Болезни Военный билет Призыв

Изобретения второй мировой войны. Система частично-орбитального бомбометания. Шлем виртуальной реальности Oculus Rift для танкиста

Нравится ли вам военная отечественная техника?

Лучшие российские военные изобретения.

Кто-то ругает нашу страну за отсутствие собственных в мире электроники. Кому-то не нравится, что мы не умеем делать iPhone. Есть те, которые недовольны отечественными автомобилями. Так что, нашей стране нечем похвастаться перед миром?

На самом деле есть. Ведь когда речь идет о танках, самолетах, пушках и т. п., то наша страна традиционно впереди планеты всей. Особенно это касается различных военных технологий. Давайте вспомним о самых смелых, неординарных и , которые удивили и даже напугали весь мир.


Все мы знаем, что перед серийным выпуском любого транспортного средства требуется тщательная разработка и множество экспериментов над концептами. Это же касается и военной техники. Правда, в отличие от обычных гражданских автомобилей военная техника требует от конструкторов более кропотливой работы. Именно поэтому при разработке военных машин необходимы неортодоксальные концепции. Но и этого мало.

Для того чтобы создать поистине невероятную , нужно уметь воплощать в жизнь самые безумные идеи. С этим у нас, как вы знаете, нет проблем. В нашей стране никогда не было недостатка в неординарных конструкторах и инженерах. В итоге в ХХ веке наша страна создала множество странных огромных танков, самолетов, кораблей, поездов, подводных лодок и оружия.

Примечательно, что российские военные инженеры всегда любили создавать летающую технику. Именно поэтому в нашей стране были построены летающие танки, летающие , летающие корабли и т. д.

Многие военные проекты, к сожалению, так и не получили своего продолжения, оставшись только в стадии разработки. Хотя некоторые изобретения можно было увидеть в действии во время Великой Отечественной войны. И это неудивительно. Ведь когда нашему народу угрожает опасность, мы традиционно объединяемся и начинаем удивлять весь мир. Так получилось и в период Второй мировой войны. Ведь именно в те годы наши военные инженеры создали множество удивительных военных технологий и техники.

Но, увы, на сегодняшний день многие невероятные изобретения забыты. К счастью, не все.

Давайте вспомним о самых невероятных ХХ века.

«Царь-бомба»


30 октября 1961 года Советский Союз провел ядерные испытания, в рамках которых было взорвано самое мощное и разрушительное оружие из всех когда-либо созданных человечеством. Это была водородная бомба AN602, получившая прозвище «Царь-бомба». Мощность взрыва составила от 50 до 60 мегатонн. Это эквивалентно более чем 1500 бомбам, сброшенным на Хиросиму и Нагасаки.


Также мощность «Царь-бомбы» в 10 раз превышала общую мощность всех веществ, используемых во Второй мировой войне. Во время испытания «Царь-бомбы» были полностью уничтожены близлежащие деревни (были предварительно эвакуированы). Также от взрыва на расстоянии 100 километров начались пожары. В том числе даже на расстоянии 1126 км в зданиях вылетели окна. Бомба была протестирована всего один раз.

«Объект 279»


Российским инженерам часто приходилось разрабатывать транспортные средства для экстремальных условий, в которых должен выжить экипаж. Вершиной этого военного инженерного искусства был экспериментальный , получивший кодовое имя «Объект 279». Этот тяжелый танк был создан для того, чтобы противостоять ядерной взрывной волне.

Также танк должен был сохранять боеспособность после ядерного взрыва и сражаться на поле боя, пропитанном радиоактивными осадками. Танк весил 60 тонн. Экипаж боевой машины составлял 4 человека. Танк был способен проезжать любую местность и имел невероятную защиту от химических и биологических нападений.

В 1959 году было создано два прототипа.

Танки прошли испытания, в результате которых было установлено, что они слишком тяжелые и громоздкие для современного поля битвы. Кроме того, танк был очень дорогостоящим и уязвимым для атаки с воздуха. Позднее Никита Хрущев заявил, что наша страна будет производить танки весом не более 37 тонн. В итоге танк «Объект 279» попал в музей.

Тяжелый танк Т-42


В довоенные годы в мире наблюдалась бешеная гонка танковых вооружений. Каждая страна старалась сделать самые большие и мощные супертанки. Не стала исключением и наша страна. В 1931 году под руководством немецкого инженера Эдварда Гротта в конструкторском бюро завода «Большевик» был разработан супертяжелый танк Т-42.

Танк Т-42 весил 100 тонн и вмещал в себя 14 членов экипажа.

Также этот «зверь» имел три башни с различными тяжелыми и легкими пушками. К сожалению, для такого тяжелого танка требовался какой-то особо мощный двигатель, который так и не был изобретен. С существующими же тогда моторами Т-42 был слишком медленным, что, естественно, потенциально делало его уязвимым на любом поле боя. Так что этот танк так и не стал реальным, оставшись только в виде проекта.

Противотанковые собаки


Во время Второй мировой войны многие страны, чтобы получить преимущество на поле боя, использовали животных. Но это не новая идея. История войн уже с таким сталкивалась. Например, еще в конце 1300-х годов монгольские вожди использовали горящих верблюдов, чтобы победить врага на поле боя. И, что удивительно, это имело стратегический успех. Напомним, что верблюдов покрывали соломой, пропитанной маслом, поджигали и гнали в сторону врага.

Великая Отечественная война была еще одной попыткой вооружить животных с целью получения преимущества в военных действиях. Так, наше военное ведомство использовало специально обученных собак, задача которых была проходить с прикрепленными к ним минами под немецкими танками и активировать заряд.

По некоторым данным, собаки уничтожили таким образом более 300 немецких танков. Тем не менее от четвероногих помощников решено было отказаться в связи с тем, что их трудно было заставить бежать в нужном направлении. Дело в том, что собаки уничтожали первый танк, который встречался им на пути. Конечно, на поле боя подобное недопустимо. И все-таки отважные собаки внесли свой неоценимый вклад в победу над фашизмом.

Летающий танк А-40


Танк А-40 предназначен для воздушной перевозки и для ведения партизанской войны. Это был легкий танк с прикрепленными к нему крыльями. Нет, конечно, танк не летал самостоятельно. Но благодаря крыльям танк мог быть сброшен с самолета и спланировать в желаемую зону высадки.


Всего был построен один прототип. К сожалению, этот экземпляр получился слишком громоздким и его невозможно было, как планировалось, загрузить в небольшой самолет. Также не было никакой уверенности, что экипаж танка благополучно приземлится без угрозы для жизни, поскольку существовал риск повреждения . В итоге проект был свернут. Хотя, признаем, это была потрясающая идея на тот момент. Ведь многие страны до нас пытались сделать что-то подобное, но ни у кого не получилось создать даже прототип.

