Болезни Военный билет Призыв

Из чего состоит фотона света. Физики впервые увидели столкновение фотона с фотоном

Фотон – элементарная частица, квант электромагнитного излучения.

Энергия фотона: ε = hv, где h = 6,626 · 10 -34 Дж·с – постоянная Планка.

Масса фотона: m = h·v/c 2 . Эта формула получается из формул

ε = hv и ε = m·c 2 . Масса, определяемая формулой m = h·v/c 2 , является массой движущегося фотона. Фотон не имеет массы покоя (m 0 = 0), так как он не может существовать в состоянии покоя.

Импульс фотона: Все фотоны движутся со скоростью с = 3·10 8 м/с. Очевидно импульс фотона P = m·c, откуда следует, что

P = h·v/c = h/λ.

4. Внешний фотоэффект. Вольтамперная характеристика фотоэффекта. Законы Столетова. Уравнение Эйнштейна

Внешним фотоэффектом называется явление испускания электронов веществом под действием света.

Зависимость тока от напряжения в цепи называется вольтамперной характеристикой фотоэлемента.

1) Количество фотоэлектронов N’ e , вырываемых из катода за единицу времени, пропорционально интенсивности света, падающего на катод (закон Столетова). Или иначе: ток насыщения пропорционален мощности падающего на катод излучения: Ń ф = P/ε ф.

2) Максимальная скорость V max , которую имеет электрон на выходе из катода, зависит только от частоты света ν и не зависит от его интенсивности.

3) Для каждого вещества существует граничная частота света ν 0 , ниже которой фотоэффект не наблюдается: v 0 = A вых /h. Уравнение Эйнштейна: ε = A вых + mv 2 max /2, где ε = hv – энергия поглощенного фотона, A вых – работа выхода электрона из вещества, mv 2 max /2 – максимальная кинетическая энергия вылетевшего электрона.

Уравнение Эйнштейна, по сути, представляет собой одну из форм записи закона сохранения энергии. Ток в фотоэлементе прекратится, если все вылетающие фотоэлектроны затормозятся, не долетев до анода. Для этого к фотоэлементу необходимо приложить обратное (задерживающее) напряжение u, величина которого также находится из закона сохранения энергии:

|e|u з = mv 2 max /2.

5. Давление света

Давление света - давление, которое оказывает свет, падающий на поверхность тела.

Если рассматривать свет как поток фотонов, то, согласно принципам классической механики, частицы при ударе о тело должны передавать импульс, другими словами - оказывать давление. Такое давление иногда называют радиационным давлением. Для вычисления давления света можно воспользоваться следующей формулой:

p = W/c (1+p ), где W - количество лучистой энергии, падающей нормально на 1 м 2 поверхности за 1 с; c- скорость света, p - коэффициент отражения.

Если свет падает под углом к нормали, то давление можно выразить формулой:

6. Комптон – эффект и его объяснение

Эффект Комптона (Комптон-эффект) - явление изменения длины волны электромагнитного излучения вследствие рассеивания его электронами.

Для рассеяния на покоящемся электроне частота рассеянного фотона:

где - угол рассеяния (угол между направлениями распространения фотона до и после рассеяния).

Комптоновская длина волны - параметр размерности длины, характерный для релятивистских квантовых процессов.

λ С = h/m 0 e c = 2,4∙10 -12 м – комптоновская длина волны электрона.

Объяснение эффекта Комптона невозможно в рамках классической электродинамики. С точки зрения классической физики электромагнитная волна является непрерывным объектом и в результате рассеяния на свободных электронах изменять свою длину волны не должна. Эффект Комптона является прямым доказательством квантования электромагнитной волны, другими словами подтверждает существование фотона. Эффект Комптона является ещё одним доказательством справедливости корпускулярно-волнового дуализма микрочастиц.

В современной трактовке гипотеза квантов утверждает, что энергия E колебаний атома или молекулы может быть равна h ν, 2h ν, 3h ν и т.д., но не существует колебаний с энергией в промежутке между двумя последовательными целыми, кратными . Это означает, что энергия не непрерывна, как полагали на протяжении столетий, а квантуется , т.е. существует лишь в строго определенных дискретных порциях. Наименьшая порция называется квантом энергии . Гипотезу квантов можно сформулировать и как утверждение о том, что на атомно-молекулярном уровне колебания происходят не с любыми амплитудами. Допустимые значения амплитуды связаны с частотой колебания ν .

В 1905 г. Эйнштейн выдвинул смелую идею, обобщавшую гипотезу квантов, и положил ее в основу новой теории света (квантовой теории фотоэффекта). Согласно теории Эйнштейна, свет с частотой ν не только испускается , как это предполагал Планк, но и распространяется и поглощается веществом отдельными порциями (квантами) , энергия которых . Таким образом, распространение света нужно рассматривать не как непрерывный волновой процесс, а как поток локализованных в пространстве дискретных световых квантов, движущихся со скоростью распространения света в вакууме (с ). Квант электромагнитного излучения получил название фотон .

