Болезни Военный билет Призыв

Исследовать функцию на монотонность используя определение. Исследование функций на монотонность — Гипермаркет знаний

Цели урока:

Образовательные:

  • повторить описание свойств кусочной функции по графику;
  • вывести и усвоить формальные определения возрастания и убывания функции;
  • научить доказывать монотонность функции на области определения.

Воспитательные:

  • воспитание познавательного интереса;
  • воспитание культуры общения;
  • воспитание ответственности за общее дело.

Развивающие:

  • развитие мышления и математической речи через формулировку общих выводов и обобщений.

Ход урока

Эпиграф к уроку:

"Мало иметь хороший ум, главное хорошо его применять"
Р. Декарт.

Домашнее задание к этому уроку: выясните, людям каких профессий по роду своей деятельности приходится читать графики.

Ответы: - кардиолог (кардиограмма)

Экономист (график динамики роста цен, роста стоимости нефти, рост курса $)

Метеоролог (график изменения температуры за год)

Сейсмолог (график колебания активности вулкана, сейсмоактивность данной местности).

Давайте посмотрим, насколько мы владеем этой культурой.

Аукцион "Чтение графика"

Последний ученик, правильно назвавший свойство функции, получает "5"

Дополнительный аукцион:

Кусочек графика какой функции изображен на чертеже?

Сегодня на уроке мы подробно рассмотрим только одно свойство функции - монотонность.

Подберите к прилагательному "монотонный" существительное. О чем говорят "монотонный"?

Движение.

Монотонный - значит какой? Одинаковый, повторяющийся.

С каким свойством функции можно связать словосочетание - монотонное движение? Движение куда?

Итак: монотонность - это возрастание и убывание функции.

В тетради: число, тема урока "Исследование функции на монотонность".

Давайте начнем с того, что мы уже знаем - с графика. Начертите в каждом столбике систему координат и изобразите график произвольной функции, обладающей указанным свойством на всей области определения.

В тетради таблица:

Отложим в сторону тетради. Для дальнейшего изучения свойства, давайте еще раз убедимся, что мы все хорошо понимаем о чем идет речь на уроке. Собираем лото.

Инструкция: На каждой парте таблица и набор карточек.

Работаем в парах. Карточек больше, чем необходимо. Будьте внимательны. Лото собирайте на тетрадке, чтобы потом перевернув, мы прочитали закодированную фразу, правильность которой зависит от слаженной работы каждой пары.

Набор карточек:

После того как каждая пара сложит лото и перевернет таблицу, из получившихся слов получается фраза:

"От живого созерцания к абстрактному мышлению, от него к практике - таков путь познания истины" Ф. Энгельс.

На боковой доске:

Нам сегодня предстоит подняться по этой лесенке, чтобы постигнуть лишь малую крупицу истины знаний, которые накопило человечество на своем пути развития.

Как вы думаете, на какой ступеньке мы находимся? Созерцание, т.е. рассматриваем графики. Продолжаем работу в тетради, в первом столбике таблицы.

Зафиксируйте х 1 , найдите по графику соответствующее у 1 , зафиксируйте х 2 - найдите у 2. Сравните х 1 и х 2 (х 1 < х 2). Что происходит со значением х?

Сравните у 1 и у 2 (у 1 > у 2). Что происходит со значением у?

Вывод: Большему значению х соответствует меньшее значение у. Это и есть определение убывающей функции. Запишите его в таблицу.

Самостоятельная работа.

1 вариант. Проделайте те же операции во втором столбике таблицы.

2 вариант. Заполните третий столбик.

Проверка по доске и в парах обмен результатами.

Итог работы.

Если мы знаем определение, то график для установления вида монотонности нам не нужен. А это значит, что мы поднялись на вторую ступеньку по лестнице познания.

Осталось применить свои знания на практике.

V. Задачник стр.194, № 4, 5 .Один ученик у доски.

Дано: у = 2х - 5

Доказать: у 1 < у 2

Доказательство:

х 1 < х 2 |· 2

2х 1 < 2х 2 | + (- 5)

2х 1 - 5 < 2х 2 - 5

у 1 < у 2 > функция у = 2х - 5 - возрастающая.