Кстати, на тот момент наши войска уже применяли десантуру танков с грузовых самолетов, но для этого использовались парашюты. Проект же должен был упростить десантуру танковой техники. Увы.

Невидимый самолет Козлова


Российский профессор Сергей Козлов разрабатывал невидимый на базе «Яковлев ЯК-4». Для этого был проведен необычный эксперимент. Самолет был оснащен фюзеляжем и крыльями из прозрачного пластикового материала, изобретенного ученым. Затем профессор нанес на пластиковые детали непрозрачную структуру из смеси белой краски и алюминиевой пыли. Это должно было сделать самолет буквально невидимым.

Удивительно, но задумка профессора Козлова реально работала. Хотя и недолго, так как краска притягивала грязь и пыль, что уменьшало эффект невидимости. Также были опасения, что пластиковый материал недостаточно прочный. К тому же из-за алюминия от самолета при определенном угле падения солнечных лучей шел блеск. К сожалению, несмотря на то что эксперименты продолжились, самолет Козлова так никогда и не стал серийным.

Система частично-орбитального бомбометания


В 1960-е годы наша страна разработала программу «Система частично-орбитального бомбометания ». Это были специальные ракеты, которые выходили на низкую околоземную орбиту, а затем поражали объект на Земле. Траектория полета ракеты не позволяла противнику вычислить точку прицеливания. Теоретически ракета в полете могла поразить цель в любой момент.

В 1967 году наша страна подписала договор о космосе, в котором обязалась не размещать ядерное оружие на околоземной орбите. Правда, это обязательство не коснулось доставки самого оружия на орбиту. Так что теоретически вместо ядерного заряда наша страна вправе была в этом комплексе использовать доставку на орбиту других видов оружия. В рамках этой программы было разработано три проекта. Один проект - 8К69 - был введен в эксплуатацию. Всего было создано 18 пусковых установок.

Танк на воздушной подушке L-1

В 1934 году инженер Левков разработал невероятный танк L-1 , который в документах обозначался как «Земноводный подлетающий танк». В 1937 году инженер с командой Московского авиационного завода № 84 построил макет танка 1:4. Машина была оснащена двумя авиадвигателями М-25 общей мощностью 1450 л. с., которые поднимали танк над поверхностью на 200-250 мм, что позволяло бронемашине разогнаться до скорости 120 км/час. Башня комплектовалась одним пулеметом калибра 7,62 мм.

К сожалению, проект не получил продолжения. Чем это было вызвано, не известно. Но, по слухам, причиной прекращения финансирования разработки танка на воздушной подушке стало недовольство дизайном одного высокопоставленного чиновника то ли из министерства, то ли из правительства. По другой версии, проект был закрыт в связи со сложностями в надежности конструкции танка.

Царский танк


В 1914-1915 годах Николай Лебеденко разработал Царь-танк, который, по сути, танком и не был. На самом деле эта машина представляла собой гигантский трехколесный бронированный велосипед. Танк оснащался 30-дюймовыми передними колесами и задним колесом для баланса машины.

Этот танк разрабатывался для того, чтобы он мог .

Однако по результатам испытаний Царского танка выяснилось, что он совершенно не предназначен для применения на поле боя. Так, танк во время испытаний показал себя медленной машиной, подверженной разрушениям. Главная проблема заключалась в заднем колесе. Также из-за особенностей формы и размеров танк был прекрасной мишенью для противника. Вдобавок он не имел возможности перевозить защиту. Например, колеса танка не были защищены.

Ядерный бомбардировщик Ту-95ЛА


Гонка вооружений между США и Советским Союзом не заканчивалась на ракетах и космических кораблях. Во времена «холодной войны» гонка вооружений распространилась и на экспериментальные самолеты, которые, по сути, не имели практического применения.

Так, наша страна в ответ на разрабатываемый США атомный бомбардировщик Convair NB-36H Crusader решила создать отечественный самолет Ту-95ЛА. Эта модификация самолета предназначалась для транспортировки ядерных боеприпасов. Самолет обеспечивал транспортировку первых серийных российских ядерных бомб РДС-3, РДС-4 и термоядерных бомб типа РДС-6С (РДС-37). Позднее самолет перевозил более совершенные бомбы новых поколений.

Танк «Штопор»


Во времена «холодной войны» военные инженеры искали способ переброски войск по непроходимым дорогам. Затем российские конструкторы наткнулись на идею зарубежных инженеров использовать для этих целей специальный приводной винт, выполненный в виде штопора. В итоге на свет появился мини-танк, который прозвали «Штопор».

Во время испытаний танк показал потрясающую проходимость по бездорожью. Однако подобное транспортное средство совершенно бесполезно на обычных дорогах или плоской и твердой почве. Также этот танк мог двигаться только вперед и назад и не мог поворачиваться. В том числе танк был невероятно медленным и ненадежным. Тем не менее он вошел в малую серию и поставлялся для нужд армии в арктических районах, где подобное транспортное средство действительно полезно.

Воздушный авианосец: Проект «Звено»


Речь идет о воздушном судне, несущем на себе (внутри - на борту либо снаружи - на внешней подвеске) другую авиатехнику. Вам кажется, что мы говорим о каком-то фантастическом фильме? На самом деле нет. Был в нашей стране и такой проект, который получил название «Звено».

Он предполагал перевозку небольших самолетов более крупным авианосцем. Это позволяло увеличить радиус действия военной авиации.

В рамках проекта «Звено» было построено 10 самолетов на базе огромных бомбардировщиков ТБ-3. Экспериментальные авианосцы были предназначены для перевозки самолетов малых размеров, которые могли стартовать прямо с авианосца.

Примечательно, что эти авианосцы совершили около 30 боевых вылетов на раннем этапе Второй мировой войны.

Экраноплан «КМ» («Лунь»)


Экраноплан «КМ» представляет собой наземное транспортное средство. Удивлены? На самом деле, несмотря на внешний вид, экраноплан не является воздушным судном. Он классифицируется как корабль. Экраноплан «Лунь» был самым большим из многочисленных российских экранопланов, выпускаемых во времена СССР.


Три экраноплана были построены для военных. Эти модификации оснащались мощными противокорабельными ракетами. На вооружение экранопланы встали в 1987 году. В настоящий момент российские инженеры и конструкторы разрабатывают новое поколение этих удивительных наземных транспортных средств.

Длина - 100 метров, вес - 544 т, 10 турбореактивных двигателей.