Как мы уже говорили, испускание электронов с поверхности металла под действием падающего на него излучения соответствует представлению о свете как об электромагнитной волне, т.к. электрическое поле электромагнитной волны воздействует на электроны в металле и вырывает некоторые из них. Но Эйнштейн обратил внимание на то, что предсказываемые волновой теорией и фотонной (квантовой корпускулярной) теорией света детали фотоэффекта существенно расходятся.

Итак, мы можем измерить энергию вылетевшего электрона, исходя из волновой и фотонной теории. Чтобы ответить на вопрос, какая теория предпочтительней, рассмотрим некоторые детали фотоэффекта.

Начнем с волновой теории, и предположим, что пластина освещается монохроматическим светом . Световая волна характеризуется параметрами: интенсивностью и частотой (или длиной волны ). Волновая теория предсказывает, что при изменении этих характеристик происходят следующие явления:

· при увеличении интенсивности света число выбитых электронов и их максимальная энергия должны возрастать, т.к. более высокая интенсивность света означает большую амплитуду электрического поля, а более сильное электрическое поле вырывает электроны с большей энергией;

выбитых электронов; кинетическая энергия зависит только от интенсивности падающего света.

Совершенно иное предсказывает фотонная (корпускулярная) теория. Прежде всего, заметим, что в монохроматическом пучке все фотоны имеют одинаковую энергию (равную h ν). Увеличение интенсивности светового пучка означает увеличение числа фотонов в пучке, но не сказывается на их энергии, если частота остается неизменной. Согласно теории Эйнштейна, электрон выбивается с поверхности металла при соударении с ним отдельного фотона. При этом вся энергия фотона передается электрону, а фотон перестает существовать. Т.к. электроны удерживаются в металле силами притяжения, для выбивания электрона с поверхности металла требуется минимальная энергия A (которая называется работой выхода и составляет, для большинства металлов, величину порядка нескольких электронвольт). Если частота ν падающего света мала, то энергии и энергии фотона недостаточно для того, чтобы выбить электрон с поверхности металла. Если же , то электроны вылетают с поверхности металла, причем энергия в таком процессе сохраняется, т.е. энергия фотона (h ν) равна кинетической энергии вылетевшего электрона плюс работе по выбиванию электрона из металла:

(2.3.1)

Уравнение (2.3.1) называется уравнением Эйнштейна для внешнего фотоэффекта.

На основе этих соображений, фотонная (корпускулярная) теория света предсказывает следующее.

1. Увеличение интенсивности света означает увеличение числа налетающих фотонов, которые выбивают с поверхности металла больше электронов. Но так как энергия фотонов одна и та же, максимальная кинетическая энергия электрона не изменится (подтверждается I закон фотоэффекта ).

2. При увеличении частоты падающего света максимальная кинетическая энергия электронов линейно возрастает в соответствии с формулой Эйнштейна (2.3.1). (Подтверждение II закона фотоэффекта ). График этой зависимости представлен на рис. 2.3.

,


Рис. 2.3

3. Если частота ν меньше критической частоты , то выбивание электронов с поверхности не происходит (III закон ).

Итак, мы видим, что предсказания корпускулярной (фотонной) теории сильно отличаются от предсказаний волновой теории, но очень хорошо совпадают с тремя экспериментально установленными законами фотоэффекта.

Уравнение Эйнштейна было подтверждено опытами Милликена, выполненными в 1913–1914 гг. Основное отличие от опыта Столетова в том, что поверхность металла подвергалась очистке в вакууме. Исследовалась зависимость максимальной кинетической энергии от частоты и определялась постоянная Планка h .

В 1926 г. российские физики П.И. Лукирский и С.С. Прилежаев для исследования фотоэффекта применили метод вакуумного сферического конденсатора. Анодом служили посеребренные стенки стеклянного сферического баллона, а катодом – шарик (R ≈ 1,5 см) из исследуемого металла, помещенного в центр сферы. Такая форма электродов позволяла увеличить наклон ВАХ и тем самым более точно определить задерживающее напряжение (а следовательно, и h ). Значение постоянной Планка h , полученное из этих опытов, согласуется со значениями, найденными другими методами (по излучению черного тела и по коротковолновой границе сплошного рентгеновского спектра). Все это является доказательством правильности уравнения Эйнштейна, а вместе с тем и его квантовой теории фотоэффекта.

Для объяснения теплового излучения Планк предположил, что свет испускается квантами. Эйнштейн при объяснении фотоэффекта предположил, что свет поглощается квантами. Также Эйнштейн предположил, что свет и распространяется квантами, т.е. порциями. Квант световой энергии получил название фотон . Т.е. опять пришли к понятию корпускула (частица).

Наиболее непосредственное подтверждение гипотезы Эйнштейна дал опыт Боте, в котором использовался метод совпадения (рис. 2.4).