Дано: у = 7 - 13х

Доказать: у 1 > у 2

Доказательство: аналогично

Как называются функции, которые мы исследовали? От чего зависит вид монотонности линейной функции? Запишите вывод в таблицу. Используя этот вывод, выполним устно № 6. .

№ 8(а,б) . по вариантам, оформить в тетради по образцу.

Проверка вывода: как называется функция? Какой общей формулой задается функция? От чего зависит вид монотонности? Запишите в таблицу.

Как вы думаете, будет ли меняться вид монотонности, если смещать график вдоль оси Ох или Оу?

№ 8(в,г) устно.

Вспомните графики известных функций. Какая из них одинаково ведет себя на всей области определения? у = . Запишите в таблицу.

V. Наш урок подходит к концу. Закройте тетради. Откройте дневники.

Домашнее задание:

на "3" - выучить определения 10 ., 32 № 1,2;

на "4" + 32 № 11.,

на "5" + задание на карточке.

Построй графики - получишь рисунок. .

"собачка"

х = 8, - 19 у - 3;

у = - х - 11, 0 х 8;

х = 0, - 19 у - 11;

у = - х - 19, - 14 х 0;

х = - 14, - 5 у 1;

у = - х -13, - 14 х - 8;

х = - 8, - 11 у - 5;

у = х - 3, - 8 х 0;

у = - 3, 0 х 8;

у = - 0,6х + 1,2, - 2 х 8;

у = 1, 7 х 10;

у = - 4х - 42,8, 8 х 10;

у = , 5 х 8;

у = - 0,4х + 8, 0 х 2;

у = - 4х + 8, 0 х 2.

"парусник"

Гипермаркет знаний >>Математика >>Математика 10 класс >> Применение производной для исследования функций на монотонность и экстремумы

§ 35. Применение производной для исследования функций на монотонность и экстремумы

1. Исследование функций на монотонность

На рис. 129 представлен график некоторой возрастающей дифференцируемой функции у = f(х). Проведем касательные к графику в точках х= х 1 и х- х 2 . Что общего у построенных прямых? Общее то, что они составляют с осью х острый угол, а значит, у обеих прямых положительный угловой коэффициент. Но угловой коэффициент касательной равен значению производной в абсциссе точки касания. Таким образом, А вточке x=x 3 касательная параллельна оси х, в этой точке выполняется равенство f"(Х 3) =0. Вообще в любой точке х из области определения возрастающей дифференцируемой функции выполняется неравенство

На рис. 130 представлен график некоторой убывающей дифференцируемой функции у = f(х). Проведем касательные к графику в точках х= х 1 и х= х 2 . У построенных прямых? Общее то, что обе они составляют с осью х тупой угол, а значит, у обеих прямых отрицательный угловой коэффициент. Но угловой коэффициент касательной равен значению производной в абсциссе точки касания. Таким образом, А в точке х=х 3 касательная параллельна оси х, в этой точке выполняется равенство f"(х 3) =0. Вообще в любой точке х из области определения убывающей дифференцируемой функции выполняется неравенство
Эти рассуждения показывают, что между характером монотонности функции и знаком ее производной есть определенная связь:

если функция возрастает на промежутке и имеет на нем производную, то производная неотрицательна; если функция убывает на промежутке и имеет на нем производную, то производная неположительна.
Для практики гораздо важнее то, что верны и обратные теоремы, показывающие, как по знаку производной можно установить характер монотонности функции на промежутке. При этом, во избежание недоразумений, берут только открытые промежутки, т.е. интервалы или открытые лучи. Дело в том, что для функции, определенной на отрезке [а, Ь], не очень корректно ставить вопрос о существовании и о значении производной в концевой точке (в точке х= а или в точке х= Ъ), поскольку в точке х = а приращение аргумента может быть только положительным, а в точке х = Ъ - только отрицательным. В определении производной такие ограничения не предусмотрены.

