Болезни Военный билет Призыв

Использование резонанса в технике. Энергетика резонанса. Некоторые примеры проявления и применения резонанса в природе и технике. Нелинейные системы. Автоколебания

Под явлением резонанса стоит понимать мгновенный рост величины амплитуды колебаний объекта под воздействием внешнего источника энергии периодического характера воздействия с аналогичным значением частоты.

В статье мы рассмотрим природу возникновения резонанса на примере механического (математического) маятника, электрического колебательного контура и ядерного магнитного резонатора. Для того, чтобы проще представить физические процессы, статья сопровождается многочисленными вставками в виде практических примеров. Цель статьи - объяснить на примитивном уровне явление резонанса в разных областях его возникновения без математических формул.

Самая простая модель, которая может наглядно показать колебания, это простейший маятник, а точнее математический маятник. Колебания разделяют на свободные и вынужденные. Первоначально воздействующая энергия на маятник обеспечивает в теле свободные колебания без присутствия внешнего источника переменной энергии воздействия. Данная энергия может быть как кинетической, так и потенциальной.

Здесь не имеет значение насколько сильно или нет качается сам маятник, - время, потраченное на прохождения его пути в прямом и обратном направлении, сохраняется неизменным. Во избежание недоразумений с затуханием колебаний вследствие трения о воздух стоит выделить, что для свободных колебаний должны соблюдаться условия возврата маятника в точку равновесия и отсутствия трения.

А вот частота в свою очередь напрямую зависит от величины длины нити маятника. Чем короче нить, тем выше частота и наоборот.

Возникающая естественная частота тела под воздействием первоначально приложенной силы называется резонансной частотой.

Все тела, которым свойственны колебания, совершают их с заданной частотой. Для поддержания в теле незатухающих колебаний необходимо обеспечить постоянную периодическую энергетическую «подпитку». Это достигается воздействием в одновременный такт колебаний тела постоянной силы с определенным периодом. Таким образом возникающие колебания в теле под действием периодической силы снаружи называют вынужденными.

В какой-то момент внешних воздействий возникает резкий скачок амплитуды. Такой эффект возникает если периоды внутренних колебаний тела совпадают с периодами внешней силы и называется резонансом. Для возникновения резонанса достаточно совсем небольших величин внешних источников воздействия, но с обязательным условием повторения в такт. Естественно, при фактических расчетах в земных условиях не стоит забывать о действии сил трения и сопротивления воздуха на поверхность тело.

Простые примеры резонанса из жизни

Начнем с примера возникновения резонанса с которым сталкивался каждый из нас - это обычные качели на детской площадке.

Резонанс качелей

В ситуации с детскими качелями в момент приложения рукой силы при прохождения одной из двух симметричных высших точек возникает скачек амплитуды с соответствующим ростом энергии колебания. В быту явление резонанса могли наблюдать в ванной комнате любители вокала.

Звуковой акустический резонанс при пении в ванной

Каждый из поющих в ванной комнате из кафеля наверняка замечал как изменяется звук. Звуковые волны отражаясь о кафель в замкнутом пространстве ванной становятся громче и продолжительнее. Но этому воздействию подвержены не все ноты песни вокалиста, а лишь те, которые резонируют в один такт со звуковой резонансной частотой воздуха.

Для каждого из вышеперечисленного случая возникновения резонанса существует внешняя возбуждающая энергия: в случае с качелями элементарный толчок рукой, совпадающий с фазой колебания качели, и в случае с акустическим эффектом в ванной - голос человека, отдельные частоты которого совпадали с определенными частотами воздуха.

Звуковой резонанс бокала - опыт в домашних условиях

Данный опыт можно провести в домашних условиях. Для него необходим хрустальный бокал и закрытое помещение без посторонних шумов для чуткого восприятия аккустического эффекта. Смоченный водой палец передвигаем по краю бокала с «рваными» периодическими ускорениями. В процессе подобных движений вы можете наблюдать возникновение звенящего звука. Данный эффект возникает вследствие передачи энергии движения, частота колебание которой совпадает с собственными частотой колебания бокала.

Разрушение мостов вследствие резонанса - случай с Такомским мостом

Все служившие в армии помнят, как при прохождении строем по мосту от командира звучала команда: «Отставить в ногу!». Почему же нельзя было проходить строем по мосту «в ногу»? Оказывается, при прохождении строем по мосту с одновременным поднятием выпрямленной ноги до уровня колена военнослужащие опускают плоскость подошвы в один такт с усилием, которое сопровождается характерным шлепком.