Рис. 2.4

Тонкая металлическая фольга Ф помещалась между двумя газоразрядными счетчиками Сч . Фольга освещалась слабым пучком рентгеновских лучей, под действием которых она сама становилась источником рентгеновских лучей (это явление называется рентгеновской флуоресценцией). Вследствие малой интенсивности первичного пучка, количество квантов, испускаемых фольгой, было невелико. При попадании квантов на счетчик механизм срабатывал и на движущейся бумажной ленте делалась отметка. Если бы излучаемая энергия распространялась равномерно во все стороны, как это следует из волновых представлений, оба счетчика должны были срабатывать одновременно и отметки на ленте приходились бы одна против другой. В действительности же наблюдалось совершенно беспорядочное расположение отметок. Это можно объяснить лишь тем, что в отдельных актах испускания возникают световые частицы, летящие то в одном, то в другом направлении. Так было экспериментально доказано существование особых световых частиц – фотонов.

Фотон обладает энергией . Для видимого света длина волны λ = 0,5 мкм и энергия Е = 2,2 эВ, для рентгеновских лучей λ = мкм и Е = 0,5 эВ.

Фотон обладает инертной массой , которую можно найти из соотношения :

;
(2.3.2)

Фотон движется со скоростью света c = 3·10 8 м/с. Подставим это значение скорости в выражение для релятивистской массы:

.

Фотон – частица, не обладающая массой покоя. Она может существовать, только двигаясь со скоростью света c .

Найдем связь энергии с импульсом фотона.

Мы знаем релятивистское выражение для импульса:

. (2.3.3)

И для энергии:

. (2.3.4)

Свет и тепло, вкус и запах, цвет и информация - все это неразрывно связано с фотонами. Более того, жизнь растений, животных и человека невозможна без этой удивительной частицы.

Считается, что во Вселенной около 20 миллиардов фотонов приходится на каждый протон или нейтрон. Это фантастически огромная цифра.

Но что мы знаем об этой самой распространённой частице в окружающем нас мире?

Одни учёные считают, что скорость движения фотона равна скорости света в вакууме, т.е. примерно 300 000 км/сек и это максимально возможная скорость во Вселенной.

Другие учёные полагают, что во Вселенной достаточно примеров, в которых скорости частиц выше, чем скорость света.

Одни учёные считают, что фотон электрически нейтрален.

Другие - полагают, что фотон имеет электрический заряд (по некоторым данным, менее 10 -22 эВ/сек 2).

Одни учёные считают, что фотон является безмассовой частицей и по их мнению масса фотона в состоянии покоя равна нулю.

Другие - полагают, что у фотона есть масса. Правда, очень и очень небольшая. Этой точки зрения придерживается и ряд исследователей, по разному определяя массу фотона: менее чем 6 х 10 -16 эВ, 7 х 10 -17 эВ, 1 х 10 -22 эВ и даже 3 х 10 -27 эВ, что в миллиарды раз меньше массы электрона.

Одни учёные считают, что в соответствии с законами отражения и преломления света, фотон представляет собой частицу, т.е. корпускулу. (Евклид, Лукреций, Птолемей, И. Ньютон, П. Гассенди)

Другие (Р. Декарт, Р. Гук, Х. Гюйгенс, Т. Юнг и О. Френель), опираясь на явления дифракции и интерференции света, полагают, что фотон имеет волновую природу.

При излучении или поглощении атомными ядрами и электронами, а также при фотоэффекте фотон ведет себя как частица.

А при прохождении через стеклянную призму или небольшое отверстие в преграде фотон демонстрирует свои яркие волновые свойства.

Компромиссное решение французского ученого Луи де Бройля, в основе которого лежит корпускулярно-волновой дуализм, утверждающий, что фотоны обладают и свойствами частицы, и свойствами волны, не является ответом на этот вопрос. Корпускулярно-волновой дуализм - это лишь временная договорённость , основанная на абсолютном бессилии учёных ответить на этот крайне важный вопрос.

Конечно, эта договорённость несколько успокоила ситуацию, но не решила проблемы.

Исходя из этого, мы можем сформулировать первый вопрос , связанный с фотоном

Вопрос первый .

Фотоны - это волны или частицы? А, может быть, и то, и другое или не то и не другое?

Далее. В современной физике фотон - это элементарная частица, представляющая собой квант (порцию) электромагнитного излучения . Свет также является электромагнитным излучением и фотон принято считать переносчиком света. В нашем сознании это достаточно твердо укрепилось и фотон, прежде всего, связывают со светом.

Вместе с тем, кроме света существуют другие виды электромагнитного излучения: гамма-излучение, рентгеновское, ультрафиолетовое, видимое, инфракрасное, микроволновое и радиоизлучения. Они отличаются друг от друга длиной волны, частотой, энергией и имеют свои особенности.

Виды излучений и их краткие характеристики

Переносчиком всех видов электромагнитного излучения является фотон. Он, по мнению ученых, един для всех. Вместе с тем, каждый вид излучения характеризуется разной длиной волны, частотой колебания и разной энергией фотонов. Значит, разными фотонами? Казалось бы, количеству различных видов электромагнитных волн должно соответствовать равное количество различных видов фотонов. Но фотон в современной физике пока только один.

Получается научный парадокс - излучения разные, их свойства тоже разные, а фотон, который переносит эти излучения, единый.