Доказательства этих теорем проводят обычно в курсе высшей математики. Мы ограничимся проведенными выше рассуждениями «на пальцах» и для вящей убедительности дадим еще физическое истолкование сформулированных теорем.

Пусть по прямой движется материальная точка, s =s(t) - закон движения. Если скорость все время положительна, то точка постоянно удаляется от начала отсчета, т.е. функция s = s(t) возрастает. Если же скорость все время отрицательна, то точка постоянно приближается к началу отсчета, т.е. функция s = s(t) убывает. Если скорость движения была положительна, затем в какой-то отдельный момент времени обратилась в нуль, а потом снова стала положительной, то движущееся тело в указанный момент времени как бы притормаживает, но все равно продолжает удаляться от начальной точки. Так что и в этом случае функция s = s(t) возрастает. А что такое скорость? Это производная пути по времени. Значит, от знака производной (скорости) зависит характер монотонности функции - в данном случае функции s = s(t). Об этом как раз и говорят обе сформулированные теоремы.

Пример 1. Доказать, что функция возрастает на всей числовой прямой.
Решение. Найдем производную заданной функции:


Очевидно, что при всех х выполняется неравенство . Значит, по теореме 1, функция возрастает на всей числовой прямой.

Пример 2. а) Доказать, что функция у = 5соз х + зт4х - 10х убывает на всей числовой прямой;
б) решить уравнение 5соз х + sin4х - 10х = х 3 + 5.

Решение , а) Найдем производную заданной функции:

Полученное выражение всегда отрицательно. В самом деле, для всех значений х выполняются неравенства:


Это неравенство выполняется при всех значениях х. Значит, по теореме 2, функция убывает на всей числовой прямой.

б) Рассмотрим уравнение 5соз х + sin4х - 10х = х 3 + 5. Как было установлено только что, у = 5соsх + sin4х-10х - убывающая функция. В то же время у = х 3 +5 - возрастающая функция. Имеет место следующее утверждение: если одна из функций у = f(х) или у = s(х) возрастает, а другая убывает и если уравнение f(х) = g(х) имеет корень, то только один (рис. 131 наглядно иллюстрирует это утверждение). Корень заданного уравнения подобрать нетрудно - это число х= 0 (при этом значении уравнение обращается в верное числовое равенство 5 = 5).
Итак, х = 0 - единственный корень заданного уравнения.

Пример 3. а) Исследовать на монотонность функцию у = 2х 3 + Зх 2 -1; б) построить график этой функции.

Решение , а) Исследовать функцию на монотонность - это значит выяснить, на каких промежутках области определения функция возрастает, а на каких убывает. Согласно теоремам 1 и 2 это связано со знаком производной.

Найдем производную данной функции: f"(х)=6х 2 +6х и далее f"(х)=6x(х + 1).

На рис. 132 схематически указаны знаки производной по промежуткам области определения: на луче (-оо,-1) производная положительна, на интервале (-1,0) - отрицательна, на луче (0,+ - положительна. Значит, на первом из указанных промежутков функция возрастает, на втором убывает, на третьем возрастает.


Обычно, если функция непрерывна не только на открытом промежутке, но и в его концевых точках, эти концевые точки включают в промежуток монотонности функции.

Таким образом, заданная функция возрастает на луче , возрастает на луче убывает на отрезке [-1,0].

б) Графики функций строят «по точкам». Для этого надо составить таблицу значений функции у= 2х3 +3х 2 -1, куда обязательно следует включить значения функции в концевых точках промежутков монотонности х = -1 и х = 0 и еще пару-тройку значений:


Отметим эти точки на координатной плоскости. Учтем найденные в п. а) промежутки возрастания и убывания функции, а также то, что в точках х = -1 и х = 0 производная функции равна нулю, т.е. касательная к графику функции в указанных точках параллельна оси абсцисс, более того, в точке (-1; 0) она даже совпадает с осью абсцисс. Учтем, наконец, то, что функция непрерывна, т.е. ее графиком является сплошная линия. График заданной в условии функции изображен на рис. 133.

