Болезни Военный билет Призыв

Изотермы адсорбции генри и фрейндлиха. Взаимодействия при физической адсорбции. Адсорбция смеси газов на однородной поверхности

Адсорбция. Изотермы адсорбции Лэгмюра, Фрейндлиха. Уравнение БЭТ и его анализ.

Поверхностная энергия стремится самопроизвольно уменьшиться. Это выражается в уменьшении межфазной поверхности или поверхностного натяжения (s ).

Вследствие этого стремления происходит адсорбция.

Адсорбция – процесс самопроизвольного перераспределения компонентов системы между поверхностным слоем и объемной фазой. То есть адсорбция может происходить в многокомпонентных системах, в слой переходит тот компонент, который сильнее уменьшаетповерхностное натяжение. В общем случае адсорбция может быть результатом химического взаимодействия компонентов с поверхностью – хемосорбция.

Основные понятия.

Адсорбент – фаза, определяющая форму поверхности, она более плотная, может быть твердой или жидкой.

Адсорбат – вещество, которое перераспределяется (газ или жидкость).

Десорбция - переход вещества из поверхностного слоя в объемную фазу.

Для количественного описания адсорбции применяют две величины. Одна измеряется массой адсорбента, то есть числом молей или граммов, приходящихся на единицу площади поверхности или на единицу массы адсорбента. Эту величину обозначают «А» (метод «слоя конечной толщины»). Другая характеристика величины адсорбции определяется избытком вещества в поверхностном слое по сравнению с его количеством в таком же объеме фазы также отнесенным к единице площади или единице массы адсорбента.

Физико – химическая классификация.

1. физическая (молекулярная),

2. хемосорбция,

3. ионный обмен.

Наиболее широко распространена физическая адсорбция.

При физической адсорбции происходит взаимодействие адсорбата и адсорбента за счет сил Ван-дер-Ваальса и водородных связей. Силы Ван-дер-Ваальса включают три вида взаимодействия: диполь-дипольное, индукционное и дисперсионное. Для всех видов взаимодействия выполняется один закон изменения энергии притяжения от расстояния между атомами.

Поверхностные явления.

Адсорбция – изменение концентрации вещества на границе раздела фаз по сравнению с объемом. Этим термином обозначают также и процесс поглощения и количество поглощенного вещества Г, отнесенного к единице площади поверхности или массы адсорбента (ммоль/м 2 или ммоль/г).

Адсорбция идет с выделением энергии, следовательно, этот процесс самопроизвольный.

Адсорбент – вещество, на поверхности которого происходит адсорбция.

Адсорбат – адсорбирующееся вещество.

Адсорбция физическая – адсорбция, обусловленная силами межмолекулярного взаимодействия (как правило, обратима).

Хемосорбция – поглощение газов, паров или растворенных веществ твердыми или жидкими поглотителями, сопровождающееся образованием химических соединений.

Теплота адсорбции – отнесенная к одному молю вещества теплота, которая выделяется при его адсорбции.

Адсорбция – экзотермический процесс (Q >0) . При постоянной адсорбции(Г, Q = const ):

, .

Величина Q является косвеннымкритерием определения типа адсорбции: если Q <30-40 кДж/моль – физическая адсорбция, если Q >40 кДж/моль – хемосорбция.

Изотерма адсорбции – функциональная зависимость количества адсорбированного поверхностью вещества от давления или концентрации этого вещества в другой фазе Г= f (p ) T = const , Г= f (с) T = const .При монослойной локализованной адсорбции на однородной поверхности Г= f (p ) описывается изотермой Ленгмюра.

Уравнение Ленгмюра

Уравнение изотермы абсорбции (1916 –1918 г) получено исходя из следующих предположений:

1.) поверность адсорбента энергетически однородна, т.е. адсорбция молекул на любом ее участке проходит с одинаковым тепловым эффектом

2.) отсутствует взаимодействие между адсорбированными молекулами, т.е. молекулы покрывают адсорбент только мономолекулярным слоем. Максимум адсорбции наблюдается тогда, тогда когда вся поверхность покрыта мномолекулярным слоем

3.) адсорбция обратима, т.е. между адсорбционным слоем и газовой (жидкой) фазой восстанавливается термодинамическое равновесие.

При равновесии скорость адсорбции V ад должна равняться скорости десорбции V дес .

V ад = V дес

Для того, чтобы молекула адсорбировалась, она должна удариться о поверхность и попасть на незанятое место. Так как число ударов пропорционально концентрации С, а вероятность попасть на незанятое место пропорциональна числу незанятых мест, то

V адс = k 1 C (1- q ),

где k 1 – константа скорости адсорбции. q - доля занятых мест, 1– q – доля не занятых мест.

Молекула десорбируется, когда ее энергия окажется достаточной для того, чтобы оторваться от поверхности. Число таких молекул пропорционально числу адсорбированных молекул, поэтому

V дес = k 2 q ,

где k 2 – константа десорбции.

k 1 C (1- q ) = k 2 q ,k 1 C – k 1 q C= k 2 q ,k 1 C = q (k 2 + k 1 C)

отсюда , делим числитель и знаменатель на k 2 .

Уравнение Бернулли

где b = k 1 / k 2 .

Если число мест на адсорбенте равно z , то адсорбция Г= z q и уравнение изотермы будет

(1) уравнение Ленгмюра.

Исследуем это уравнение:

1.) адсорбция мала: либо мала k 1 , либо мала С, тогда bC <<1. Г= zbC = , где - константа Генри, т.е. уравнение Ленгмюра переходит в уравнение Генри, следовательно изотерма адсорбции должна представлять собой сначала прямую линию (рис. 1).

