат означает, что положительному значению y {\displaystyle y} (при положительном значении x {\displaystyle x} ) соответствует отрицательное значение y {\displaystyle y} (при отрицательном значении x {\displaystyle x} ), и наоборот. Нечетные функции обладают симметрией относительно начала координат.

    • Если в функцию подставить несколько положительных и соответствующих отрицательных значений x {\displaystyle x} , значения y {\displaystyle y} будут различаться по знаку. Например, дана функция f (x) = x 3 + x {\displaystyle f(x)=x^{3}+x} . Подставьте в нее несколько значений x {\displaystyle x} :
      • f (1) = 1 3 + 1 = 1 + 1 = 2 {\displaystyle f(1)=1^{3}+1=1+1=2} . Получили точку с координатами (1,2).
      • f (− 1) = (− 1) 3 + (− 1) = − 1 − 1 = − 2 {\displaystyle f(-1)=(-1)^{3}+(-1)=-1-1=-2}
      • f (2) = 2 3 + 2 = 8 + 2 = 10 {\displaystyle f(2)=2^{3}+2=8+2=10}
      • f (− 2) = (− 2) 3 + (− 2) = − 8 − 2 = − 10 {\displaystyle f(-2)=(-2)^{3}+(-2)=-8-2=-10} . Получили точку с координатами (-2,-10).
    • Таким образом, f(x) = -f(-x), то есть функция нечетная.
  • Проверьте, имеет ли график функции какую-нибудь симметрию. Последний вид функции – это функция, график которой не имеет симметрии, то есть зеркальное отображение отсутствует как относительно оси ординат, так и относительно начала координат. Например, дана функция .

    • В функцию подставьте несколько положительных и соответствующих отрицательных значений x {\displaystyle x} :
      • f (1) = 1 2 + 2 (1) + 1 = 1 + 2 + 1 = 4 {\displaystyle f(1)=1^{2}+2(1)+1=1+2+1=4} . Получили точку с координатами (1,4).
      • f (− 1) = (− 1) 2 + 2 (− 1) + (− 1) = 1 − 2 − 1 = − 2 {\displaystyle f(-1)=(-1)^{2}+2(-1)+(-1)=1-2-1=-2} . Получили точку с координатами (-1,-2).
      • f (2) = 2 2 + 2 (2) + 2 = 4 + 4 + 2 = 10 {\displaystyle f(2)=2^{2}+2(2)+2=4+4+2=10} . Получили точку с координатами (2,10).
      • f (− 2) = (− 2) 2 + 2 (− 2) + (− 2) = 4 − 4 − 2 = − 2 {\displaystyle f(-2)=(-2)^{2}+2(-2)+(-2)=4-4-2=-2} . Получили точку с координатами (2,-2).
    • Согласно полученным результатам, симметрии нет. Значения y {\displaystyle y} для противоположных значений x {\displaystyle x} не совпадают и не являются противоположными. Таким образом, функция является ни четной, ни нечетной.
    • Обратите внимание, что функцию f (x) = x 2 + 2 x + 1 {\displaystyle f(x)=x^{2}+2x+1} можно записать так: f (x) = (x + 1) 2 {\displaystyle f(x)=(x+1)^{2}} . Будучи записанной в такой форме, функция кажется четной, потому что присутствует четный показатель степени. Но этот пример доказывает, что вид функции нельзя быстро определить, если независимая переменная заключена в скобки. В этом случае нужно раскрыть скобки и проанализировать полученные показатели степени.
  • Исследование функции.

    1) D(y) – Область опрделения: множество всех тех значений переменной х. при которых алгебраические выражения f(x) и g(x) имеют смысл.

    Если функция задана формулой, то область определения состоит из всех значений независимой переменной, при которых формула имеет смысл.

    2) Свойства функции: четность/нечетность, периодичность:

    Нечётными и чётными называются функции, графики которых обладают симметрией относительно изменения знака аргумента.

      Нечётная функция - функция, меняющая значение на противоположное при изменении знака независимой переменной (симметричная относительно центра координат).