Завершая рассуждения по исследованию функций на монотонность, обратим внимание на одно обстоятельство. Мы видели, что если на промежутке X выполняется неравенство f"(x) >0, то функция у-f(х) возрастает на промежутке X; если же на промежутке X выполняется неравенство f"(x) < 0, то функция убывает на этом промежутке. А что будет, если на всем промежутке выполняется тождество (х) =0 ? Видимо, функция не должна ни возрастать, ни убывать. Что же это за функция? Ответ очевиден - это постоянная функция у = С (буква С - первая буква слова соп81ап1а, что означает «постоянная»). Справедлива следующая теорема, формальное доказательство которой мы не приводим, ограничиваясь приведенными выше правдоподобными рассуждениями.

В дальнейшем эта теорема будет нами востребована, т.е. в ее пользе для математики мы сумеем убедиться. А сейчас приведем (для наиболее любознательных) пример использования теоремы 3 (из разряда математических развлечений). Мы приведем новый способ доказательства хорошо вам известного тождества sin 2 x + cos 2 x= 1.
Рассмотрим функцию у = f(х), где f(х) = sin 2 х+соs 2 х. Найдем ее производную:


Итак, для всех х выполняется равенство f"(х) =0, значит, f(х) = С. Чтобы найти значение С, достаточно вычислить значение функции в любой точке х, например, х = 0. Имеем: f(0) = sin 2 0+соs2 0=0 + 1 = 1.

Таким образом, С = 1, т. е. sin 2 х+соs 2 х = 1

2. Точки экстремума функции и их отыскание

Вернемсяк графику функции у=2 х 3 +3х 2 -1(рис. 133). На графике есть две уникальные точки, определяющие его структуру, - это точки (-1; 0) и (0; -1). В этих точках:

1) происходит изменение характера монотонности функции (слева от точки х = -1 функция возрастает, справа от нее, но только до точки х =0, функция убывает; слева от точки х =0 функция убывает, справа от нее возрастает);

2) касательная к графику функции параллельна оси х, т.е. производная функции в каждой из указанных точек равна нулю;

3) f(-1) - наибольшее значение функции, но не во всей области определения, а в локальном смысле, т.е. по сравнению со значениями функции из некоторой окрестности точки х = -1. Точно так же f(0) - наименьшее значение функции, но не во всей области определения, а в локальном смысле, т.е. по сравнению со значениями функции из некоторой окрестности точки х = 0.

А теперь взгляните на рис. 134, где изображен график другой функции. Не правда ли, он похож на предыдущий график? На нем те же две уникальные точки, но одна из указанных выше трех особенностей этих точек изменилась: теперь касательные к графику в этих точках не параллельны оси х. В точке х = -1 касательная вообще не существует, а в точке х = 0 она перпендикулярна оси х (точнее, она совпадает с осью у).


Дальнейший ход рассуждений вам уже известен: если появляется новая математическая модель или новая особенность математической модели, ее надо специально изучить, т.е. ввести новый термин, новые обозначения, сформулировать новые свойства.

Определение 1. Точку х =х 0 называют точкой минимума функции у = f(х), если у этой точки существует окрестность, для всех точек которой (кроме самой точки х =х 0) выполняется неравенство:
f(х)>f(х0).

Так, функции, графики которых изображены на рис. 133 и 134, имеют точку минимума х=0. Почему? Потому что у этой точки существует окрестность, например, или (-0,2, 0,2), для всех
точек которой, кроме точки х= 0, выполняется неравенство f(х) > f(О). Это верно для обеих функций.
Значение функции в точке минимума обычно обозначают . Не путайте это значение (наименьшее, но в локальном смысле) с т.е. с наименьшим значением функции во всей рассматриваемой области определения (в глобальном смысле). Посмотрите еще раз на рис. 133 и 134. Вы видите, что наименьшего значения нет ни у той, ни у другой функции, а существует.