Рис.1Рис. 2

2.) Адсорбция велика: bc >> 1, тогда Г= z , т.е. наступает предельная адсорбция Г ¥ . Отношение называется степенью заполнения поверхности. Уравнение Ленгмюра можно привести к линейному виду (рис. 2):

(2) или .

Отсекаемые на оси координат отрезки и наклоны этих прямых позволяют определить константы уравнения Ленгмюра z и b . Однако уравнении Ленгмюра неудовлетворительно истолковывает данные по адсорбции. Отклонение от теории Ленгмюра является результатом неоднородной поверхности, которая характеризуется наличием неодинаковых адсорбционных центров обладающих различным сродством с адсорбируемым веществом. Если поверхность энергетически неоднородна, используют эмпирическое уравнение Френдлиха

где х – количество адсорбированного вещества,

m – масса адсорбента,

С – равновесная концентрация после адсорбции,

k , n – константы (аппроксимационные параметры).

Константа k – представляет собой количество вещества, адсорбированное 1 г. адсорбента при С = 1моль/литр. Для каждого адсорбатива k имеет свое значение при одном и том же адсорбенте, т.е. она характеризует способность данного адсорбата адсорбироваться определенным адсорбентом

(4)

где n – наклон прямой, а k – антилогарифм отрезка прямой. Уравнение Фрейндлиха можно вывести предположив, что поверхность энергетически неоднородна и что адсорбция на каждом из типов адсорбционных центров подчиняется уравнению Ленгмюра. Тогда константа k отвечает константе адсорбционного равновесия, а n – степени агрегативности. Согласно уравнению Фрейндлиха количество адсорбируемого вещества неограниченно возрастает с увеличение концентрации и давления, поэтому это уравнение не является удовлетворительным для высоких заполнений поверхностей.

Теория БЭТ

При многослойной адсорбции изотерма адсорбции описывается уравнением БЭТ (Брунаэр, Эммет, Теллер). Они предположили, что на поверхности адсорбента имеются однородные локализованные адсорбционные центры и что адсорбция на одном центре не оказывает никакого влияния на адсорбцию на соседних центрах, также как и в теории Ленгмюра. Далее они предположили, что молекулы могут адсорбирваться во втором, третьем и n -ом молекулярном слоях, причем доступная площадь для молекул n -го слоя равна площади покрытой (n -1) слоем.

где p s – давление насыщенного пара адсорбата,

p – давление адсорбата в другой фазе.

Отличительной чертой адсорбции паров является переход к объемной конденсации при предельном давлении, равном давлению насыщенного пара жидкости, p = p s . Целью этого уравнения является нахождение Г ¥ с помощью которой можно рассчитать доступную поверхность адсорбента.

Адсорбция

Понятие адсорбции. Автоадсорбция. Адсорбент и адсорбат. Абсолютная и Гиббсовская адсорбция. Единицы измерения адсорбции. Зависимость величины адсорбции от концентрации, давления и температуры. Изотерма, изобара, изопикна, изостера адсорбции

Адсорбция - процесс самопроизвольного перераспределения компонентов системы между поверхностным слоем и объемом фазы.

Адсорбция может наблюдаться в многокомпонентных системах и при перераспределении в поверхностный слой уходит тот компонент, который сильнее понижает поверхностное натяжение. В однокомпонентной системе при формировании поверхностного слоя происходит изменение его структуры - уплотнение, которое называется автоадсорбцией .

В общем случае адсорбция может происходить не только благодаря стремлению поверхностной энергии к уменьшению, но и за счет химической реакции компонентов с поверхностью вещества. В этом случае поверхностная энергия может даже увеличиваться на фоне снижения энергии всей системы.

Вещество, на поверхности которого происходит адсорбция, называется адсорбентом , а вещество, которое перераспределяется – адсорбатом .

Обратный процесс перехода вещества с поверхности в объем фазы - десорбция.

В зависимости от агрегатного состояния фаз различают адсорбцию газа на твердых адсорбентах, твердое тело – жидкость, жидкость - жидкость, жидкость - газ. Для количественного описания адсорбции применяют две величины: первая измеряется числом молей или граммами, приходящимися на единицу поверхности или массы адсорбента:

А = m 1 / m 2 - абсолютная адсорбция, А = n i / S .

Величина, определяемая избытком вещества в поверхностном слое, также отнесенным к единице площади поверхности или массы адсорбента, называется Гиббсовской или относительной адсорбцией (Г).

Адсорбция зависит от концентрации компонентов и температуры.

А = f ( c , T ) - жидкость;

А = f ( P , T ) - газ

Различают следующие виды зависимостей:

1. Изотерма (рис. 8) 2. Изобара 3. Изостера
А =f T (c) А =f P (T) c=f A (T)
A=f T (P) A=f C (T) P=f A (T)

Фундаментальное уравнение Гиббса. Определение Гиббсовской адсорбции. Адсорбционное уравнение Гиббса

Считаем V поверхности раздела = 0.

dU = TdS + s dS +

Проинтегрировав, получим: U = TS + sS +

Полный дифференциал от этого уравнения:

dU = TdS + SdT + s dS + + Sd s + .

Подставляя значение dU из (6) в (7) и сократив одинаковые члены правой и левой части, получим:

SdT + Sd s + = 0.

Предположим, что T = const:

Разделив правую и левую часть на поверхность S , получим фундаментальное адсорбционное уравнение Гиббса :

; ;

.

Определение зависимости поверхностного натяжения от адсорбции одного компонента, при постоянстве химических потенциалов других компонентов.