Например, гамма-излучение и рентгеновское излучение преодолевают преграды, а ультрафиолетовое и инфракрасное излучения и видимый свет, имея большую длину волны, но меньшую энергию - нет. Вместе с тем, микроволновое и радиоволновое излучения имеют еще большую длину волны и еще меньшую энергию, но преодолевает толщу воды и бетонные стены. Почему?


Проникающие способности фотонов при различных излучениях

Здесь возникают сразу два вопроса.

Вопрос второй .

Действительно ли все фотоны одинаковы во всех видах излучений?

Вопрос третий .

Почему фотоны одних видов излучений преодолевают преграды, а других видов излучений - нет? В чем дело - в излучениях или в фотонах?

Существует мнение, что фотон - это мельчайшая бесструктурная частица во Вселенной. Наука пока ещё не смогла определить что-либо, что было бы меньше фотона. Но так ли это? Ведь в свое время и атом считался неделимым и мельчайшим в окружающем нас мире. Поэтому логичен и четвёртый вопрос:

Вопрос четвёртый .

Является ли фотон мельчайшей и бесструктурной частицей или он состоит из ещё более мелких образований?

Кроме того, считается, что масса покоя фотона равна нулю, а в движении у него проявляется и масса, и энергия. Но тогда возникает и

вопрос пятый:

фотон - это материальная частица или нет? Если фотон материален, то куда пропадает его масса в покое? Если он не материален, то почему фиксируются его вполне материальные взаимодействия с окружающим нас миром?

Итак, перед нами пять загадочных вопросов, связанных с фотоном. И они на сегодняшний день не имеет своих четких ответов. За каждым из них стоят свои проблемы. Проблемы, которые мы постараемся сегодня рассмотреть.

В своих путешествиях «Дыхание Вселенной», «Глубины Вселенной» и «Силы Вселенной» мы через призму устройства и функционирования Вселенной достаточно глубоко рассматривали все эти вопросы. Мы проследили весь путь формирования фотонов от возникновения фундаментальных частиц - эфирных вихревых сгустков до галактик и их скоплений. Смею надеяться, что у нас получилась достаточно логичная и системно обустроенная картина мира. Поэтому предположение о строении фотона стало логическим шагом в системе знаний о нашей Вселенной.


Строение фотонов

Фотон предстал перед нами не как частица и не как волна, а как вращающаяся конусообразная пружинка, с расширяющимся началом и с сужающимся концом .

Пружинная конструкция фотона позволяет ответить практически на все вопросы, возникающие при изучении явлений природы и результатов экспериментов.

Мы уже упоминали, что переносчиками различных видов электромагнитного излучения являются фотоны. Вместе с тем, несмотря на то, что науке известны различные виды электромагнитного излучения: гамма-излучение, рентгеновское, ультрафиолетовое, видимое, инфракрасное, микроволновое излучение и радиоизлучение, фотоны-переносчики, которые задействованы в этих процессах не имеют своих разновидностей. То есть, по мнению некоторых ученых любой вид излучения переносится неким универсальным видом фотонов, который одинаково успешно проявляет себя и в процессах гамма-излучения, и в процессах радиоизлучения, и в любых других видах излучений.

Не могу согласиться с этой позицией, так как природные явления свидетельствуют о том, что все известные электромагнитные излучения существенно отличаются друг от друга не только параметрами (длиной волны, частотой, энергетическими возможностями), но и своими свойствами. Например, гамма-излучение легко проникает сквозь любые преграды, а видимое излучение этими преградами так же легко останавливается.

Следовательно, в одном случае фотоны могут переносить излучение сквозь преграды, а в другом, те же фотоны уже бессильны что-либо преодолеть. Этот факт заставляет задуматься о том, действительно ли фотоны столь универсальны или же они имеют свои разновидности, согласующиеся со свойствами различных электромагнитных излучений во Вселенной.

Полагаю правильным, каждому виду излучения определить свою разновидность фотонов. К сожалению, такой градации пока в современной науке не имеется. Но это не только легко, но и крайне необходимо исправить. И это вполне понятно, так как излучения и их параметры изменяются, а фотоны в современной интерпретации представлены лишь одним общим понятием - «фотоном». Хотя, надо признать, что с изменением параметров излучений в справочной литературе изменяются и параметры фотонов.

Ситуация подобна применению общего понятия «автомобиль» ко всем его маркам. Но эти марки различны. Мы можем приобрести «Ладу», «Мерседес», «Вольво» или «Тойоту». Все они подходят под понятие «автомобиль», но все они разные и по виду, и по техническим характеристикам, и по стоимости.

Поэтому, будет логично, если в качестве переносчиков гамма-излучения мы предложим фотоны гамма-излучения, рентгеновского излучения - фотоны рентгеновского излучения, ультрафиолетового излучения - фотоны ультрафиолетового излучения и т.д. Все эти виды фотонов будут отличаться друг от друга длиной витков (длиной волны), скорости вращения (частотой колебания) и энергией, которую они переносят.