Определение 2. Точку х = х 0 называют точкой максимума функции у=f(х), если у этой точки существует окрестность, для всех точек которой, кроме самой точки х = х 0 , выполняется неравенство:
f(х)

Так, функции, графики которых изображены на рис. 133 и 134, имеют точку максимума х= - 1. Почему? Потому что у этой точки
существует окрестность, например, , для всех точек которой, кроме х=-1, выполняется неравенство f(х) < f(-1). Это верно для обеих функций.
Значение функции в точке максимума обычно обозначают . Не путайте это значение (наибольшее, но в локальном смысле) с ., т.е. с наибольшим значением функции во всей рассматриваемой области определения (в глобальном смысле). Посмотрите еще раз на рис. 133 и 134. Вы видите, что наибольшего значения нет ни у той, ни у другой функции, а существует.

Точки минимума и максимума функции объединяют общим термином - точки экстремума (от латинского слова ехtremum - «крайний»).

Как искать точки экстремума функции? Ответ на этот вопрос мы сможем найти, еще раз проанализировав графические модели, представленные на рис. 133 и 134.

Обратите внимание: для функции, график которой изображен на рис. 133, в обеих точках экстремума производная обращается в нуль (касательные параллельны оси х). А для функции, график которой изображен на рис. 134, в обеих точках экстремума производная не существует. Это не случайно, поскольку, как доказано в курсе математического анализа, справедлива следующая теорема.

Теорема 4. Если функция у = f(х) имеет экстремум в точке х = х 0 , то в этой точке производная функции либо равна нулю, либо не существует.

Для удобства условимся внутренние точки области определения функции, в которых производная функции равна нулю, называть стационарными, а внутренние точки области определения функции, в которых функция непрерывна, но производная функции не существует, - критическими.

Пример 4. Построить график функции у = 2х 2 -6х + 3.

Решение. Вам известно, что графиком заданной квадратичной функции является парабола, причем ветви параболы направлены вверх, поскольку коэффициент при хг положителен. Но в таком случае вершина параболы является точкой минимума функции, касательная к параболе в ее вершине параллельна оси х, значит, в вершине параболы должно выполняться условие у"=0. Имеем: у"=(2х 2 -6х + 3)"=4х-6.

Приравняв производную нулю, получим: 4х-6=0; х = 1,5.

Подставив найденное значение х в уравнение параболы, получим:

у = 21,52 - 6-1,5 + 3 = -1,5. Итак, вершиной вдраболы служитточка(1,5; -1,5), а осью параболы - прямая х=1,5 (рис. 135). В качестве контрольных точек удобно взять точку (0; 3) и симметричную ей относительно оси параболы точку (3; 3). На рис. 136 по найденным трем точкам построена парабола - график заданной квадратичной функции.


Помните ли вы, как мы строили график квадратичной функции у=ах 2 +Ьх+с в 8-9-м классах? Практически так же, лишь ось параболы находили не с помощью производной, а по формуле которую приходилось запоминать. Решение, показанное в примере 4, освобождает вас от необходимости помнить эту формулу. Чтобы найти абсциссу вершины параболы у=ах 2 +Ъх+с или уравнение ее оси симметрии, достаточно приравнять нулю производную квадратичной функции.

А теперь вернемся к теореме 4, которая говорит, что если в точке х = х 0 функция у = f(х) имеет экстремум, то х = х 0 - стационарная или критическая точка функции. Возникает естественный вопрос: верна ли обратная теорема, т.е. верно ли, что если х = х 0 - стационарная или критическая точка, то в этой точке функция имеет экстремум? Отвечаем: нет, неверно. Посмотрите на рис. 137, где изображен график возрастающей функции, не имеющей точек экстремума. У этой функции есть стационарная точка х = х 1 ,в которой производная обращается в нуль (в этой точке график функции имеет касательную, параллельную оси х), но это не точка экстремума, а точка перегиба, и есть критическая точка х =х 2 , в которой производная не существует, но это также не точка экстремума, а точка излома графика. Поэтому скажем так: теорема 4 дает только необходимое условие экстремума (справедлива прямая теорема), но оно не является достаточным условием (обратная теорема не выполняется).