      Чётная функция - функция, не изменяющая своего значения при изменении знака независимой переменной (симметричная относительно оси ординат).

      Ни чётная ни нечётная функция (функция общего вида) - функция, не обладающая симметрией. В эту категорию относят функции, не подпадающие под предыдущие 2 категории.

      Функции, не принадлежащие ни одной из категорий выше, называются ни чётными ни нечётными (или функциями общего вида).

    Нечётные функции

    Нечётная степень где - произвольное целое число.

    Чётные функции

    Чётная степень где - произвольное целое число.

    Периоди́ческая фу́нкция ― функция, повторяющая свои значения через некоторый регулярный интервал аргумента, то есть не меняющая своего значения при добавлении к аргументу некоторого фиксированного ненулевого числа (пери́ода функции) на всей области определения.

    3) Нули (корни) функции - точки, где она обращается в ноль.

    Нахождение точки пересечения графика с осью Oy . Для этого нужно вычислить значение f (0). Найти также точки пересечения графика с осью Ox , для чего найти корни уравнения f (x ) = 0 (или убедиться в отсутствии корней).

    Точки, в которых график пересекает ось , называют нулями функции . Чтобы найти нули функции нужно решить уравнение , то есть найти те значения «икс» , при которых функция обращается в ноль.

    4) Промежутки постоянства знаков, знаки в них.

    Промежутки, где функция f(x) сохраняет знак.

    Интервал знакопостоянства – это интервал, в каждой точке которого функция положительна либо отрицательна.

    ВЫШЕ оси абсцисс.

    НИЖЕ оси .

    5) Непрерывность (точки разрыва, характер разрыва, ассимптоты).

    Непрерывная функция - функция без «скачков», то есть такая, у которой малые изменения аргумента приводят к малым изменениям значения функции.

    Устранимые точки разрыва

    Если предел функции существует , но функция не определена в этой точке, либо предел не совпадает со значением функции в данной точке:

    ,

    то точка называется точкой устранимого разрыва функции (в комплексном анализе -устранимая особая точка).

    Если «поправить» функцию в точке устранимого разрыва и положить , то получится функция, непрерывная в данной точке. Такая операция над функцией называется доопределением функции до непрерывной или доопределением функции по непрерывности , что и обосновывает название точки, как точки устранимого разрыва.

    Точки разрыва первого и второго рода

    Если функция имеет разрыв в данной точке (то есть предел функции в данной точке отсутствует или не совпадает со значением функции в данной точке), то для числовых функций возникает два возможных варианта, связанных с существованием у числовых функций односторонних пределов :

      если оба односторонних предела существуют и конечны, то такую точку называют точкой разрыва первого рода . Точки устранимого разрыва являются точками разрыва первого рода;

      если хотя бы один из односторонних пределов не существует или не является конечной величиной, то такую точку называют точкой разрыва второго рода .

    Аси́мпто́та - прямая , обладающая тем свойством, что расстояние от точки кривой до этой прямой стремится к нулю при удалении точки вдоль ветви вбесконечность.

    Вертикальная

    Вертикальная асимптота - прямая предела .

    Как правило, при определении вертикальной асимптоты ищут не один предел, а два односторонних (левый и правый). Это делается с целью определить, как функция ведёт себя по мере приближения к вертикальной асимптоте с разных сторон. Например:

    Горизонтальная

    Горизонтальная асимптота - прямая вида при условии существования предела

    .

    Наклонная

    Наклонная асимптота - прямая вида при условии существования пределов

    Замечание: функция может иметь не более двух наклонных (горизонтальных) асимптот.

    Замечание: если хотя бы один из двух упомянутых выше пределов не существует (или равен ), то наклонной асимптоты при (или ) не существует.

    если в п. 2.), то , и предел находится по формуле горизонтальной асимптоты, .

    6) Нахождение промежутков монотонности. Найти интервалы монотонности функции f (x )(то есть интервалы возрастания и убывания). Это делается с помощью исследования знака производной f (x ). Для этого находят производную f (x ) и решают неравенство f (x )0. На промежутках, где это неравенство выполнено, функция f (x )возрастает. Там, где выполнено обратное неравенство f (x )0, функция f (x )убывает.