Летающая подводная лодка Ушакова

Российский инженер Борис Ушаков разработал уникальную подводную лодку, которая могла летать. Или это был самолет, который мог погружаться в воду. Изначально проект начал разрабатываться еще до 1940-х годов, но в 1939 году его свернули. В 1943 году проект был перезапущен в связи с военной необходимостью. Первый прототип появился в 1947 году. Но к тому времени Великая Отечественная война уже закончилась, в результате чего проект так и не дошел до серийного выпуска. Российские военные инженеры сосредоточили свои усилия в других направлениях. Так что мир никогда не увидел летающую подводную лодку. Жаль. Согласитесь, проект был перспективным и потрясающим.

Проект орбитальной платформы «Полюс» / «Скиф» (Космический аппарат «Полюс»)


С развитием системы противоракетной обороны США SDI («Звездные войны») нашей стране пришлось срочно придумывать контрмеры. В итоге был создан прототип орбитальной платформы «Полюс» , оснащенный мегаваттным углекислым лазером.

Планировалось, что «Полюс» будет запущен в 1987 году. Но 15 мая 1987 года при запуске комплекс не вышел на заданную орбиту и упал в Тихий океан.

Далее Михаил Горбачев запретил запускать в космос вооружения. В итоге программа «Полюс» была свернута. Правда, многие компоненты комплекса все-таки пригодились в различных российских космических программах.

Газодинамический тральщик «Прогрев-Т»


Российские инженеры создали во времена СССР на базе платформы танка Т-54 газодинамический тральщик «Прогрев-Т», оснащенный реактивными двигателями МиГ-15. При выхлопе авиационного двигателя газодинамическая струя воздействовала на поверхность дороги, разрушая ее. Благодаря этому саперам удавалось обнаружить мины, скрытые под асфальтом или земляным покровом. Таким образом, «Прогрев-Т» мог бы помочь саперам разминировать минные поля. К сожалению, все это было в теории. В действительности тральщик «Прогрев-Т» весил 37 тонн и был очень уязвим в зоне военных действий из-за отсутствия вооружения и должной бронезащиты.

Лазерный танк 1К17 «Сжатие»


Но из всей техники, которую мы вам представили, наиболее поразительным является секретный дорогой танк 1К17 «Сжатие», оснащенный лазерами. Эта машина была разработана в конце 1980-х годов в качестве мобильной военной лазерной установки, предназначенной во время боевых действий для уничтожения оптического электрооборудования на самолетах, транспортных средствах и ракетах противника.

Наши власти в те годы делали большую ставку на этот танк с лазерными установками. Это был один из самых секретных военных объектов, разрабатываемых нашей страной. Тем не менее нашим спецслужбам не удалось удержать в секрете этот проект. В итоге рабочие рисунки лазерного танка попали на Запад.


Главное в танке, конечно, лазер, работа которого зависела от 30 килограммов дорогих искусственных рубинов, необходимых для фокусировки. Сами понимаете, что, несмотря на применение искусственных рубинов, стоимость лазерного танка была невероятной. Естественно, по этой причине массовое серийное производство танка с лазерным оружием на борту было невозможно.

К сожалению, этот амбициозный проект, который реально пугал спецслужбы всех западных стран (в том числе и США), ждал крах в связи с развалом Советского Союза. В итоге лазерный танк 1К17 «Сжатие»

Изобретений, который возникли благодаря войнам и потрясениям. Сегодня речь пойдёт о времени, материалах и «легких пуговицах»

Перевод времени

О том, что время можно переводить, люди задумались довольно давно. В крестьянских селениях под световой день подстраивались всегда. Вставали рано и ложились рано, для того, чтобы сделать все важные дела засветло. При лучине не разгуляешься, а свечи были вплоть до середины 19 века или дороги, или очень дороги.

Вначале появились лампы, затем жирные коптящие свечи, потом - стеариновые и парафиновые. Но даже после распространения свечных заводов для простых людей свечи были очень дороги. Подъемные люстры с сотней подсвечников били по карману даже богачей. Именно поэтому в бальных залах стали устанавливать множество зеркал – они отражали свет, чем щадили кошельки дворян.

Кстати, когда в фильмах я видела балы (в большой красивой зале, украшенной тысячей свечей), всегда задавалась вопросом – а насколько это безопасно? Свечка же сможет оплыть, упасть? Но пары танцуют и танцуют, и ни разу никакого эксцесса.
Оказалось, в жизни все было иначе. Свечи оплывали, резервуары для сбора воска помогали не всегда - свечи капали, падали, иногда даже падали на высокие парики и танцующих приходилось спасать.

В то же время родилась и пословица «игра не стоит свеч» - изначально имелась ввиду карточная игра. И если она была не интересной, не прибыльной, то свечи обходились дороже, чем выигрыш - тогда игра не стоила потраченных на неё денег.

В 1784 году американский политик Бенджамин Франклин в своем послании «Парижскому журналу» выдвинул идею о делении времени на зимнее и летнее:

"Так как люди не ложатся спать с заходом солнца, приходится впустую изводить свечи, - писал политик. - Зато утром впустую пропадает солнечный свет, так как люди просыпаются позже, чем встает солнце".

Не только Франклин ратовал за идею перехода. Спустя сто лет говорили об этом и в Новой Зеландии, и в Британии. Но дальше разговоров дело не пошло.

Официальный переход на летнее время случился только в 1916 году, 21 мая. Новый распорядок приняла Великобритания, а затем, оценив экономические преимущества такого решения, к переходу на летнее время пришли и другие страны Европы.
Спустя два года, 19 марта 1918 года, было принято решение о «часовых поясах», а также летнее время оставили до конца Первой мировой.

Когда экономическая ситуация улучшилось летнее время отменили, но идея осталась – и, как показала история – применялась она еще не раз.


Брезент и криза

Брезент как материал вошел в широкое применение во время Первой мировой войны. Солдатам, сидящим в сырых окопах, нужно было спасаться от непогоды. Химики долго экспериментировали и придумали, что если напитать плотную парусину особым веществом, которое бы не пропускало влагу и не горело, то это решило бы многие проблемы. И такой состав нашли. Ещё в 1887 году немецкий еврей Леви Штраус довольно успешно продавал брезент для палаток золотоискателей. Он же изобрел для них прочные парусиновые штаны – джинсы «Levi’s».

Итак, брезент вошел в жизнь солдат. Им начали заменять кожу: дешевле, практичнее, но было одно но – брезент был очень тяжелым и «не дышал». Однако долгое время из него делали поясные и ружейные ремни, сапоги и плащи-накидки.