A кaк же быть с достаточным условием? Как узнать, есть ли в стационарной или в критической точке экстремум? Для ответа на этот вопрос снова рассмотрим графики функций, представленные на рис. 133, 134, 136 и 137.
Замечаем, что при переходе через точку максимума (речь идет о точке х = -1 на рис. 133 и 134) изменяется характер монотонности функции: слева от точки максимума функция возрастает, справа убывает. Соответственно изменяются знаки производной: слева от точки максимума производная положительна, справа отрицательна.
Замечаем, что при переходе через точку минимума (речь идет о точке х=0 на рис. 133 и 134 и о точке х = 1,5 на рис. 136) также изменяется характер монотонности функции: слева от точки минимума функция убывает, справа возрастает. Соответственно изменяются знаки производной: слева от точки минимума производной отрицательна, справа положительна.

Если же и слева, и справа от стационарной или критической точки производная имеет один и тот же знак, то в этой точке экстремума нет, именно так обстоит дело с функцией, график которой изображен на рис. 137.
Наши рассуждения могут служить подтверждением (но, конечно, не доказательством - строгие доказательства проводятся в курсе математического анализа) справедливости следующей теоремы.

Теорема 5 (достаточные условия экстремума). Пусть функция у=f(х) непрерывна на промежутке X и имеет внутри промежутка стационарную или критическую точку x = x 0 .

а) если у этой точки существует такая окрестность, что в ней при х<х 0 выполняется неравенство f(x) < 0,а при x > x 0 - неравенство f"x)>0, то x =x 0 - точка минимума функции У=f(х);

б) если у этой точки существует такая окрестность, что в ней при x < x 0 выполняется неравенство f"(x) > О, а при x > x 0 - неравенство f(х) < О, то x = x 0 - точка максимума функции У=f(х);

в) если у этой точки существует такая окрестность, что в ней и слева, и справа от точки x 0 знаки производной одинаковы, то в точке x = x 0 экстремума нет.

Пример 5. а) Найти точки экстремума функции
у = 3х 4 -16х 3 + 24х2 -11; б) построить график этой функции.

Решение , а) Найдем производную данной функции:

Производная обращается в нуль в точках х = О и х = 2 - это две стационарные точки заданной функции. На рис. 138 схематически указаны знаки производной по промежуткам области определения: на промежутке производная отрицательна, на промежутке (0, 2) - положительна, на промежутке - положительна.
Значит, х = 0 - точка минимума функции, а х = 2 точкой экстремума не является. На первом из указанных выше промежутков функция убывает, на втором и третьем возрастает.

В точке минимума х = 0 имеем f(0) = -11 (подставили значение х = 0 в аналитическое задание функции), значит, = -11.

б) Чтобы построить график функции, нужно знать особо важные точки графика. К таковым относятся:
- найденная точка минимума (0; -11);

Стационарная точка х = 2; в этой точке

Точки пересечения с осями координат; в данном примере это уже найденная точка (0; -11) - точка пересечения графика с осью у. И еще: можно догадаться, что f(1)=0, значит, найдена точка пересечения графика с осью х - это точка (1; 0).

Итак, мы имеем точку минимума (0; -11), точку пересечения графика с осью х - точку (1; 0) и стационарную точку (2; 5). В этой точке касательная к графику функции горизонтальна, но это не точка экстремума, а точка перегиба.


График функции схематически изображен на рис. 139. Заметим, что есть еще одна точка пересечения графика с осью абсцисс, но найти ее нам не удалось.

Завершая этот пункт, заметим, что мы фактически выработали

Алгоритм иследования непрерывной функции " у = f(х)" на монотонность и экстремумы

1. Найти производную f"(х).
2. Найти стационарные и критические точки.
3. Отметить стационарные и критические точки на числовой прямой и определить знаки производной на получившихся промежутках.
4. Опираясь на теоремы из § 35, сделать выводы о монотонности функции и о ее точках экстремума.