Шаг военнослужащих сливается в один единый такт, создавая скачкообразную внешнюю прикладываемую энергию для моста с определенной величиной колебаний. В случае если собственная частота колебаний моста совпадет с колебанием шага солдат «в ногу» - произойдет резонанс, энергия которого может привести к разрушительным воздействиям конструкции моста.

Хотя случаи полного разрушения моста и не зафиксированы при прохождении солдат «в ногу», но известнее случай разрушения Такомского моста через пролив Такома-Нэрроуз в штате Вашингтон США в 1940 году.

Одна из причин вероятных причин разрушения - механический резонанс, который возник вследствие совпадения частоты ветрового потока с внутренней собственной частотой моста.

Резонанс тока в электрических цепях

Если в механике явление резонанса можно объяснить сравнительно просто, то в электричестве все на пальцах не объяснить. Для понимания необходимы элементарные знания физики электричества. Резонанс, создаваемый в электрической цепи, может возникать при условии наличия колебательного контура. Какие элементы необходимы для создания колебательного контура в электрической сети? Прежде всего цепь должна быть подключена к источнику электрической энергии.

В электросети простейший колебательный контур состоит из конденсатора и катушки индуктивности.

Конденсатор, состоящий внутри из двух металлических пластин разделенных диэлектрическими изоляторами, способен хранить электрическую энергию. Аналогичным свойством обладает и катушка индуктивности, выполненная в виде спиралеобразных витков проводника электричества.

Взаимное соединение конденсатора и катушки индуктивности в электрической сети, образующей колебательный контур , может быть как параллельным так и последовательным. В следующем видеопособии для демонстрации резонанса приводят пример последовательного способа включения.

Колебания электрического тока внутри контура возникает под действием электроэнергии. Однако, не все поступающие сигналы, а точнее его частоты, служат источником возникновения резонанса, а лишь только те, частота которых совпадает с резонансной частотой контура. Остальные, не участвующие в процессе, подавляются в общем потоке сигнала. Регулировать резонансную частоту возможно при помощи изменения значений емкости конденсатора и индуктивности катушки.

Возвращаясь к физике резонанса в механических колебаниях, он особенно выражен при минимальных значениях сил трения. Показатель трения сопоставляется в электрической цепи сопротивлению, увеличение которого ведет к нагреву проводника встледствие превращения электрической энергии во втрутреннюю энергию проводника. Поэтому, как и в случае с механикой, в колебательном электрическом контуре резонанс четко выражен при низком активном сопротивлении.

Пример электрического резонанса в процессе настройки ТВ и радиоприемников

В отличие от резонанса в механике, который может негативно влиять на материалы конструкций вплоть до разрушения, в электрических целях его вовсю используют в полезном функциональном назначении. Один из примеров применения - настройка ТВ и радиопрограмм в приемниках.

Радиоволны соответствующей частоты достигают приемных антенн и вызывают небольшие электрические колебания. Далее сигнал, включающий весь пул транслируемых передач, поступает в усилитель. Настроенный на определенную частоту в соответствии со значением регулируемой емкости конденсатора, колебательный контур принимает только тот сигнал, частота которого совпадает с его собственной.

В радиоприемнике установлен колебательный контур. Для настройки на станцию вращают рукоятку конденсатора переменной емкости, меняя положение его пластин и соответственно меняя резонансную частоту контура.

Вспомните аналоговый радиоприемник «Океан» времен СССР, ручка настройки каналов в котором есть ни что иное как регулятор изменения емкости конденсатора, положение которого меняет резонансную частоту контура.

Ядерный магнитный резонанс

Отдельные виды атомов содержат ядра, которые можно сравнить с миниатюрными магнитами. Под влиянием мощного внешнего магнитного поля ядра атомов меняют свою ориентацию в соответствии со взаимным расположением своего собственного магнитного поля по отношению к внешнему. Внешний сильный электромагнитный импульс поглощается атомом вследствие чего происходит его переориентация. Как только источник импульса прекращает свое действие ядра возвращаются на свои исходные позиции.

Ядра в зависимости от принадлежности к тому или иному атому способны принимать энергию в определенном диапазоне частот. Смена позиции ядра происходит в один такт с внешним колебаниям электромагнитного поля, что и служит причиной возникновения так называемого ядерного магнитного резонанса (сокращенно ЯМР). В научном мире этот вид резонанса используется в целях изучения атомных связей в рамках сложных молекул. Используемый в медицине метод отображения магнитного резонанса (ОМР) позволяет выводить результаты сканирования внутренних человеческих органов на дисплей для постановки диагноза и назначения лечения.