Кстати, до пропитки парусиновой ткани качества, подобные тем, что были у брезента, открыли и у конопли. Это были древнейшие волокна, из обнаруженных на земле. Ещё три тысячи лет назад конопля использовалась в Китае для производства канатов.
Когда заходит речь о брезенте, тут же всплывает кирза. И вполне обосновано. Потому что автором обоих материалов в России считается изобретатель, генерал-майор Михаил Поморцев. Вопросом производства выносливой ткани для армии он увлекся в начале 20 века. Работал только с отечественными материалами – местными заменителями каучука. И в 1904 году нашел свой брезент. Однако он пошел дальше – стал искать состав пропитки, которая бы давала тканям свойства кожи. И нашел свой рецепт: яичный желток, канифоль и парафин. Пропитанная такой эмульсией ткань не пропускала воду, но «дышала». Новый материал автор назвал кирзой, так именовалась грубая шерстяная ткань из овечей шерсти (от названия местечка Kersey в Англии, где разводили эту породу овец).
Материал, созданный Поморцевым, оценили. Ткань прошла испытания во время Русско-японской войны – из нее шили сумки, чехлы, амуницию. А затем взяла несколько наград на международных выставках.

Шить сапоги из этой такни он предложил во время Первой мировой войны. Но тогда дело провалилось. Производители кожаной обуви боялись остаться без крупного госзаказа, поэтому бросили все силы на то, чтобы оттянуть ввод кирзовых сапог в армию. В 1916 году Михаил Михайлович Поморцев умер. Продвижение кирзовых сапог заглохло.

Вернулись к ним лишь во время Великой Отечественной войны. Тогда кирзу изобрели еще раз. Ученые Бызов и Лебедев. Но они оба довольно быстро ушли из жизни и вопрос с кирзой взяли на себя ученые Хомутов и Плотников. Они учли и метод Поморцева, и последние разработки. И наконец-то кирза ушла в производство. Но материал был не доработан – кирза трескалась, не выдерживала нагрузок. И исправить недочеты удалось только к началу войны – поступил приказ сверху.

Ивана Плотникова поставили главным инженером завода «Кожимит», собрали самые светлые головы и через год получили новую кирзу – легкую, прочную и удобную. Ту самую, которую помнит каждый, кому довелось служить в советской армии.

Изобретатели получили Сталинскую премию 2-й степени. Так СССР, а потом и Россия стали мировым лидером по производству кирзовой обуви.

Кстати, есть еще одна версия названия. Кирза – это Кир(овский) за(вод). Именно здесь наладили массовое производство новой ткани в Великую Отечественную войну.

Молния

Застежка-молния появилась тоже во время Первой мировой войны. До этого военные использовали только пуговицы.
Их история насчитывает тысячелетия. Самые ранние находки датируются 3-м тысячелетием до н.э. Во времена Древней Греции пуговицы были не только вспомогательным предметом, но и украшением, а иногда произведением искусства и предметом роскоши.

В России пуговица стала популярной при Иване Грозном. Пуговицы выполняли скорее декоративную функцию и говорили о благосостоянии хозяина платья - застежки из серебра, золота или слоновой кости говорили о высоком положении в обществе. Некоторые экземпляры были с эмалью, некоторые с глазурью. Размеры достигали куриного яйца. Их оставляли в наследство и учитывали как важную составляющую в приданом.

Но все-таки быстро застегнуть сюртук с пуговицами было непросто. И, начиная с середины 19 века, портные стали искать альтернативные варианты застежек. Одним из них стало изобретение американца Гидеона Сундбека.

Произошло оно благодаря его женитьбе на дочери фабриканта Аронссона, который в 1893 году пытался ввести в оборот подобную застежку для ботинок – два ряда крючков и ячеек крепко держали каркас. Придумал эту застежку его партнёр Уиткомб Джадсон. Но Аронссон «раскрутить» товар не смог. Его зять подхватил идею и в 1913 году усовершенствовал ее – он убрал крючки и оставил только скрепляющие элементы. А спустя четыре года доработал молнию до современного состояния.

И с 1918 года молнию Гидеона Сундбека стали носить военные США. А уже после Первой мировой войны эти изобретения прочно вошли в повседневную жизнь.

За загадочными словами «флаттер» и «шимми» стоят серьезные проблемы, которые испытывала мировая авиация в бурный период своего расцвета. В середине 30-х годов при переходе на более высокие скорости самолеты разрушались от быстро нарастающей тряски. С этим явлением, получившим название «флаттер» (от англ. flutter - дрожание, вибрация), результатом игры сил аэродинамики и резонанса, безуспешно пытались справиться конструкторы во всем мире - самолеты продолжали разваливаться. Проблему удалось решить известному ученому Мстиславу Келдышу (впоследствии - одному из отцов советской космической программы) с сотрудниками в ЦАГИ, которые начали исследования еще в предвоенные годы. С помощью математических расчетов Келдыш сформулировал причины флаттера, предложил метод расчета критической скорости и доступные практические приемы для гашения катастрофической вибрации на разных скоростях у самолетов того времени. Нельзя забывать о том, что в то время ученые были вооружены только логарифмической линейкой и арифмометром, и при решении проблемы флаттера Келдыш проявил не только гений математика, но и незаурядные инженерные способности экспериментатора.

В годы войны ученый работал на авиационных заводах и как руководитель отдела ЦАГИ курировал проблему вибраций в самолетостроении. За эти работы ученому была присуждена (совместно с Е.П. Гроссманом) первая Сталинская премия (1942 г.), а спустя год - первый орден Трудового Красного Знамени.

Справились с флаттером, но предстояло еще разобраться с шимми (от англ. shimmy - танец, вибрация) - интенсивным самовозбуждающимся колебанием передней стойки шасси, приводящим к поломке во время взлета и посадки самолета. И в этот раз за короткий срок Келдыш справляется с проблемой. В своей работе «Шимми переднего колеса трехколесного шасси» (1945 г.), которая была удостоена второй Сталинской премии (1946 г.), он предлагает и теоретическое решение, и инженерные рекомендации. Он изучил упругие деформации пневматика и разработал теорию качения по плоскости колеса с деформирующимся пневматиком. С учетом этого вывел уравнение шимми, вращения стойки и ее изгиба. По уравнениям Келдыша можно было рассчитать не только скорость, при которой возникает шимми, но и подобрать параметры для его предотвращения.

До сих пор математики называют эту работу «красивой». Значимость этих работ Келдыша для авиации ничуть не меньше, чем для развития аэродинамики и математики в целом. Более того, они привели его позже к разработке знаменитой теории несамосопряженных операторов из раздела функционального анализа («О полноте собственных функций некоторых классов несамосопряженных операторов»).