Известно, что , , (где , - равновесный и стандартный химический потенциал компонента i ; lna i - логарифм активности i –го компонента). Тогда уравнение Гиббса будет выглядеть так

Активность связана с концентрацией: с = × а . Предположим, что = 1 (при с ® 0). Тогда

- для жидкости и газа

Обычно уравнение Гиббса применяют для растворов. Растворителем может быть не только индивидуальное вещество, но и смесь. В разбавленных растворах гиббсовская адсорбция очень мала, а его химический потенциал меняется очень мало с изменением концентрации растворенного вещества, т.е. d m= 0. Поэтому для разбавленного раствора фундаментальное уравнение Гиббса выглядит так:

Из этих уравнений следует, что зная зависимость = f (С) (где С - концентрация растворенного вещества), можно рассчитать изотерму адсорбции, пользуясь адсорбционным уравнением Гиббса. Схема графического расчета показана на рис. 2.2.2.1: Тангенс угла наклона соответствует значениям производных в этих точках.

Зная эти производныеуравнения Гиббса, можно рассчитать значение Г , что позволяет построить зависимость Г = f (С) . Уравнение Гиббса показывает, что единица измерения гиббсовской адсорбции не зависит от единицы измерений концентрации, а зависит от размерности величины R . Так как величина R отнесена к молю вещества, а s - к единице площади, то Г = [моль/ единица площади]. Если s выразить в [Дж/м 2 ], то R нужно подставлять: R = 8,314 Дж/моль×К.

Поверхностная активность. Поверхностно-активные и поверхностно-инактивные вещества. Анализ уравнения Гиббса. ПАВ. Эффект Ребиндера. Правило Дюкло-Траубе

В уравнении Гиббса влияние природы вещества на адсорбцию отражается производной. Эта производная определяет и знак гиббсовской адсорбции, и может служить характеристикой вещества при адсорбции. Чтобы исключить влияние концентрации на производную берут ее предельные значения, т.е. при стремлении концентрации к нулю. Эту величину Ребиндер назвал поверхностной активностью .

;

g = [Дж×м/моль] = [Н×м 2 /моль]; [эрг см/моль] = [Гиббс].

Уравнение показывает, что чем сильнее снижается = f ( c ) с увеличением концентрации, тем больше поверхностная активность этого вещества.

Физический смысл поверхностной активности состоит в том, что она представляет силу, удерживающую вещество на поверхности и отнесенную к единице гиббсовской адсорбции .

Поверхностную активность можно представить как отрицательный тангенс угла наклона к касательной, проведенной к кривой Г = f ( C ) в точке пересечения с осью ординат. Поверхностная активность может быть положительной и отрицательной. Значение и знак ее зависят от природы растворенного вещества и растворителя.

1. 2 < 1 , тогда <0 и Г>0 : g >0 Þ с увеличением концентрации поверхностное натяжение на границе раздела фаз убывает и вещество поверхностно-активно .

1. 2 < 1 , тоg <0 : Г <0 Þ вещество поверхностно-инактивно .

2. g = 0, Г = 0 - адсорбции нет, т.е. вещество индифферентно .

Поверхностно-активными веществами являются органические вещества, состоящие из углеводородного радикала и функциональной группы. Неорганические соли являются поверхностно-инактивными веществами. Ребиндер и Щукин в своих работах показали, что развитие микротрещин в твердых телах при деформации может происходить гораздо легче при адсорбции веществ из среды, в которой ведется деформирование: адсорбироваться могут как ионы электролитов, так и молекулы поверхностно-активного вещества (ПАВ), образуя на адсорбирующей поверхности их двумерный газ в результате нелокализованной адсорбции. Молекулы под давлением этого газа проникают в устье трещин и стремятся раздвинуть их, таким образом содействуя внешним силам, т.е. наблюдается адсорбционное понижение твердости твердого тела , что получило название эффекта Ребиндера . Поверхностная активность в гомологическом ряду поверхностно-активных веществ (ПАВ) повышается в среднем в 3,2 раза на каждую группу СН 2 (в водных растворах) – правило Дюкло – Траубе .

Адсорбционные равновесия

Адсорбционное равновесие в системе «газ – жидкость». Закон Генри. Мономолекулярная адсорбция в системах «газ – жидкость», «жидкость – жидкость», «газ – твердое». Изотерма адсорбции Ленгмюра. Уравнение Фрейндлиха. Теория полимолекулярной адсорбции БЭТ. Уравнение БЭТ

Предположим, что имеются компоненты-неэлектролиты. Будем считать, что адсорбат образует на поверхности адсорбента мономолекулярный слой. Мономолекулярная адсорбция с точки зрения термодинамики процесса выражается химическим потенциалом в адсорбционном слое и объемной фазе:

;

;

где - химический потенциал вещества в адсорбционном слое;

Химический потенциал вещества в объемной фазе.

При равновесии потенциалы равны: .

Преобразуем:

; – адсорбция; а i = c .

,

, где D - коэффициент распределения.

Выражение - константа Генри. Она не зависит от концентрации, определяется при постоянной температуре, A / a = K г ,

А=а × К г – закон Генри, т.е. при разбавлении системы коэффициент распределения стремится к постоянному значению, равному константе Генри. Если концентрация в сорбционном слое стремится к нулю, то а » с ; а = × с ; - 1 . Поэтому на практике закон Генри используют в следующем виде: а=К г с i . Если одна из фаз – газ, то имеем следующий вид: a = К г Р i ,

К г = К г / RT .