Заметим, что если заданная функция имеет вид то полюсы функции, т.е. точки, в которых знаменатель q(х) обращается в нуль, тоже отмечают на числовой прямой, причем делают это до определения знаков производной. Но, разумеется, полюсы не могут быть точками экстремума.
Пример 6. Исследовать функцию на монотонность и экстремумы.
Решение. Заметим, что функция всюду непрерывна, кроме точки х = 0. Воспользуемся указанным выше алгоритмом.
1) Найдем производную заданной функции:


2) Производная обращается в нуль в точках х = 2 и х = -2 - это стационарные точки. Производная не существует в точке х = 0, но это не критическая точка, это точка разрыва функции (полюс).


3) Отметим точки -2, 0 и 2 на числовой прямой и расставим знаки производной на получившихся промежутках (рис. 140).

4) Делаем выводы: на луче(-°°, -2] функция убывает, на полуинтервале [-2, 0) функция возрастает, на полуинтервале (0, 2] функция убывает, на луче функция возрастает, на промежутке;

3) на промежутке [−4; 4];

4) на промежутке [−2; 1].

2.34. Издержки производства С (у. е.) зависят от объема выпускаемой продукции х (ед.): Найти наибольшие издержки производства, если х изменяется на промежутке . Найти значение х , при котором прибыль будет максимальной, если выручка от реализации единицы продукции равна 15 у. е.

2.35. Требуется выделить прямоугольную площадку земли в 512 м 2 , огородить ее и разделить забором на три равные части параллельно одной из сторон площадки. Каковы должны быть размеры площадки, чтобы на ограждение пошло наименьшее количество материала?

2.36. При заданном периметре прямоугольного окна найти такие его размеры, чтобы оно пропускало наибольшее количество света.

2.37. Найти максимум прибыли, если доход R и издержки C определяются формулами: где х − количество реализованного товара.

2.38. Зависимость объема выпуска продукции W от капитальных затрат К определяется функцией
Найти интервал изменения К , на котором увеличение капитальных затрат неэффективно.

2.39. Функция издержек имеет вид Доход от реализации единицы продукции равен 200. Найти оптимальное для производителя значение выпуска продукции.

2.40. Зависимость объема выпуска продукции (в денежных единицах) от капитальных затрат определяется функцией Найти интервал значений , на котором увеличение капитальных затрат неэффективно.

2.41. Считается, что увеличение реализации от затрат на рекламу (млн руб.) определяется соотношением Доход от реализации единицы продукции равен 20 тыс. руб. Найти уровень рекламных затрат, при котором фирма получит максимальную прибыль.

2.42. Доход от производства продукции с использованием единиц ресурса составляет величину Стоимость единицы ресурса – 10 ден. ед. Какое количество ресурса следует приобрести, чтобы прибыль была наибольшей?

2.43. Функция издержек имеет вид Доход от реализации единицы продукции равен 50. Найти максимальное значение прибыли, которое может получить производитель.

2.44. Зависимость дохода монополии от количества выпускаемой продукции определяется как Функция издержек на этом промежутке имеет вид Найти оптимальное для монополии значение выпуска продукции.

2.45. Цена на продукцию монополии-производителя устанавливается в соответствии с отношением, идентифицируемым как . При каком значении выпуска продукции доход от ее реализации будет наибольшим?

2.46. Функция издержек имеет следующий вид при при . В настоящий момент уровень выпуска продукции При каком условии на параметр p фирме выгодно уменьшить выпуск продукции, если доход от реализации единицы продукции равен 50?

В повседневной жизни часто приходится наблюдать множество процессов и явлений, при изучении которых нужно рассматривать самые разнообразные величины. Эти величины могут по-разному зависеть друг от друга. Закон, по которому одна величина зависит от другой, мы назвали функцией. Это одно из основных математических и общенаучных понятий, имеющее практическое применение во многих областях знаний и человеческой деятельности. Поэтому так важно уметь исследовать функции.

В данном видео уроке познакомимся с правилами исследования известных нам функций на монотонность.

Разглядывая графики, мы уже многое можем сказать об их функциях. Например, указать возрастает функция или убывает, как об этом говориться в видео уроке. Однако понятия возрастания и убывания функций в математике имеют свои точные определения, которые и приведены в предложенном нашему вниманию видеоматериале.