Синхрофазотрон и принцип автофазировки

Сотрудник ФИАН (Физический институт АН СССР) Владимир Векслер в довоенное время изучал космические лучи, охотясь за ними в экспедициях на Памире и Кавказе. Во время эвакуации института в Казань Векслер работал над обработкой сигналов в акустике и радиолокации, но уже в 1943 году вернулся к фундаментальным исследованиям. Мысли о создании ускорителей заряженных частиц для получения «собственных космических лучей» привели ученого к открытию, без которого сегодня немыслима ускорительная техника. В 1944 году Векслер предложил, а его сотрудник Е. Фейнберг теоретически обосновал так называемый «принцип автофазировки» ускоренных релятивистских заряженных частиц, сделавший возможным создание современных ускорителей высокой энергии (Новый метод ускорения релятивистских частиц // Докл. АН СССР. 1944. Т. 43 (8). С. 346–348. О новом методе ускорения релятивистских частиц // Докл. АН СССР. 1944. Т. 44 (9). С. 393–396.)

Принцип автофазировки или фазовой устойчивости Векслера помог решить проблему сохранения устойчивости движения ускоряемых частиц при релятивистском увеличении их массы, что приводило к нарушению резонанса между движением частицы и ускоряющим полем. Частицы стали запускать в длинную свернутую в кольцо трубу, а для удержания их на постоянной орбите синхронно с ростом энергии увеличивали магнитное поле. Ускорители такого типа получили название синхрофазотронов. В ФИАНе и в Дубне началось строительство новых ускорителей, и сегодня принцип автофазировки используется во всех современных ускорителях. Построенный и запущенный в 1957 году в Дубне синхрофазотрон несколько лет был единственным ускорителем в мире, дающим возможность получать протоны с энергией 10 ГэВ. Переворот в физике атомного ядра и в физике элементарных частиц, открытие новых частиц, проверка фундаментальных законов и теорий, новые знания о микромире - все это стало возможным благодаря открытому Векслером принципу. Годом позже американский ученый Эдвин Макмиллан сделал это открытие независимо, за что получил Нобелевскую премию, но признавал приоритет Векслера (оба ученых получили американскую премию «Атом для мира» в 1963 году).

Завойский и электронный парамагнитный резонанс

Еще один знаменитый ученый, фундаментальное открытие которого дало толок бурному развитию разных наук и положивший начало новой области физики - магнитной радиоспектроскопии, - Евгений Завойский из Казанского университета.

Еще в начале 1941 года ученый на простенькой установке занимался поиском ядерного магнитного резонанса, но с началом войны переключился на оборонную тематику. В конце 1943 года он получает возможность вернуться к фундаментальным исследованием и открывает явление электронного парамагнитного резонанса (ЭПР). Если коротко, то суть этого явления в резонансном поглощении электромагнитного излучения неспаренными электронами, когда спектр ЭПР позволяет получать данные о веществе.

В 1944 году Завойский выступает на семинаре у Петра Капицы и публикует свои исследования (Новый метод исследования парамагнитной абсорбции, «ЖЭТФ», 1944, вып. 10-11 совместно с С.А. Альтшуллером и Б.М. Козыревым, Парамагнитная абсорбция в растворах при параллельных нолях, там же, 1945, вып. 6, Парамагнитная релаксация в жидких растворах при перпендикулярных полях там же, 1945, вып. 7).

Открытие Завойского, получившее Ленинскую премию в 1957 году, одно из важнейших в физике прошлого века, привело позднее к созданию лазеров и мазеров, а также приблизило открытие близких явлений - ядерного, ферромагнитного, антиферромагнитного и акустического парамагнитного резонанса. В промышленно развитых государствах возникли целые индустрии, выпускающие радиоспектроскопическое оборудование, некоторые приложения которых широко известны: медицинские томографы, квантовые парамагнитные усилители для дальней (космической связи).

Кометы и телескопы

Своих исследований не прерывали и астрономы. С одной стороны, это имевшие оборонное значение работы: для штурманской службы бомбардировочной авиации сотрудники ГАИШ МГУ составляли специальные таблицы восхода и захода Солнца и Луны; для предсказания «радиопогоды» и обеспечения армейской радиосвязи создали специальную Службу Солнца, а также Службу времени. С другой стороны, продолжались фундаментальные исследования. Так, сотрудники ГАИШ во главе с В.Г. Фесенковым выехали в Алма-Ату, где открыли филиал и наблюдали полное солнечное затмение. А профессор С.В. Орлов, директор ГАИШ с 1943 по 1952 год, разработал новую теорию строения головы комет, изучил вопросы изменения яркости кометы в зависимости от ее расстояния от Солнца и причины отталкивательных ускорений Солнца в хвостах комет. Работа Орлова, позволившая провести строгую классификацию кометных форм, была удостоена Государственной премии СССР (1943 г.).
В военное время была изобретена менисковая система телескопов, которая сыграла огромную роль в оптическом приборостроении. Автор изобретения, Дмитрий Максутов, рассказывал, что эта идея ему пришла в голову буквально в дороге, во время эвакуации, когда ГОИ (Государственный оптический институт) перемещался из Ленинграда в Йошкар-Олу. Благодаря своим преимуществам: светосиле, большому полю зрения, высокому качеству изображения и компактности - менисковая система получила широкое распространение.

Несмотря на то, что в военные годы лаборатория астрономической оптики ГОИ почти прекратила своё существование, оборудование было передано мастерским для армии или разрушено, для Максутова это было время творческого взлёта. С помощью логарифмических таблиц и линеек он за год самостоятельно произвел точные тригонометрические расчеты более двухсот менисковых систем различного назначения: от менисковых очков малого увеличения до менискового планетного телескопа метрового диаметра. К 1944 таких расчётов было сделано более полутысячи, и в 124-м выпуске «Трудов» ГОИ выходит его работа «Новые катадиоптрические менисковые системы». Западный научный мир узнал об изобретении из статьи в JOSA (Maxutov D. D. New catadioptric meniscus systems // J. Opt. Soc. America. - 1944 Vol.34, No5 pp. 270-284), а в 1946 году ему присуждается Государственная премия I-й степени «За создание новых типов оптических систем».

Карбинольный клей Назарова

Отремонтировать бензобаки, склеить корпуса аккумуляторов, отреставрировать сверла, починить блоки цилиндров на танках и автомашинах - все это можно было сделать с помощью чудесного раствора, карбинольного клея Назарова.

Прямо перед войной в Институте органической химии АН СССР Иван Назаров защищает диссертацию, в которой показывает, что винилацетилен при конденсации с кетонами образует винилэтинилкарбинолы, которые легко полимеризуются. Продукт частичной полимеризации ученый предложил использовать в качестве клеящего средства - карбинольного клея (диметилвинилэтинилкарбинола). Во время войны клей творил чудеса: с его помощью удавалось в полевых условиях склеивать боевую технику, и в 1942 году Назаров получает Государственную премию за разработку нового метода.