Эти уравнения представляют собой уравнения изотермы адсорбции при малых концентрациях. В соответствии с этими уравнениями можно по другому сформулировать закон Генри: величина адсорбции при малых давлениях газа (малых концентрациях вещества в растворе) прямо пропорциональна давлению (концентрации). Эти зависимости показаны на рисунке 2.3.1.1. При адсорбции на твердых телах область действия закона мала из-за неоднородности поверхности, но даже на однородной поверхности при увеличении концентрации обнаруживается отклонение от закона. При малых концентрациях распределенного вещества отклонения обусловлены в основном соотношением между взаимодействием молекул друг с другом и с поверхностью адсорбента. Если когезионные взаимодействия адсорбата больше, то отклонение от закона отрицательно и <1 , и коэффициент распределения увеличивается (кривая 1 на рис. 2.3.1.1). Если сильнее взаимодействие «адсорбат – адсорбент», то отклонение положительно и D уменьшается (кривая 2 на рис. 2.3.1.1). При дальнейшем увеличении концентрации происходит уменьшение свободной поверхности, снижается реакционная способность и кривые загибаются к оси абсцисс. Константу Генри получают экстраполяцией коэффициента распределения на нулевую концентрацию. В соответствии с правилом фаз Гиббса в гетерогенных системах равновесные параметры зависят от дисперсности или удельной поверхности. Для адсорбционных систем эта зависимость выражается в уменьшенных концентрациях вещества в объемной фазе с увеличением удельной поверхности адсорбента. Если в такой системе содержание распределяемого вещества постоянно, то

А mS уд + с V = const,

где m - масса адсорбента;

S уд - удельная поверхность адсорбента;

V - объем фазы, из которой извлекается вещество;

const – постоянное количество вещества в системе.

,

или : разделим второй член на с ;

D - коэффициент распределения;

; .

Из соотношения следует, что с увеличением удельной поверхности при постоянной концентрации адсорбата концентрация уменьшается и тем сильнее, чем больше константа Генри и меньше объем фазы.

Теория Ленгмюра позволяет учесть наиболее сильные отклонения от закона Генри, что связано с ограничением адсорбционного объема или поверхности адсорбента. Ограниченность этого параметра приводит к адсорбционному насыщению поверхности адсорбента по мере увеличения концентрации распределяемого вещества. Это положение уточняется следующими утверждениями.

1. Адсорбция локализована на отдельных адсорбционных центрах, каждый из которых взаимодействует только с одной молекулой адсорбента - образуется мономолекулярный слой.

2. Адсорбционные центры энергетически эквивалентны - поверхность адсорбента эквипотенциальна.

3. Адсорбированные молекулы не взаимодействуют друг с другом.

Ленгмюр предположил, что при адсорбции происходит квазихимическая реакция между распределяемым компонентом и адсорбционными центрами поверхности:

где А - адсорбционые центры поверхности;

В - распределенное вещество;

АВ - образующийся комплекс на поверхности.

Константа равновесия процесса: ,

где с ав = А - величина адсорбции;

с а = А 0 = А ¥ - А ,

где А ¥ - емкость адсорбционного монослоя или число адсорбционных центров, приходящихся на единицу поверхности или единицу массы адсорбента; А 0 - число оставшихся свободных адсорбционных центров, приходящихся на единицу площади или единицу массы адсорбента; с в – концентрация распределенного вещества.

Подставляя величину концентрации в уравнение константы, получим выражения

, с в = с ,

А = А ¥ Кс – АКс , - для жидкостей;

- для газов.

Эти выражения – уравнения изотермы адсорбции Ленгмюра. К и К р в уравнении характеризуют энергию взаимодействия адсорбента с адсорбатом. Адсорбционное уравнение часто представляют относительно степени заполнения поверхности, т.е. как отношение А/А ¥ :

,

Экспериментальные результаты по определению изотермы адсорбции обычно обрабатывают с помощью уравнения, записанного в линейной форме;

, т.е. уравнение типа y = b + ax .

Такая линейная зависимость позволяет графически определить А ¥ и К . Зная А ¥ , можно определить удельную поверхность адсорбента (поверхность единицы массы адсорбента):

где А ¥ - предельная адсорбция, выражаемая числом молей адсорбата на единицу массы адсорбента;

N A – число Авогадро;

w 0 – площадь, занимаемая одной молекулой адсорбата.

1. Если с- 0, тогда уравнение примет вид:

А=А ¥ Кс ; ; А = К г с, q =Кс ,

т.е. при с- 0 уравнение Ленгмюра переходит в уравнение Генри.

2. Если с-¥, тогда А = А ¥ , А/А ¥ = 1. Это случай предельной адсорбции.

3. Пусть адсорбция идет из смеси компонентов, в этом случае уравнение Ленгмюра записывается следующим образом:

Все рассмотренные выше уравнения справедливы для мономолекулярной адсорбции на адсорбенте с энергетически эквивалентными адсорбционными центрами. Однако реальные поверхности этим свойством не обладают. Приближенной к реальности является возможность распределения адсорбционных центров по энергии. Приняв линейное распределение, Темкин использовал формулу уравнения Ленгмюра и получил уравнение для средних степеней заполнения адсорбента.

,

где - константа, характеризующая линейное распределение;

К 0 - константа уравнения Ленгмюра, отвечающая максимальной теплоте адсорбции.

Из уравнения следует, что увеличение парциального давления (из-за увеличения концентрации) одного компонента подавляет адсорбцию другого и тем сильнее, чем больше его адсорбционная константа равновесия. Уравнение часто называют логарифмической изотермой адсорбции. Если принять экспоненциальное распределение центров по поверхности, то в области средних заполнений получается ранее найденное эмпирическим путем уравнение Фрейндлиха :

Прологарифмировав, получим ,

где K , n – постоянные.

Использование уравнения Фрейндлиха в логарифмической форме позволяет определить константу уравнения.

Уравнение Ленгмюра можно использовать только при адсорбции в мономолекулярном слое. Это условие выполняется при хемосорбции, физической адсорбции газов при меньшем давлении и температуре выше критической. Однако в большинстве случаев мономолекулярный адсорбционный слой не компенсирует полностью избыточную поверхностную энергию и поэтому остается возможность влияния поверхностных сил на второй и т.д. адсорбционные слои. Это реализуется в том случае, когда газы и пары адсорбируются при температуре ниже критической, т.е. образуются полимолекулярные слои на поверхности адсорбента, что можно представить как вынужденную конденсацию (рис. 2.3.1.2 и 2.3.1.3).