    Нахождение локального экстремума. Найдя интервалы монотонности, мы можем сразу определить точки локального экстремума там, где возрастание сменяется убыванием, располагаются локальные максимумы, а там, где убывание сменяется возрастанием - локальные минимумы. Вычислить значение функции в этих точках. Если функция имеет критические точки, не являющиеся точками локального экстремума, то полезно вычислить значение функции и в этих точках.

    Нахождение наибольшего и наименьшего значений функции y = f(x) на отрезке (продолжение)

    1. Найти производную функции: f (x ).

    2. Найти точки, в которых производная равна нулю: f (x )=0x 1, x 2 ,...

    3. Определить принадлежность точек х 1 , х 2 ,отрезку [a ; b ]: пусть x 1a ;b , а x 2a ;b .

    Функция называется четной (нечетной), если для любогои выполняется равенство

    .

    График четной функции симметричен относительно оси
    .

    График нечетной функции симметричен относительно начала координат.

    Пример 6.2. Исследовать на четность или нечетность функции

    1)
    ; 2)
    ; 3)
    .

    Решение .

    1) Функция определена при
    . Найдем
    .

    Т.е.
    . Значит, данная функция является четной.

    2) Функция определена при

    Т.е.
    . Таким образом, данная функция нечетная.

    3) функция определена для , т.е. для

    ,
    . Поэтому функция не является ни четной, ни нечетной. Назовем ее функцией общего вида.

    3. Исследование функции на монотонность.

    Функция
    называется возрастающей (убывающей) на некотором интервале, если в этом интервале каждому большему значению аргумента соответствует большее (меньшее) значение функции.

    Функции возрастающие (убывающие) на некотором интервале называются монотонными.

    Если функция
    дифференцируема на интервале
    и имеет положительную (отрицательную) производную
    , то функция
    возрастает (убывает) на этом интервале.

    Пример 6.3 . Найти интервалы монотонности функций

    1)
    ; 3)
    .

    Решение .

    1) Данная функция определена на всей числовой оси. Найдем производную .

    Производная равна нулю, если
    и
    . Область определения – числовая ось, разбивается точками
    ,
    на интервалы. Определим знак производной в каждом интервале.

    В интервале
    производная отрицательна, функция на этом интервале убывает.

    В интервале
    производная положительна, следовательно, функция на этом интервале возрастает.

    2) Данная функция определена, если
    или

    .

    Определяем знак квадратного трехчлена в каждом интервале.

    Таким образом, область определения функции

    Найдем производную
    ,
    , если
    , т.е.
    , но
    . Определим знак производной в интервалах
    .

    В интервале
    производная отрицательна, следовательно, функция убывает на интервале
    . В интервале
    производная положительна, функция возрастает на интервале
    .

    4. Исследование функции на экстремум.

    Точка
    называется точкой максимума (минимума) функции
    , если существует такая окрестность точки, что для всех
    из этой окрестности выполняется неравенство

    .

    Точки максимума и минимума функции называются точками экстремума.

    Если функция
    в точкеимеет экстремум, то производная функции в этой точке равна нулю или не существует (необходимое условие существования экстремума).

    Точки, в которых производная равна нулю или не существует называются критическими.

    5. Достаточные условия существования экстремума.

    Правило 1 . Если при переходе (слева направо) через критическую точку производная
    меняет знак с «+» на «–», то в точкефункция
    имеет максимум; если с «–» на «+», то минимум; если
    не меняет знак, то экстремума нет.

    Правило 2 . Пусть в точке
    первая производная функции
    равна нулю
    , а вторая производная существует и отлична от нуля. Если
    , то– точка максимума, если
    , то– точка минимума функции.

    Пример 6.4 . Исследовать на максимум и минимум функции:

    1)
    ; 2)
    ; 3)
    ;

    4)
    .

    Решение.

    1) Функция определена и непрерывна на интервале
    .

    Найдем производную
    и решим уравнение
    , т.е.
    .Отсюда
    – критические точки.