Фотоны гамма-излучения и рентгеновского излучения представляют собой сжатую пружинку с минимальными размерами и с концентрированной энергией в этом маленьком объеме. Поэтому они проявляют свойства частицы и легко преодолевают препятствия, продвигаясь между молекулами и атомами вещества.

Фотоны ультрафиолетового излучения, видимый свет и фотоны инфракрасного излучения - это та же пружинка, только растянутая. Энергия в этих фотонах осталась прежней, но она распределилась по более вытянутому телу фотона. Увеличение длины фотона позволяет ему проявлять свойства волны. Однако, увеличение диаметра фотона не позволяет ему проникать между молекулами вещества.

Фотоны микроволнового и радиоизлучений имеют ещё более растянутую конструкцию. Длина радиоволн может достигать нескольких тысяч километров, но они имеют самую небольшую энергию. Они легко проникают сквозь преграды, как бы вкручиваясь в вещество преграды, обходя молекулы и атомы вещества.

Во Вселенной все виды фотонов постепенно преобразуется из фотонов гамма-излучения. Фотоны гамма-излучения первичны. При движении в пространстве уменьшается скорость их вращения и они последовательно преобразуются в фотоны рентгеновского излучения, а те, в свою очередь - в фотоны ультрафиолетового излучения, которые преобразуются в фотоны видимого света и т.д.

Поэтому, фотоны гамма-излучения преобразуются в фотоны рентгеновского излучения. Эти фотоны будут иметь более протяженную длину волны и меньшую частоту вращения. Затем, фотоны рентгеновского излучения преобразуются в фотоны ультрафиолетового излучения, а они - в видимый свет и т.д.

Наиболее яркий пример этого преобразования в динамике мы можем наблюдать при ядерном взрыве.


Ядерный взрыв и зоны его поражающего действия

В процессе ядерного взрыва в течение нескольких секунд поток фотонов гамма-излучения проникает в окружающую среду на расстояние примерно 3 км. Далее, гамма-излучение прекращается, но фиксируется рентгеновское излучение. Полагаю, что при этом фотоны гамма-излучения преобразовываются в фотоны рентгеновского излучения, а они, последовательно, в фотоны ультрафиолетового, видимого и инфракрасного излучения. Поток фотонов соответственно вызывает возникновение поражающих факторов ядерного взрыва - проникающую радиацию, световое излучение и пожары.

В работе «Глубины Вселенной» мы детально рассмотрели строение фотонов и процессы их формирования и функционирования. Нам стало понятным, что фотоны состоят из разного диаметра кольцеобразных энергетических фракций, соединенных друг с другом.


Строение фотона

Фракции формируются из фундаментальных частиц - мельчайших эфирных вихревых сгустков, которые представляют собой эфирные плотн ости. Эти эфирные плотности вполне материальны, как материален эфир и весь окружающий нас мир. Эфирные плотности определяют показатели массы эфирных вихревых сгустков. Масса сгустков составляет массу фракций, а они массу фотона. И не важно в движении или в покое он находится . Поэтому фотон вполне материален и имеет свою вполне определенную массу и в покое, и в движении .

Мы уже получили прямое подтверждение нашего представления о строении фотона и о его составе в ходе экспериментов. Надеюсь, что в скором будущем мы опубликуем все полученные результаты. Более того, подобные результаты были получены и в заграничных лабораториях. Так что, есть основания предполагать, что мы находимся на верном пути.

Итак, мы ответили на ряд вопросов о фотоне.

Фотон, в нашем понимании, - это не частица и не волна, а пружинка, которая в различных условиях может сжиматься до размеров частиц, а может и растягиваться, проявляя свойства волны.

Фотоны имеют свои разновидности в зависимости от вида излучений и могут быть фотонами гамма-излучения, фотонами рентгеновского излучения, фотонами ультрафиолетового, видимого, инфракрасного и микроволнового излучений, а также фотонами радиоизлучения.

Фотон материален и имеет массу. Он не является мельчайшей частицей во Вселенной, а состоит из эфирных вихревых сгустков и энергетических фракций.

Понимаю, что это несколько неожиданная и непривычная трактовка фотона. Однако, я исхожу не из общепринятых правил и постулатов, принятых уже много лет назад без связи с процессами общего развития мира. А из логики, которая исходит из законов устройства мира, которые являются ключом от двери, ведущей к Истине.

Вместе с тем, в 2013 году были вручены Нобелевские премии по физике Питеру Хиггсу и Франсуа Энглеру, которые в 1964 году независимо друг от друга предположили существование в природе еще одной частицы - нейтрального бозона, который с легкой руки нобелевского лауреата Л. Ледермана была названа «частицей Бога», то есть той первоосновы, того первого кирпичика, из которого был сконструирован весь наш окружающий мир. В 2012 году, проводя эксперименты по сталкиванию на больших скоростях пучков протонов два опять же независимых научных сообщества опять же практически одновременно проанонсировали обнаружение частицы, параметры которой совпали между собой и соответствовали значениям, предсказанным П. Хиггсом и Ф. Энглером.