В результате этих представлений была выведена следующая формула:

- уравнение полимолекулярной адсорбции БЭТ ,

K L = a ж /а п – константа конденсации пара;

а ж - активность вещества в жидкости;

а п - активность вещества в состоянии насыщенного пара;

а п = Р s .

Физический смысл С: характеризует разность энергии Гиббса в процессах чистой адсорбции и конденсации. Это уравнение получило название БЭТ (Бранауэр-Эммет- Теллер ).

При р/р s <<1 , уравнение БЭТ превращается в уравнение Легмюра, которое при дальнейшем уменьшении давления (Р- 0) переходит в закон Генри:

.

При обработке экспериментальных данных уравнение БЭТ используют в линейной форме (рис. 2.3.1.4):

; ,

таким образом графически находят обе константы уравнения А ¥ и С.

Газ, не действующий химически на жидкость, может тем не менее поглощаться ею при соприкосновении с ней. Такое явление называется абсорбцией.

Для конкретности представим себе что на дне закрытого сосуда находится вода, а над водой - газообразный кислород. Некоторые молекулы кислорода будут проникать в воду и странствовать между ее молекулами. Другие кислородные молекулы будут, наоборот, вылетать из жидкости в газовую атмосферу над ней. Когда вода и кислород находятся в равновесии, то число молекул кислорода, переходящих за единицу времени из газообразной фазы в жидкую, будет равно числу молекул, переходящих за то же время из жидкой фазы в газообразную.

Если давление кислорода увеличим вдвое, то число кислородных молекул, имеющих шансы быть поглощенными жидкостью, увеличится вдвое (если поглощенное ранее количество молекул газа не так велико чтобы препятствовать дальнейшему поглощению его).

Отсюда вытекает закон установленный английским ученым Генри в 1803 г. при не слишком больших давлениях газа абсорбируемое количество газа (при данной температуре) пропорционально его давлению.

Легко сообразить, что, поскольку справедлив закон Генри, объем газа абсорбированного при данной температуре данным количеством жидкости, будет при всяком давлении выражаться одним и тем же числом Например, 1 объем воды поглощает при объем углекислого газа, 0,035 объема кислорода, 0,017 объема азота и т. д. Числа эти называют коэффициентами абсорбции.

В связи с относительно большим поглощением водой углекислоты до недавнего времени предполагали, что водяные растения дышат кислородом, который они усваивают из поглощенной водой углекислоты. Однако в 1940 г. советские ученые Виноградов и Тейсс показали, что зеленые растения в воде дышат кислородом воды, а не

Вследствие того, что коэффициент абсорбции, т. е. растворимость, кислорода в воде в два раза больше, чем коэффициент абсорбции азота, состав воздуха в воде («водяного воздуха») существенно отличается от состава атмосферного воздуха. Атмосферный воздух содержит по объему 78% азота и 21% кислорода; воздух, выделяемый из воды, содержит 63% азота и 36% кислорода. Обогащенность «водяного воздуха» кислородом имеет, по-видимому, большое биологическое значение.

Подобно тому как в системе жидкости и ее насыщенного пара повышение температуры благоприятствует переходу молекул из жидкой фазы в парообразную, так в системе жидкости и газа, ею абсорбируемого, повышение температуры благоприятствует переходу молекул газа из жидкости в газообразную фазу; это значит, что с повышением температуры коэффициент абсорбции уменьшается. Впрочем, многие металлы представляют собой исключение из этого правила.

Способностью соды абсорбировать при пониженной температуре и повышен ном давлении значительное количество углекислоты широко пользуются для изготовления шипучих напитков.

Известно, что при постепенном нагревании воды из нее выделяется все больше и больше газовых пузырьков; это - результат уменьшения коэффициента абсорбции. Кипячением можно совершенно освободить воду от абсорбированных ею газов.

Из смеси газов жидкость поглощает такое количество каждого газа, какое соответствует его парциальному давлению. Поэтому, например, количество поглощаемой углекислоты не возрастет, если в занимаемое ею над водой пространство накачать воздух.

Твердые металлы также обладают способностью поглощать газы. Так, платина, железо и другие металлы в калильном жару поглощают водород, а железо легко поглощает также окись углерода газы эти удерживаются металлами и по охлаждении последних (это явление называется окклюзией).

Строго говоря, под абсорбцией понимают только те случаи поглощения газов, когда поглощаемый газ растворяется в объеме поглощающего вещества (безразлично - жидкости или твердого тела). При поглощении газов твердыми мелкозернистыми или пористыми телами большая часть поглощенного газа не распределяется по всему объему, а удерживается в весьма уплотненном виде на поверхности пор и зерен; такое поглощение газа называют адсорбцией (§ 131). Таким образом, абсорбция - это, в сущности, растворение газа, а адсорбция - его уплотнение на микроповерхности тел. Следует отметить, однако, что при поглощении газов металлами, имеющими микрозернистое строение, явления адсорбции и абсорбции не всегда могут быть точно разграничены.


Адсорбцию можно рассматривать как взаимодействие молекул адсорбата с активными центрами поверхности адсорбента. Процессы адсорбции классифицируют в соответствии с типом взаимодействия адсорбата с адсорбентом. Различают физическую (молекулярную) адсорбцию, хемосорбцию (химическое присоединение атома молекулы) и ионный обмен. В данном разделе рассматривается, главным образом физическая адсорбция газов и паров.