Так, чтобы судить о возрастании или убывании функции, зададим некоторый промежуток, на котором будем исследовать функцию. В видео уроке это промежуток Х. Выберем любые два числа, принадлежащие промежутку Х. Пусть это будут числа х 1 и х 2 . Эти два числа являются двумя значениями аргумента, которым соответствуют два значения какой-либо функции f(x 1) и f(x 2). Если получается, что при х 1 > х 2 выполняется неравенство f(x 1) > f(x 2), то наша функция возрастает на промежутке Х.

Другими словами, можно сказать, что функция f(x) называется возрастающей на данном числовом промежутке Х, если большему значению аргумента из этого промежутка соответствует большее значение функции.

Аналогично в видео уроке рассматривается понятие убывающей функции.

Далее в видеоматериале подробно проводится исследование линейной функции y = kx + m. Как известно, эта функция определена на всем множестве действительных чисел, то есть на всей числовой прямой. Даже если не проводить математических доказательств, а просто судить по графику этой функции, видно, что она ведет себя одинаково на всей области определения. Функция либо возрастает (график все время идет вверх), либо убывает (график все время идет вниз). В таких случаях можно не указывать промежуток, а просто сказать, что функция возрастающая или убывающая.

Возрастает или убывает функция y = kx + m, зависит от коэффициента k. Если коэффициент k положительный, то функция y = kx + m возрастает на всей области определения, то есть является возрастающей. Если коэффициент k отрицательный, то функция убывает. Доказательство возрастания или убывания функции y = kx + m основано на свойствах числовых неравенств и рассматривается в видео уроке.

Обычно, если функция только возрастает или только убывает на данном числовом промежутке, то ее называют монотонной на этом промежутке. Функция y = kx + m монотонна на всей своей области определения.

Следующая функция, которая рассматривается в видео уроке квадратичная y = kx 2 . Как и в первом случае, областью ее определения являются все действительные числа x. По графику мы видим, что функция ведет себя неодинаково. К тому же коэффициент k может быть, как положительным, так и отрицательным. Пусть коэффициент k больше нуля. Тогда если аргумент принадлежит промежутку (-∞; 0], то функция убывает. А вот на числовом промежутке (рис. 128).

3. Функция у

1. Рассмотрим функцию на промежутке (0, + 00).
Пусть х1 < х 2 . Так как х 1 и х 2 — положительные числа, то из х 1 < x 2 следует (см. пример 1 из § 33), т. е. f(x 1) > f(x 2).
Итак, из неравенства х 1 < х 2 следует, что f(x 1) > f(x 2). Это значит, что функция убывает на открытом луче (0, + 00) (рис. 129).


2. Рассмотрим функцию на промежутке (-оо, 0). Пусть х 1 < х 2 , х 1 и х 2 — отрицательные числа. Тогда - х 1 > - х 2 , причем обе части последнего неравен-
ства — положительные числа, а потому (мы снова воспользовались неравенством, доказанным в примере 1 из § 33). Далее имеем , откуда получаем .
Итак, из неравенства х 1 < х 2 следует, что f(x 1) >f(x 2) т.е. функция убывает на открытом луче (- 00 , 0)
Обычно термины «возрастающая функция», «убывающая функция» объединяют общим названием монотонная функция, а исследование функции на возрастание и убывание называют исследованием функции на монотонность.

Решение.

1) Построим график функции у = 2х 2 и возьмем ветвь этой параболы при х < 0 (рис. 130).

2) Построим график функции и выделим его часть на отрезке (рис. 131).


3) Построим гиперболу и выделим ее часть на открытом луче (4, + 00) (рис. 132).
4) Все три «кусочка» изобразим в одной системе координат — это и есть график функции у = f(x) (рис. 133).
Прочитаем график функции у = f(x).
1. Область определения функции — вся числовая прямая.

2. у = 0 при х = 0; у > 0 при х > 0.

3. Функция убывает на луче (-оо, 0], возрастает на отрезке , убывает на луче , выпукла вверх на отрезке , выпукла вниз на луче }