В качестве такой частицы выступал зарегистрированный в ходе экспериментов нейтральный бозон, время жизни которого было не более 1,56 х 10 -22 секунд, а масса более чем в 100 раз превышала массу протона. Этой частице приписывали возможность сообщать массу всему тому материальному, что есть в этом мире - от атома до скопления галактик. Более того, предполагалось, что эта частица является прямым свидетельством наличия некого гипотетического поля, проходя через которое все частицы приобретают вес. Вот такое волшебное открытие.

Однако, всеобщая эйфория от этого открытия длилась недолго. Потому что появились вопросы, которые не могли не появиться. Действительно, если бозон Хиггса реально является «частицей Бога», то почему его «жизнь» столь скоротечна? Понимание Бога всегда связывалось с вечностью. Но если вечен Бог, то и любая Его частица тоже должна быть вечна. Это было бы логично и понятно. Но «жизнь» бозона длительностью в долю секунды с двадцатью двумя нулями после запятой не очень вяжется с вечностью. Даже мгновением это назвать трудно.

Более того, если уж и говорить о «частице Бога», то необходимо четко понимать, что она должна находиться во всем, что нас окружает и представлять собой самостоятельную, долгоживущую и минимально возможную объемную сущность, составляющую все известные частицы нашего мира.

Из этих божественных частиц постепенно шаг за шагом должен был бы строиться наш мир. Из них должны состоять частицы, из частиц - атомы и так до звезд, галактик и Вселенной. Все известные и неизвестные поля так же должны быть связаны с этой волшебной частицей и передавать не только массу, но и любое другое взаимодействие. Думаю, это логично и не противоречит здравому смыслу. Потому что, коль уж мы связываем эту частицу с божественным началом, то должны иметь и адекватный ответ на наши ожидания.

Однако, мы уже видели, что масса бозона Хиггса значительно превосходит даже массу протона. Но как же из большого можно построить малое? Как уместить слона в мышинной норке?! Никак.

Вся эта тема, честно признаться, не очень прозрачна и обоснованна. Хотя, может быть я что-то и не совсем понимаю в силу своей недостаточной компетенции, но тем не менее, бозон Хиггса, по моему глубокому убеждению, под «частицу Бога» не очень-то подходит.

Другое дело фотон. Эта замечательная частица полностью преобразила жизнь человека на планете.

Благодаря фотонам различных излучений мы видим окружающий нас мир, наслаждаемся солнечным светом и теплом, мы слушаем музыку и смотрим телевизионные новости, диагностируем и лечим, проверяем и дефектуем металлы, заглядываем в космос и проникаем в глубь вещества, общаемся друг с другом на расстоянии по телефону… Жизнь без фотонов была бы немыслима. Они не просто часть нашей жизни. Они - наша жизнь.

Фотоны, по сути, - главный инструмент общения Человека с окружающим его миром. Только они позволяют нам окунуться в окружающий нас мир и при помощи зрения, обоняния, осязания и вкуса понять его и восхититься его красотой и многокрасочностью. Все это, благодаря им - фотонам.

И еще. Это, наверное, главное. Только фотоны несут свет! А по всем религиозным канонам Бог и породил этот свет. Более того, Бог - и есть свет!

Ну, как здесь пройти мимо искушения и не назвать фотон реальной «частицей Бога»! Фотон и только фотон может претендовать на это высочайшее звание! Фотон - это свет! Фотон - это тепло! Фотон - это все буйство красок мира! Фотон - это благоуханные запахи и тонкие вкусы! Жизни без фотонов - не бывает! А если и бывает, то кому она нужна такая жизнь. Без света и тепла, без вкуса и запаха. Никому.

Поэтому, если уж и говорить о частице Бога , то надо говорить только о фотоне - об этом удивительном подарке, переданном нам Высшими Силами. Но и то, только аллегорически. Потому что у Бога не может быть частиц. Бог един и целостен и Его нельзя разделить ни на какие частицы.

Фотон - элементарная частица, квант электромагнитного излучения.энергии кванта (то есть дискретно), где - постоянная Планка. импульс.Если приписать фотону наличие т. н. «релятивистской массы» исходя из соотношения то она составит Массы покоя фотона нет.Фотоэффе́кт - это испускание электронов вещества под действием света (и, вообще говоря, любого электромагнитного излучения).формула Эйнштейна для фотоэффекта:

h ν = A вых + E k

где A out - т. н. работа выхода (минимальная энергия, необходимая для удаления электрона из вещества), E k -кинетическая энергия вылетающего электрона (в зависимости от скорости может вычисляться как кинетическая энергия релятивистской частицы, так и нет), ν - частота падающего фотона с энергией h ν, h - постоянная Планка.