Для физической адсорбции характерно взаимодействие адсорбента и адсорбата за счет сил Ван-дер-Ваальса и водородных связей: эти адсорбционные силы обеспечивают притяжение. На близком расстоянии проявляются короткодействующие силы отталкивания. Силы Ван-дер- Ваальса включают три вида взаимодействий:

Ориентационные силы действуют между полярными молекулами, обладающими дипольным моментом больше нуля. Взаимодействие диполей зависит от их взаимной ориентации, что и дало название силам диполь-дипольного взаимодействия. Эти силы максимальны, когда дипольные моменты молекул располагаются вдоль одной линии благодаря тому, что в этом случае расстояния между разноимёнными зарядами меньше, чем между одноимёнными. В результате притяжение диполей превосходит их отталкивание. Тепловое движение непрерывно хаотично меняет ориентацию полярных молекул, но среднее по всевозможным ориентациям значение силы имеет величину, не равную нулю.

Индукционные силы возникают при взаимодействии полярной и неполярной молекул. Полярная молекула создаёт электрическое поле, которое поляризует неполярную молекулу. В результате происходит смещение электрических зарядов, равномерно распределённых по объёму молекулы до взаимодействия. В результате у неполярной молекулы индуцируется дипольный момент.

Природа дисперсионных сил Лондона-Ван-дер-Ваальса (1930) полностью была выяснена только после появления квантовой механики. Их возникновение обусловлено тем, что даже нейтральные атомы представляют собой системы колеблющихся зарядов, вследствие чего мгновенное значение дипольного момента незаряженной молекулы больше нуля. Флуктуационно возникший диполь создаёт электрическое поле, поляризующее соседние молекулы. Энергия взаимодействия между неполярными молекулами есть средний результат взаимодействия всевозможных мгновенных диполей с дипольными моментами, которые они наводят в соседних молекулах благодаря индукции.

Дисперсионные силы действуют между всеми атомами и молекулами, так как механизм их появления не зависит от величины дипольного момента молекулы. Существенной особенностью дисперсионных взаимодействий является их аддитивность: для двух объемов конденсированных фаз, находящихся на расстоянии h, имеет место суммирование притяжения отдельных молекул.

Дисперсионный эффект (силы Лондона) проявляется в чистом виде между неполярными молекулами. Соответствующие силы возникают вследствие того, что флуктуации электронной плотности в одном атоме индуцируют подобные флуктуации в соседнем атоме. Резонанс таких флуктуаций приводит к уменьшению общей энергии системы, обусловленному притяжением атомов. Такие силы имеют общий характер и могут возникать между любыми атомами, что и обуславливает их универсальность.

Ориентационный эффект (силы Киезома) дисперсионное взаимодействие усиливается при наличии у молекул постоянных диполей, характеризующимся проявлением дипольдипольного взаимодействия. Чем больше дипольные моменты взаимодействующих молекул, тем больше составляющая ориентационного эффекта.

Индукционный эффект (силы Дебая) проявляется при взаимодействии между полярной и неполярной молекулами, отражающий усиление притяжения благодаря тому, что полярная молекула индуцирует диполь в неполярной молекуле этот эффект тем значительнее, чем больше поляризуемость молекул.

Полную потенциальную энергию двух взаимодействующих атомов (молекул) удовлетворительно описывает уравнение Леннарда - Джонса:

U x c 6 x b 12

Где x – расстояние на которое действуют силы притяжения; с – константа учитывающая эффект каждой составляющей сил Ван-дер-Ваальса; b – эмпирическая константа

При адсорбции происходит взаимодействие между атомом (молекулой) адсорбата с поверхностью адсорбента, т. е. с большим числом атомов (молекул), из которых состоит адсорбент. Поэтому зависимость энергии притяжения при адсорбции от расстояния иная, чем описываемая по уравнению Леннарда - Джонса. Это объясняется тем, что дисперсионные силы, вносящие основной вклад во взаимодействие, обладают свойством аддитивности. Поэтому если один атом взаимодействует с системой атомов из 2, 3, 4 и т. д. атомов, то энергия взаимодействия соответственно в 2, 3, 4 и т. д. раза больше, чем энергия двух взаимодействующих атомов. Таким образом, чтобы рассчитать энергию взаимодействия при адсорбции, необходимо провести суммирование энергий взаимодействия адсорбирующегося атома с каждым атомом адсорбента.

U cn

6x 3

Такая зависимость указывает на более медленное уменьшение энергии притяжения при адсорбции и на дальнодействие адсорбционных сил. Уравнение было использовано Лондоном, а затем и другими учеными для экспериментального доказательства дисперсионной природы адсорбционных сил и связи энергии адсорбции со свойствами адсорбированных молекул и адсорбента. Полную потенциальную энергию взаимодействия при адсорбции можно выразить уравнением

6x 3

т - расстояние атома А от отдельных атомов адсорбента Одним из важных практических выводов при рассмотрении природы адсорбционного

взаимодействия является вывод о значительно лучшей адсорбции веществ в трещинах и порах, когда проявляется преимущественно дисперсионное взаимодействие, так как вблизи адсорбированной молекулы находится большее число атомов твердого тела. Если же в адсорбционном взаимодействии значителен электростатический вклад, то в щелях и порах положительные и отрицательные заряды компенсируют друг друга и наибольший потенциал оказывается на выступах, где и будет преобладать адсорбция, особенно при образовании водородных связей (адсорбция воды, метилового спирта и др.). Кроме того, чем и большее число атомов имеет молекула адсорбата, тем с большей энергией она будет притягиваться к адсорбенту.