Клей и после войны широко использовали в оптике, в разных отраслях техники, даже для склеивания мрамора в метро.

Дальнейшие разработки по полимеризации винилэтиленкарбинолов помогли ученому синтезировать ныне широко используемое в медицине средство обезболивания под названием промедол.

Вакцины от туляремии и туберкулеза

В годы Великой Отечественной войны успешной разработкой новых лекарств, мазей (мазь Вишневского) и вакцин занимались медики, химики и биологи. В первые годы войны по всей стране отмечались резкие вспышки заболевания туляремией из-за размножения огромного количества мышей. Опыты по получению живой туляремийной вакцины были начаты в конце сороковых годов прошлого века Н.А. Гайским и Б.Я. Эльбертом (Эльберт Б.Я., Гайский H.A. О механизме инфекции и иммунитета при экспериментальной туляремии. Сообщ. I // ЖМЭИ. 1941. №12. С. 35-37). 
Николай Гайский продолжил опыты во время войны в Иркутском противочумном институте и занимался производством диагностических сывороток (Гайский H.A. Живая туляремийная вакцина // ЖМЭИ. 1944". №12. С. 14-19). Действие изобретенной вакцины Гайский с коллегами проверили на себе. Препарат позволил резко снизить заболеваемость туляремией в войсках и среди гражданского населения. За выдающееся достижение советской микробиологии и иммунологии Гайский и Эльберт стали лауреатами Государственной премии СССР в 1946 году.

В это время в Казахстан, в Боровое, был эвакуирован известный микробиолог и эпидемиолог академик Николай Гамалея. Ученый создал новую лабораторию, разрабатывал специфическое лечение туберкулезных больных и написал несколько фундаментальных трудов по лечению туберкулеза и гриппа, а также учебник по микробиологии. В 1942 году он предложил обрабатывать слизистые оболочки носа препаратами олеиновой кислоты для профилактики гриппа.

Список важнейших для мировой науки фундаментальных исследований, проведенных советскими учеными в военные годы, которые сразу или впоследствии нашли применение, а также оказали значительное влияние на мировую науку, можно продолжать долго. Это созданная Львом Ландау теория квантовой жидкости, которая помогла существенно продвинуться в понимании теории сверхпроводимости (Нобелевская премия 1962 года). Или исследования сверхтекучести гелия Петра Капицы с сотрудниками и работы по созданию новых методов достижения низких температур, которые в военные годы помогли построить самую большую в мире установку по промышленному производству жидкого кислорода (для госпиталей и военных заводов). Это и методы расчета магнитных полей, и разработка защиты боевых кораблей от магнитных мин и торпед под руководством А.П. Александрова из ЛФТИ, и многое другое.

Любая война является движущей силой для ускорения технического прогресса. В то же время, не все изобретения, сделанные во время военных действий, направлены на убийство людей.

Вспомним же, какие наиболее известные изобретения были сделаны в период Второй Мировой войны.

Джип (1940)

Во время Второй мировой войны армия США, нуждавшаяся в быстром и легком вездеходе, призвала американских производителей создать рабочий прототип такой машины. Первой откликнулась компания Willys. Само название «Джип» появилось как прозвище легких многоцелевых военных автомобилей «Виллис-МВ» (Willys) и однотипных с ними машин «Форд GPW» (Ford). В послевоенные годы оно стало торговой маркой новых поколений гражданских и армейских машин фирмы «Виллис» из Толидо, официально зарегистрированной 30 июня 1950 г.

Генерал Дуайт Д. Эйзенхауэр однажды сказал, что Америка не смогла бы выиграть Вторую мировую войну без джипов Willys. За годы Второй мировой войны внедорожники стали одними из самых распространённых военных автомобилей в армиях союзников, общий тираж которых достиг 620 тыс. экз.

В СССР в 1941-1945 годах ограниченной серией выпускался первый в мире полноприводный седан ГАЗ-61-73 с комфортабельным закрытым кузовом от «Эмки», а с лета 1941 года – первый советский внедорожник ГАЗ-64, прозванный фронтовиками «Иван-Виллис» за сходство с оригиналом Willys MA образца 1941 года, поставлявшимся в СССР по Ленд-лизу в начальный период Великой Отечественной войны.

Цифровой электронный компьютер (1942)

Первый в мире цифровой электронный компьютер построили профессор Джон Атанасов и аспирант Клиффорд Берри в Университете штата Айова в период между 1939 и 1942 годах. Они представили ряд новшеств в вычислительной технике, в том числе двоичную арифметическую систему, параллельную обработку информации, разделение памяти и многое другое. Фундаментальной особенностью машины стало выполнение определённого изменяемого набора инструкций (программы) без необходимости физической переконфигурации. И хотя изобретателям так и не удалось завершить разработку (Атанасов ушёл в действующую армию), их машина оказала большое влияние на Джона Мокли, создавшего двумя годами позже ЭВМ ЭНИАК.

А уже в начале 1943 года успешные испытания прошла первая американская вычислительная машина Марк I, предназначенная для выполнения сложных баллистических расчётов американского ВМФ. В конце этого же года заработала английская вычислительная машина специального назначения Колосс. Машина работала над расшифровкой секретных кодов фашистской Германии. В 1944 году немец Конрад Цузе разработал ещё более быстрый компьютер Z4, а также первый язык программирования высокого уровня Планкалкюль.

Акваланг (1943)

Первый регулятор подачи воздуха с поверхности был запатентован еще в 1866 году Бенуа Рукейролем — французским горным инженером, который в 1860 году изобрёл регулятор утечки сжатого воздуха для использования в наполненных загрязнённым воздухом шахтах. Позже Огюст Денейруз адаптировал его для автоматической подачи воздуха под водой. В 1878 году Генри Флюсс изобрёл первый удачный подводный аппарат с замкнутой схемой дыхания, использующий чистый кислород. Однако вскоре у водолазов возникли проблемы, связанные с тем, что чистый кислород, вдыхаемый под давлением, становится токсичным на глубине более 20 метров и время его вдыхания должно быть ограничено.

В 1910-е был усовершенствован регулятор подачи кислорода и изготовлены баллоны, которые могли выдерживать давление газа до 200 кгс/куб.см. Это позволило автономному аппарату с замкнутой схемой Флюсса стать штатным спасательным оборудованием для подводного флота Великобритании. Позже офицеру ВМС Франции капитану II ранга Ле Приеру удалось сконструировать аппарат для дыхания с высокопрочным баллоном сжатого воздуха. Жорж Комейнтес улучшил аппарат Ле Приера, поставив вместо одного баллона для сжатого воздуха два.