Внешним фотоэффектом (фотоэлектронной эмиссией) называется испускание электронов веществом под действием электромагнитных излучений. 1) Максимальная начальная скорость фотоэлектронов не зависит от интенсивности падающего света, а определяется только его частотой. 2) Существует минимальная частота, при которой возможен фотоэффект(красная граница) 3) Ток насыщения зависит от интенсивности света, падающего на образец 4) Фотоэффект – безинерционное явление. Для прекращения фототока надо падать на анод отрицательное напряжение(напряжение запирания). Внутренний фотоэффект – изменение электронной проводимости вещества под действием света. Фотопроводимость свойственна полупроводникам. Электропроводность полупроводников ограничена нехваткой носителей заряда. При поглощении фотона электрон переходит из валентной зоны в зону проводимости. Как следствие образуется пара носителей заряда: электрон в зоне проводимости и дырка в валентной зоне. Оба носителя заряда при приложении к полупроводнику напряжения создают электрический ток.

При возбуждении фотопроводимости в собственном полупроводнике энергия фотона должна превышать ширину запрещенной зоны. В полупроводнике с примесями поглощение фотона может сопровождаться переходом из расположенного в запрещённой зоне уровня, что позволяет увеличить длину волны света, который вызывает фотопроводимость. Это обстоятельство важно для детектирования инфракрасного излучения. Условием высокой фотопроводимости является также большой коэффициент поглощения света, который реализуется в прямозонных полупроводниках.

16.Давление света.

Давление света - это давление, которое производят электромагнитные световые волны, падающие на поверхность какого-либо тела. Квантовая теория света объясняет световое давление как результат передачи фотонами своего импульса атомам или молекулам вещества. Пусть на поверхность абсолютно черного тела площадью S перпендикулярно к ней ежесекундно падает N фотонов: . Каждый фотон обладает импульсом. Полный импульс, получаемый поверхностью тела, равен. Световое давление:. - коэффициент отражения, - объёмная плотность энергии излучения. Классическаятеория

17.Тормозное и характеристическое рентгеновское излучение.

Рентге́новскоеизлуче́ние - электромагнитные волны, энергия фотонов которых лежит на шкале электромагнитных волн между ультрафиолетовымизлучением и гамма-излучением, что соответствует длинам волн от 10 −2 до 10 3 Å (от 10 −12 до 10 −7 м). Схематическое изображение рентгеновской трубки. X - рентгеновские лучи, K - катод, А - анод (иногда называемый антикатодом), С - теплоотвод, U h -напряжение накала катода, U a - ускоряющее напряжение, W in - впуск водяного охлаждения, W out - выпуск водяного охлаждения. Когда энергия бомбардирующих анод электронов становится достаточной для вырывания электронов из внутренних оболочек атома, на фоне тормозного излучения появляются резкие линии характеристического излучения. Частоты этих линий зависят от природы вещества анода, поэтому их и назвали характеристическими.

Тормозное излучение - электромагнитное излучение, испускаемое заряженной частицей при её рассеянии (торможении) в электрическом поле. dp/dλ hvне может быть больше, чем энергия eU. иззаконасохраненияэнергии Самым распространенным источником рент­геновского излучения является рентгеновская трубка, в которой сильно ускоренные электрическим полем электроны бомбардируют анод (металлическая мишень из тяже­лых металлов, например W или Pt), испытывая на нем резкое торможение. При этом возникает рентгеновское излучение, представляющее собой электромагнитные волны с длиной волны примерно 10 –12 -10 –8 м. Волновая природа рентгеновского излучения доказана опытами по его дифракции, рассмотренными в § 182.

Исследование спектрального состава рентгеновского излучения показывает, что его спектр имеет сложную структуру (рис. 306) и зависит как от энергии электронов, так и от материала анода. Спектр представляет собой наложение сплошного спектра, ограниченного со стороны коротких длин волн некоторой границей  min , называемой границей сплошного спектра, и линейчатого спектра - совокупности отдельных линий, появляющихся на фоне сплошного спектра.

Исследования показали, что характер сплошного спектра совершенно не зависит от материала анода, а определяется только энергией бомбардирующих анод электронов. Детальное исследование свойств этого излучения показало, что оно испускается бомбардирующими анод электронами в результате их торможения при взаимодействии с атомами мишени. Сплошной рентгеновский спектр поэтому называют тормозным спектром. Этот вывод находится в согласии с классической теорией излучения, так как при торможении движущихся зарядов должно действительно возникать излучение со сплошным спектром.

Из классической теории, однако, не вытекает существование коротковолновой границы сплошного спектра. Из опытов следует, что чем больше кинетическая энергия электронов, вызывающих тормозное рентгеновское излучение, тем меньше  min . Это обстоятельство, а также наличие самой границы объясняются квантовой теорией. Очевидно, что предельная энергия кванта соответствует такому случаю торможения, при котором вся кинетическая энергия электрона переходит в энергию кванта, т. е.

где U - разность потенциалов, за счет которой электрону сообщается энергия Е max , max - частота, соответствующая границе сплошного спектра. Отсюда граничная дли­на волны

Фотоэффектом называется испускание электронов с поверхности металла под действием света.

В
1888 г. Г. Герц обнаружил, что при облучении ультрафиолетовыми лучами электродов, находящихся под высоким напряжением, разряд возникает при большем расстоянии между электродами, чем без облучения.