    Определим знак производной в интервалах ,
    .

    При переходе через точки
    и
    производная меняет знак с «–» на «+», поэтому по правилу 1
    – точки минимума.

    При переходе через точку
    производная меняет знак с «+» на «–», поэтому
    – точка максимума.

    ,
    .

    2) Функция определена и непрерывна в интервале
    . Найдем производную
    .

    Решив уравнение
    , найдем
    и
    – критические точки. Если знаменатель
    , т.е.
    , то производная не существует. Итак,
    – третья критическая точка. Определим знак производной в интервалах.

    Следовательно, функция имеет минимум в точке
    , максимум в точках
    и
    .

    3) Функция определена и непрерывна, если
    , т.е. при
    .

    Найдем производную

    .

    Найдем критические точки:

    Окрестности точек
    не принадлежат области определения, поэтому они не являются т. экстремума. Итак, исследуем критические точки
    и
    .

    4) Функция определена и непрерывна на интервале
    . Используем правило 2. Найдем производную
    .

    Найдем критические точки:

    Найдем вторую производную
    и определим ее знак в точках

    В точках
    функция имеет минимум.

    В точках
    функция имеет максимум.

    Графики четной и нечетной функции обладают следующими особенностями:

    Если функция является четной, то ее график симметричен относительно оси ординат. Если функция является нечетной, то ее график симметричен относительно начала координат.

    Пример. Построить график функции \(y=\left|x \right|\).

    Решение. Рассмотрим функцию: \(f\left(x \right)=\left|x \right|\) и подставим вместо \(x \) противоположное \(-x \). В результате не сложных преобразований получим: $$f\left(-x \right)=\left|-x \right|=\left|x \right|=f\left(x \right)$$ Другими словами, если аргумент заменить на противоположный по знаку, функция не изменится.

    Значит эта функция - четная, а ее график будет симметричен относительно оси ординат (вертикальной оси). График этой функции приведен на рисунке слева. Это означает что при построении графика, можно строить только половину, а вторую часть (левее вертикальной оси рисовать уже симметрично правой части). Определив симметричность функции перед началом построения ее графика, можно намного упростить процесс построения или исследования функции. Если сложно выполнять проверку в общем виде, можно поступить проще: подставить в уравнение одинаковые значения разных знаков. Например -5 и 5. Если значения функции получатся одинаковыми, то можно надеяться что функция будет четной. С математической точки зрения такой подход не совсем правильный, но с практической - удобный. Чтобы увеличить достоверность результата можно подставить несколько пар таких противоположных значений.


    Пример. Построить график функции \(y=x\left|x \right|\).

    Решение. Выполним проверку так же как в предыдущем примере: $$f\left(-x \right)=x\left|-x \right|=-x\left|x \right|=-f\left(x \right)$$ Это означает, что исходная функция является нечетной (знак функции поменялся на противоположный).

    Вывод: функция симметрична относительно начала координат. Можно строить только одн половину, а вторую рисовать симметрично. Такую симметрию рисовать сложнее. Это означает, что вы смотрите на график с другой строны листа да еще и перевернув вверх ногами. А можно еще так: берем нарисованную часть и вращаем ее вокруг начала координат на 180 градусов против часовой стрелки.


    Пример. Построить график функции \(y=x^3+x^2\).

    Решение. Выполним такую же проверку на смену знака, как и в предыдущих двух примерах. $$f\left(-x \right)=\left(-x \right)^3+\left(-x \right)^2=-x^2+x^2$$ В результате получим, что: $$f\left(-x \right)\not=f\left(x \right),f\left(-x \right)\not=-f\left(x \right)$$ А это означает, что функция не является ни четной, ни нечетной.

    Вывод: функция не симметрична ни относительно начала координат ни относительно центра системы координат. Это произошло потому, что она представляет собой сумму двух функций: четной и не четной. Такая же ситуация будет если вычитать две разные функции. А вот умножение или деление приведет к другому результату. Например, произведение четной и нечетной функций дает нечетную. Или частное двух нечетных приводит к четной функции.