Аппараты с замкнутой схемой дыхания пользовались большой популярностью всеми воюющими сторонами. Однако акваланг в современном виде (с открытой схемой дыхания на сжатом воздухе) был изобретен только в 1943 году двумя французами – морским офицером Жаком-Ивом Кусто и инженером Эмилем Ганьяном. Работая в сложных условиях оккупированной немцами Франции, они изобрели первый безопасный и эффективный аппарат для дыхания под водой, названный аквалангом, который в дальнейшем Кусто успешно использовал для погружения на глубину до 60 метров без каких-либо вредных последствий.

Одно из немногих изобретений, никак не связанных с войной. Название игрушки-пружинки происходит от швед. slinky — загадочный, гладкий и извилистый. Созданная в 1943 году в США Ричардом Джеймсом из металла чёрного цвета, игрушка также известна под именем «Андамания».

Считается, что её можно перекидывать из руки в руку и тем самым успокаивать нервы. Так же она умеет «шагать» вниз по ступенькам. Настоящая пружинка Слинки до сих пор производится только в США и бывает только круглой формы и одного цвета. Пластиковые Слинки производились из цветного пластика, а металлические окрашивались по специальной технологии. В 90-х появилось много подделок из Юго-Восточной Азии в форме сердечек, звёздочек и бабочек, часто окрашенных в цвета радуги. Круглая форма оригинальной Слинки, как металлической, так и пластиковой, обусловлена тем, что пружинки другой формы не умеют «шагать» ровно по лестнице, поэтому с ними не так интересно играть.

ЛСД (1943)

Еще одно изобретение, не имеющее отношение к войне. LSD-25 впервые получил в 1938 швейцарский химик Альберт Хофман, но психотропные свойства этого соединения были обнаружены случайно, в 1943 году. 19 апреля 1943 доктор Альберт Хофманн преднамеренно, первым из людей, принял ЛСД. Тремя днями ранее он случайно, ещё не зная о действии диэтиламида, впитал некоторое количество вещества подушечками пальцев. В этот день он преднамеренно принял 250 мкг вещества. Через некоторое время начали проявляться симптомы, которые он уже ощущал ранее — головокружение и беспокойство. Скоро эффект стал настолько силён, что Альберт не мог более составлять связные предложения и, под наблюдением своего ассистента, уведомлённого об эксперименте, отправился на велосипеде домой. Во время поездки он ощутил эффекты ЛСД, тем самым, сделав этот день датой первого в мире психоделического опыта с ЛСД. 22 апреля он написал о своём эксперименте и опыте, а позже поместил эту заметку в свою книгу «ЛСД — мой трудный ребёнок».

В 1960-е активно велись исследования ЛСД. Преданными огласке оказались эксперименты, проведённых ЦРУ (США) в рамках программы «МК Ультра». Воздействие ЛСД также исследовалось рядом учёных в университетах США и других стран. Наибольшую известность получили исследования Станислава Грофа и Тимоти Лири. Сам же изобретатель, который называл ЛСД «лекарством для души», умер в 2008 году в возрасте 102 лет.

Турбовинтовой двигатель (1945)

Первый турбовинтовой двигатель был разработан еще в середине 30-х годов профессором Технического университета в Берлине А. С. Гебребрг Вагнером. Став главой отдела самолетов на «Junkers Flugzeugwerke» он надеялся, что сможет дать боевому самолету высочайшие летно-технические характеристики.

И только 18-й образец реактивного истребителя Gloster Meteor, на котором вместо штатных турбореактивных были установлены турбовинтовые двигатели Rolls-Royce RB.50 «Trent», смог подняться в воздух 20 сентября 1945 года.

Ядерное оружие (1945)

Первым человеком, который запатентовал ядерную бомбу, стал Лео Силард в 1934 году. Но заняться разработкой ядерного оружия на практике ученых подтолкнули события Второй Мировой. В США с этой целью 17 сентября 1943 года был создан так называемый Манхэттенский проект, к которому были привлечены многие выдающиеся учёные-физики, в том числе беженцы из Европы.

К лету 1945 американцам удалось построить 3 атомные бомбы, 2 из которых были сброшены на Хиросиму и Нагасаки, а третью испытали незадолго до этого. 16 июля 1945 года в Нью-Мексико было проведено первое в мире испытание атомной бомбы, получившее название «Тринити» (Троица). А уже 6 августа 1945 года американский бомбардировщик B-29 «Enola Gay» сбросил на японский город Хиросима урановую атомную бомбу «Малыш». Мощность взрыва составила по разным оценкам от 13 до 18 килотонн в тротиловом эквиваленте. 9 августа 1945 года, плутонивая атомная бомба «Толстяк» была сброшена на город Нагасаки. Её мощность была значительно больше и составила 15-22 килотонны, что было связано с более совершенной конструкцией бомбы.

Отсюда

Пожалуйста

Технологии, приблизившие победу во Второй мировой войне

Любую войну, как бы странно это не звучало, сопровождает новый виток технического прогресса. Жесткая необходимость превзойти противника заставляет ученых и инженеров работать без сна и отдыха, ведь от этого зависит жизнь тысяч людей. Какие технологии помогли СССР и другим странам-участницам антигитлеровской коалиции одержать победу во Второй мировой войне — следующем материале:

Шифрование

Немецкие шифровальные машины «Энигма» применялись с 20-х годов прошлого века, однако широкое распространение получили с началом Второй мировой войны. В 1932 году польские специалисты раскрыли шифр машины с помощью механизма, который получил название «криптологическая бомба».


«Энигма». Всего было выпущено более 100 тыс. экземпляров этих машин различных модификаций

Но немцы спустя шесть лет разработали новую версию «Энигмы» - более сложную и защищенную. В ответ на это английские инженеры создали машину Turing Bombe, которая сыграла решающую роль в победе над гитлеровской коалицией. А в 1940 году (также в Англии) на электромеханических реле построили машину «Робинсон», которая могла ещё быстрее расшифровывать сообщения, обработанные «Энигмой».


Turing Bombe. Машина позволяла дешифровать сообщения, обработанные "Энигмой". Фото: Andy Armstrong / Flickr / CC BY-SA 2.0

Компьютеры

Turing Bombe и «Робинсон» решали узкий спектр задач, а потребность в быстрых вычислениях с каждым днем росла. В 1943 году Уоррен Маккуллох и Уолтер Питц написали фундаментальную работу об основах применения нейронных сетей, а спустя несколько месяцев Норберт Винер и его коллеги ввели в обращение термин «кибернетика».