Закон Генри

Рассмотрим распределение веществ между объемной фазой и поверхностным слоем, и в частности при адсорбции на границе жидкость - газ или жидкость - жидкость, когда активности отдельных участков адсорбционного поля автоматически выравниваются. Поверхность твердых тел, как правило, неоднородна геометрически (пористость) и химически, и чтобы получить простейшие закономерности адсорбции, необходимо предположить, что поверхность адсорбента однородна и распределение адсорбата происходит в мономолекулярном слое. Если пористость представить как отдельную фазу, то можно рассматривать процесс перераспределения вещества как выравнивание химических потенциалов распределяемого вещества в адсорбционном слое и в объемной фазе

где μ0 и μ0 – химический потенциал распределяемого вещества в адсорбционном слое и в объемной фазе; а и а – активности распределяемого вещества в адсорбционном слое и в объемной фазе; К – константа распределения Генри, не зависящая от концентрации.

Для неэлектролитов

где и – константы активности распределяемого вещества в адсорбционном слое и в объемной фазе; D – коэффициент распределения

Рисунок 11 – Зависимость величины адсорбции от конценрации (давления)

Так как в бесконечно разбавленном растворе коэффициенты активности равны единице, то на основании уравнения можно сформулировать следующую закономерность: при разбавлении системы коэффициент распределения стремится к постоянному значению, равному константе распределения Генри. В этом и состоит закон Генри. Относительно величины адсорбции А этот закон запишется так:

с ,

A K "

Для идеального газа КГ = КГ ’ RT

Уравнения представляют собой изотермы адсорбции вещества при малых концентрациях. При адсорбции на твердых адсорбентах область действия этого закона мала из-за неоднородности поверхности. Но даже на однородной поверхности с увеличением концентрации вещества или давлении пара обнаруживается отклонение от линейной зависимости. Это связано с тем, что, например, при положительной адсорбции концентрация вещества в поверхностном слое растет быстрее, чем увеличение ее в объемной фазе, и поэтому коэффициенты активности адсорбата на поверхности адсорбента раньше начинают отклоняться от единицы. При малых концентрациях распределяемого вещества отклонения обусловлены, главным образом соотношением между взаимодействиями молекул друг с другом и с поверхностью адсорбента. Если когезионное взаимодействие адсорбата больше, то отклонение от закона Генри отрицательное - коэффициенты активности меньше единицы (положительное отклонение от закона Рауля), и коэффициент распределения увеличивается (кривая 1); если же сильнее взаимодействие адсорбат адсорбент, то отклонение от закона Генри положительное (отрицательное отклонение от закона Рауля) и коэффициент распределения уменьшается (кривая 2). При дальнейшем увеличении концентрации вещества или давлении пара уменьшается свободная поверхность адсорбента; что влечет за собой снижение его реакционной способности, выражающееся в росте коэффициентов активности адсорбата на поверхности адсорбента.

Мономолекулярная адсорбция. Изотерма адсорбции Ленгмюра

Фундаментальным вкладом в учение об адсорбции явилась теория Ленгмюра. Эта теория позволяет учесть наиболее сильные отклонения от закона Генри, связанные с ограниченностью адсорбционного объема или поверхности адсорбента. Ограниченность этого параметра приводит к адсорбционному насыщению поверхности адсорбента по мере увеличения концентрации распределяемого вещества. Это положение является основным в теории Ленгмюра и уточняется следующими допущениями:

1. Адсорбция происходит на дискретных адсорбционных центрах, которые могут иметь различную природу.

2. При адсорбции соблюдается строго стехиометрическое условие - на одном центре адсорбируется одна молекула.

3. Адсорбционные центры энергетически эквивалентны и независимы, то есть адсорбция на одном центре не влияет на адсорбцию на других центрах.

4. Процесс адсорбции находится в динамическом равновесии с процессом десорбции. Первое положение означает, что адсорбированные молекулы прочно связаны с

адсорбционными центрами; они как бы локализованы на центрах (локализованная адсорбция). Из второго положения следует, что на поверхности может образовываться только один адсорбционный слой, поэтому адсорбцию по Ленгмюру называют мономолекулярной. Третье положение означает, что дифференциальная теплота адсорбции постоянна и что силами взаимодействия адсорбированных молекул можно пренебречь. И, наконец, согласно последнему положению, адсорбированные молекулы вследствие флуктуаций энергии могут отрываться от центров и возвращаться в газовую фазу.

На основании этих положений можно получить уравнение изотермы адсорбции. Скорость адсорбции из газовой фазы Vадс (то есть число молекул, адсорбированных за единицу времени) пропорциональна давлению газа и числу свободных центров на поверхности твердого тела. Если общее число центров А , а при адсорбции оказывается занятыми А центров, то число центров, остающихся свободными равно (А - А). Поэтому V адс = k адс. р (А - А). Адсорбция динамически уравновешена процессом десорбции. Скорость десорбции пропорциональна числу адсорбированных молекул V дес = k дес. А . При равновесии V адс = V дес или k адс. р (А - А) = k дес. А . Переобозначив k адс / k дес = К (где К - это константа адсорбционного равновесия) и А/А = . (относительное заполнение поверхности) получим

A A Kc 1 Kc

Уравнение называется уравнением изотермы адсорбции Ленгмюра .

Необходимо отметить, что константа адсорбционного равновесия Ленгмюра характеризует энергию взаимодействия адсорбата с адсорбентом. Чем сильнее это взаимодействие, тем больше константа адсорбционного равновесия. Адсорбционное уравнение Ленгмюра часто представляют относительно степени заполнения поверхности - отношения величины адсорбции к емкости монослоя.

Выражения соответствуют закону Генри: величина адсорбции линейно растет с увеличением концентрации. Таким образом, уравнение Ленгмюра является более общим соотношением, включающим и уравнение Генри. При больших концентрациях и давлениях, когда Кс> 1 и Кр > 1, уравнения переходят в соотношения

A A и

Соотношения отвечают насыщению, когда вся поверхность адсорбента покрываётся мономолекулярным слоем адсорбата.