Фотоэффект можно наблюдать в следующих случаях:

1. Цинковую пластину, соединенную с электроскопом, заряжают отрицательно и облучают ультрафиолетовым светом. Она быстро разряжается. Если же ее зарядить положительно, го заряд пластины не изменится.

2
.
Ультрафиолетовые лучи, проходящие через сетчатый положительный электрод, попадаютна отрицательно заряженную цинковую пластину и выбивают из нее электроны,которые устремляются к сетке, создавая фототок, регистрируемый чувствительным гальванометром.

Законы фотоэффекта

Количественные закономерности фотоэффекта (1888–1889) были установлены А. Г. Столетовым. Он использовал вакуумный стеклянный баллон с двумя электродами.

П
ервый закон

Исследуя зависимость силы тока в баллоне от напряжения между электродами при постоянном световом потоке на один из них, он установил первый закон фотоэффекта .

Фототок насыщения пропор­ционален световому поток у , падающему на металл : I =ν∙ Φ, гдеν – коэффициент пропорциональ­ности, называемый фоточувствительностью вещества.

Следовательно, число электронов, выбиваемых за 1 с из вещества, пропорционально интенсивности света, падающего на это вещество .

Второй закон

Изменяя условия освещения на этой же установке, А. Г. Столетов открыл второй закон фотоэффекта: кинетическая энергия фотоэлектронов не зависит от интенсивности падающего света, а зависит от его частоты.

Е
сли к освещенному электроду подключить положительный полюс батареи, то при некотором напряжении фототок прекратится. Это явление не зависит от величины светового потока.

Используя закон сохранения энергии
, гдеe – заряд;m – масса электрона;v – скорость электрона;U з – запирающее напряжение, устанавливают, что если частоту лучей, которыми облучают электрод, увеличить, тоU з2 >U з1 , поэтомуE к2 >E к1 . Следовательно,ν 2 > ν 1 .

Т
аким образом,кинетическая энергия фотоэлектронов линейно возрастает с частотой света .

Третий закон

Заменяя в приборе материал фотокатода, Столетов установил третий закон фотоэффекта: для каждого вещества существует красная граница фотоэффекта, т.е. существует наименьшая частота ν min , при которой еще возможен фотоэффект. Приν <ν min ни при какой интенсивности волны падающего света на фотокатод фотоэффект не произойдет.

Четвертый закон

Фотоэффект практически безынерционен (t = 10 −9 с).

Теория фотоэффекта

А.Эйнштейн, развив идею М.Планка (1905), покачал, что законы фотоэффекта могут быть объяснены при помощи квантовой теории.

Явление фотоэффекта экспериментально доказывает: свет имеет прерывистую структуру .

Излученная порция Е =сохраняет свою индивидуальность и поглощается веществом только целиком.

На основании закона сохранения энергии
.

Так как
,
,
,
.

Фотон и его свойства

Фотон – материальная, электрически нейтральная частица.

Энергия фотона E =илиЕ =ħω , так как
, ω = 2πν . Еслиh = 6,63∙10 −34 Дж∙с, тоħ ≈ 1,55∙10 −34 Дж∙с.

Согласно теории относительности E =mc 2 =, отсюда
, гдеm – масса фотона, эквивалентная энергии.

Импульс
, так какc =νλ . Импульс фотона направлен по световому пучку.

Наличие импульса подтверждается экспериментально: существованием светового давления.

Основные свойства фотона

1. Является частицей электромагнитного поля.

2. Движется со скоростью света.

3. Существует только в движении.

4. Остановить фотон нельзя: он либо движется сv =с , либо не существует; следовательно, масса покоя фотона равна нулю.

Эффект Комптона (1923)

А.Комптон подтвердил квантовую теорию света. Взаимодействие между фотоном и связанным в атоме электроном:

1. С точки зрения волновой теории световые волны должны рассеиваться на малых частицах:

ν рас. =ν пад, что опытом не подтверждается.

2. Фотоэффект – полное поглощение фотона.

3
.
При исследовании законов рассеяния рентгеновских лучей А.Комптон установил, что при прохождении рентгеновских лучей через вещество происходит увеличение длины волны (λ ) рассеянного излучения по сравнению с длиной волны (λ ) падающего излучения. Чем больше φ , тем больше потери энергии, а следовательно, и уменьшение частоты ν (увеличение λ ). Если считать, что пучок рентгеновских лучей состоит из фотонов, которые летят со скоростью света, то результаты опытов А.Комптона можно объяснить: фотон частотой ν обладает энергией E = h ν , массой
и импульсом
.

Законы сохранения энергии и импульса для системы фотон-электрон: h ν +m 0 c 2 = h ν" +mc 2 ,
,где m 0 c 2 – энергия неподвижною электрона; h ν – энергия фотона до столкновения; h ν" – энергия фотона после cтолкновенияс фотоном;
и
– импульсы фотона до и после столкновения;m v – импульсы электрона посте столкновения с фотоном.

Решение уравнений для энергии и импульса дает формулу для изменения длины волны при рассеянии фотона на элек гронах:
, где– комптоновская длина волны.