В 1944 году Говард Айкен создал первый американский программируемый компьютер Mark I на основе работ Чарльза Бэббиджа. В 1945 году в США была построена машина ENIAC (Electronic Numerical Integrator and Computer — Электронный числовой интегратор и вычислитель) - первый в истории программируемый компьютер на вакуумных лампах, который считается нулевым поколением ЭВМ. ENIAC использовал десятиразрядную систему счисления. Он занимал около 200 квадратных метров площади, весил 30 тонн и требовал 175 киловатт энергии. Быстродействие машины составляло 0,1 MIPS (миллион инструкций в секунду).
ENIAC. Некоторые детали устройства сегодня можно увидеть в Национальном музее американской истории в Вашингтоне. Фото: Andrew Mager / Flickr / CC BY-SA 2.0

Развитие технологий в годы Второй мировой войны обусловило дальнейший технический прогресс. Так, универсальная машина Тьюринга была описана математиком и криптографом в 1936 году, а первый британский компьютер ACE (англ. Automatic Computing Engine — Автоматическая вычислительная машина) по проекту Алана Тьюринга построили спустя десять лет - уже после победы над Гитлером и его союзниками.

Первый советской компьютер создали в 1950 году под руководством академика Сергея Лебедева

Устройство называлось МЭСМ (Модель или Малая Электронная вычислительная машина) и стало третьей в мире и первой в континентальной Европе полностью электронной вычислительной машиной.

МЭСМ могла бы появиться и раньше, но из-за необходимости решения оборонных задач разработки свернули. Впрочем, в годы войны Лебедев совместно с коллегами создал специальные вычислительные элементы для аналоговых машин, которые легли в основу системы стабилизации танкового орудия - она позволяла стрелять без остановки танка.

Путь в космос

Немецкий инженер Вернер фон Браун - «отец» V-2 (Фау-2), или первой в мире баллистической ракеты Aggregat. Её разработка началась в 1939 году, а впервые V-2 применили для бомбежки Англии в 1944 году, когда война уже была проиграна.

После этого (и до капитуляции Германии) фон Браун с коллегами сдались США. В итоге они стали основателями американской космической программы.

Советский ученый Сергей Королев использовал наработки фон Брауна для создания советских баллистических ракет в 1950-х годах. Первые крылатые ракеты он создал в 1930-х годах, однако в 1938 году был арестован по обвинению во вредительстве и репрессирован - ему дали 10 лет лагерей. Но страна решила, что в войну талантливый инженер ей пригодится, и с Колымы Королева забрали в ЦКБ-29 НКВД, известную как «Туполевская шарага». Именно здесь были созданы бомбардировщики Пе-2 и Ту-2 (названы в честь авиаконструкторов Владимира Петлякова и Андрея Туполева).


Двухмоторный дневной бомбардировщик ТУ-2. Разрабатывался для поражения кораблей, однако в годы Второй мировой войны был задействован для бомбардировки наземных целей и разведки.

Радиолокация

Для обнаружения вражеской авиации необходимы были средства посерьезнее биноклей. Разработка технологий радиолокации в СССР стартовала в 1932 году, и уже спустя два года специалисты Ленинградского электрофизического института (ЛЭФИ) под руководством А. А. Чернышева обнаруживали цель, которая летела на высоте 150 м, на расстоянии 600 м от радара. В 1936 году появилась установка «Буря» - она работала на сантиметровом диапазоне волн и засекала самолет на расстоянии до 10 км.

В 1941 году в распоряжении советских войск были «радиоулавливатели самолетов» РУС-1 «Ревень» и РУС-2 «Редут» с дальностью обнаружения целей до 150 км. Комплекс РЛС «РУС-2», расположенный в Подмосковье, 22 июня 1941 года смог обнаружить приближение 200 немецких бомбардировщиков, в результате ПВО отбили первый воздушный налет на Москву. В тот же день была отражена атака на базу Черноморского флота в Севастополе - РСЛ была расположена на крейсере «Молотов».

«Молотов». Советский легкий крейсер водоизмещением 8882 т и длиной 191,4 м. Был введен в эксплуатацию 14 июня 1941 года, использовался для размещения РЛС и огневых налетов, эвакуации раненых и разгрузки пехотных частей.

Работали в этом направлении и в других странах антигитлеровской коалиции. Из-за высокой секретности нельзя точно сказать, где именно была изобретена радиолокация.

Однако военные разработки положительно повлияли и на гражданский сектор: появились эффективные фильтры и системы шумоподавления, стала повсеместно использоваться теория устойчивого приема. Впоследствии технологии нашли применения в Wi-Fi и Bluetooth, GPS и ГЛОНАСС.

Атомная энергетика

Атом урана был впервые расщеплен в 1938 году немецкими физиками Отто Ганом и Фрицем Штрассманом. В дальнейшем над проблемой контролируемой ядерной реакции трудились физики из многих стран мира, и итальянец Энрико Ферми в 1942 году построил первый пробный атомный котел на кортах для игры в сквош Чикагского университета (США). Ферми состоял в фашистской партии, но был женат на еврейке. Для получения Нобелевской премии в 1939 году он выехал в Стокгольм вместе с семьей, а затем из-за нетерпимости Германии к евреям эмигрировал в США.

В США в 1943 году запустили «Манхэттенский проект» по созданию ядерного оружия. В нем участвовало более 130 тысяч человек, в том числе Энрико Ферми, Роберт Оппенгеймер, Альберт Эйнштейн, Нильс Бор. В рамках проекта создали три бомбы: плутониевую «Штучку» (Gadget), которую взорвали на испытании «Тринити» 16 июля 1945 года в штате Нью-Мексико, урановый «Малыш» (Little Boy, взорвана в Хиросиме 6 августа 1945 года) и плутониевый «Толстяк» (Fat Man, сброшен на Нагасаки 9 августа 1945 года).

Макет бомбы «Толстяк», которая была сброшена на Нагасаки, в результате погибло около 74 тыс. людей, было разрушено более 51 тыс. зданий.

Разведка сделала часть данных «Манхэттенского проекта» доступной советским ученым. Исследования активно велись в Радиевом институте в Ленинграде и ряде других закрытых учреждений, а практические работы по созданию атомной бомбы стартовали в 1943 году под руководством академика Курчатова. Но за годы войны создать оружие не успели, и в 1945 году по приказу Сталина сотни немецких инженеров, имевших отношение к атомной программе, привезли в СССР для продолжения работ.

Первые успешные испытания советской атомной бомбы были проведены 29 августа 1949 года на полигоне в Семипалатинской области Казахстана

Строительство первого в СССР опытного ядерного реактора Ф-1 выполнялось в Лаборатории № 2 АН СССР, и он был успешно запущен 25 декабря 1946 года. Первая АЭС, спроектированная академиками Курчатовым и Доллежалем, была запущена в Обнинске в 1954 году.