Согласно принципу независимости поверхностного натяжения, который ввел Ленгмюр, величина предельной адсорбции a ∞ одинакова для всех членов гомологического ряда, т. е. не зависит от длины углеводородной цепи, а определяется только площадью поперечного сечения молекул. Это утверждение становится понятным, если рассмотреть строение поверхностного слоя при его предельном заполнении. В этом случае дифильные молекулы могут располагаться в поверхностном слое единственно возможным образом, когда гидрофильные части молекул

находятся на поверхности воды и плотно примыкают друг к другу, а гидрофобные радикалы ориентируются к воздушной среде (так называемый «частокол Ленгмюра», о котором уже упоминалось выше).

Следовательно, если предельная адсорбция – это количество моль ПАВ, полностью занимающее единицу поверхности, то величина, обратная предельной

адсорбции, будет давать суммарную площадь поперечного сечения одного моль молекул, тогда:

Для нахождения длины молекулы необходимо помимо S молекулы знать ее объем:

Тогда

V молекулы

молекулы

S молекулы

где М – молярная масса ПАВ, ρ – плотность ПАВ, δ – длина молекулы ПАВ. Экспериментальные результаты по определению изотермы адсорбции обычно

обрабатывают с помощью уравнения Ленгмюра, записанного в линейной форме:

Такая линейная зависимость позволяет графически определить оба постоянных параметра адсорбционной изотермы.

При адсорбции газов из их смесей в соответствии с уравнением изотермы Ленгмюра величины адсорбции суммируются, а концентрация свободных центров является общей для равновесной многокомпонентной системы.

K i p i

1 K i p i

Увеличение парциального давления одного компонента подавляет адсорбцию других, и тем сильнее, чем больше адсорбционная константа равновесия.

Реальные поверхности твердых тел, как правило, не обладают энергетически эквивалентными активными центрами Существенным приближением к реальным условиям является рассмотрение возможных распределений адсорбционных центров поверхности адсорбента по энергиям. Приняв линейное распределение адсорбционных центров по энергиям (теплотам адсорбции), М. И. Темкин, используя уравнение Ленгмюра, получил следующее уравнение для средних степеней заполнения адсорбента:

1 ln K 0 p

где - постоянная характеризующая линейное распределение; К0 – константа в уравнении Ленгмюра, отвечающая максимальной теплоте адсорбции.

Уравнение Ленгмюра можно использовать только при отсутствии адсорбции вещества сверх мономолекулярного слоя. Это условие выполняется достаточно строго при хемосорбции, физической адсорбции газов при небольших давлениях и температурах выше критической (при отсутствии конденсации на поверхности адсорбента), а часто и при адсорбции из растворов. Указанные ограничения для применения уравнения Ленгмюра связаны не столько с формальным

) — зависимость количества адсорбированного вещества (величины ) от парциального давления этого вещества в газовой фазе (или концентрации раствора) при постоянной температуре.

Описание

Экспериментальные изотермы адсорбции являются наиболее распространенным способом описания адсорбционных явлений. Методы получения адсорбционных данных для построения изотерм адсорбции основаны на измерении количества газа (жидкости), удаленного из газовой (жидкой) фазы при адсорбции, а также на различных способах определения количества адсорбата (адсорбированное вещество) на адсорбента (адсорбирующее вещество), например, волюметрический метод, гравиметрический метод и др.

Различают шесть основных типов изотерм адсорбции (см. рис.). Тип I характерен для микропористых с относительно малой долей внешней поверхности. Тип II указывает на полимолекулярную адсорбцию на непористых или макропористых адсорбентах. Тип III характерен для непористых с малой энергией взаимодействия адсорбент-адсорбат. Типы IV и V аналогичны типам II и III, но для пористых адсорбентов. Изотермы типа VI характерны для непористых адсорбентов с однородной поверхностью.

Изотермы адсорбции используются для расчета материалов, среднего размера или среднего размера нанесенных частиц, распределения пор или частиц по размерам.

Существует несколько методов математического выражения изотерм адсорбции, различающихся моделями, использованными для описания процесса адсорбции. При малых степенях для однородной поверхности уравнение изотермы адсорбции имеет вид уравнения Генри: a = Kp , где a - величина адсорбции, p - давление газа, K - константа. При средних степенях покрытия может быть применено эмпирическое уравнение Фрейндлиха: a = kp n , где k и n - константы.

Строгая теория изотермы адсорбции была предложена И. Ленгмюром для модели монослойной адсорбции на однородной поверхности, в которой можно пренебречь силами притяжения между молекулами адсорбата и их подвижностью вдоль поверхности. Уравнение изотермы Ленгмюра имеет вид: a = a m bp /(1 + bp ), где b - адсорбционный коэффициент, зависящий от энергии адсорбции и температуры; a m - емкость монослоя.

Дальнейшее развитие теории состояло в исключении того или иного допущения, использованного Ленгмюром. Так, С. Брунауэром, П. Эмметом и Э. Теллером была предложена теория полимолекулярной адсорбции (); Т. Хилл и Я. де Бур разработали теорию, учитывающую взаимодействие между адсорбированными молекулами (изотерма Хилла–де-Бура), и т. д.

Иллюстрации


Авторы

  • Смирнов Андрей Валентинович
  • Толкачев Николай Николаевич

Источники

  1. Полторак О.М. Термодинамика в физической химии. - М.: Высшая школа, 1991. - 319 с.
  2. Sing K. S.W. et al. Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity (recommendations) // Pure Appl. Chem. 1985. V. 57, №4. P. 603–619.
  3. Карнаухов А.П. Адсорбция. Текстура дисперсных и пористых материалов. - Новосибирск: Наука, 1999. - 470 с.