Магнитное поле ОМР сканера, формируемое при помощи катушек индуктивности, создает излучение высокой частоты под воздействием которого водорода изменяют свою ориентацию при условии совпадении своих собственных частот с внешним. В результате полученных данных с датчиков формируется графическая картинка на мониторе.

Если сравнивать метод ЯМР и ОМР относительно излучения, то сканирование с помощью ядерного магнитного резонатора менее вредно, чем ОМР. Также при исследовании мягких тканей технология ЯМР показала большую эффективность в отражении детализации исследуемого участка ткани.

Что такое спектрография

Взаимная связь между атомами в молекуле не строго жесткая, при изменении которой молекула переходит в состояние колебания. Частота колебаний взаимных связей атомов меняет соответственно резонансную частоту молекул. С помощью излучения электромагнитных волн в ИК спектре можно вызвать вышеуказанные колебания атомных связей. Данный метод под названием инфракрасная спектрография используется в научных лабораториях для изучения состава исследуемого материала.

Явления резонанса связаны с периодическим колебательным движением электронов в контуре и состоят в том, что электроны в данном колебательном контуре легче всего «раскачиваются» с какой-то определенной частотой, которую мы называем резонансной. С периодическим колебательным движением мы встречаемся повсеместно. Колебания маятника, дрожание струны, движение качелей - все это примеры колебательного движения.

Для примера рассмотрим колебательную систему, изображенную на рисунке 1. Эта система, как мы увидим дальше, имеет много общего с электрическим колебательным контуром. Состоит она из пружины и массивного шара, закрепленного на стержне.

Рисунок 1. Механическая модель колебательного контура. Масса-индуктивность, гибкость-емкость, трение-сопротивление.

Если мы оттянем шар в низ от положения равновесия, то он под действием пружины немедленно устремится обратно; однако приобретя некоторую скорость шар не остановится в точке равновесия, а по инерции проскочит дальше, чем вызовет новую деформацию (сжатие) пружины. Затем этот процесс повторится в обратном направлении и т. д. Шар будет колебаться в ту и другую сторону до тех пор, пока не израсходуется на трение весь запас энергии, сообщенной пружине при отклонении шара.

Нетрудно заметить, что при колебаниях шара энергия, сообщенная системе, все время переходит из энергии деформации (сжатия и растяжения) пружины в энергию движения шара и обратно. В механике первый вид энергии называется потенциальной энергией, а второй вид - кинетической.

В то время, когда шар находится в одном из крайних положений, он на мгновение останавливается. В этот момент энергия его движения равна нулю. Зато пружина в этот момент очень сильно деформирована: или сжата или растянута; в ней, следовательно, заключено наибольшее количество энергии. В тот же момент, когда шар с наибольшей скоростью проходит через положение равновесия, он обладает наибольшей энергией, но зато энергия пружины в этот момент равна нулю, так как она не сжата и не растянута.

Отклоняя шар на различные расстояния и наблюдая каждый раз за частотой последующих свободных колебаний системы, мы заметим, что частота колебаний системы остается все время одной и той же. Иными словами, она не зависит от величины начального отклонения. Эту частоту мы будем называть собственной частотой колебаний системы.

Если бы мы имели в своем распоряжении не одну такую систему, а несколько, то мы могли бы убедиться в том, что собственная частота свободных колебаний системы уменьшается с увеличением массы шара и увеличивается с увеличением упругости, т. е. с уменьшением гибкости пружины. Эта зависимость может быть обнаружена и на более простом примере с колеблющимися струнами различной толщины и различной степени натяжения.

Если мы пожелаем раскачать шар с наименьшей затратой усилий, то мы, безусловно, постараемся, во-первых, установить строгую периодичность наших толчков, т. е. постараемся, чтобы толчки следовали друг за другом через определенное время, а во-вторых, постараемся, чтобы промежуток времени между толчками равнялся периоду собственных колебаний системы (Рисунок 2).

Рисунок 2. Механическая модель колебательного контура с незатухающими колебаниями. Частота вынужденной силы равна собсвенной частоте системы (резонанс).

Для того чтобы раскачать колебательную систему с наименьшей затратой усилий, нужно частоту вынуждающей силы сделать равной собственной частоте колебания системы. Это правило очень хорошо известно всем нам еще с детского возраста, когда мы его применяли, раскачиваясь на качелях.

Рисунок 3. Явление резонанса на примере качелей.

Итак, когда частота вынуждающей силы совпадает с собственной частотой колебаний системы, амплитуда колебаний становится наибольшей.

Таким образом, необходимо сказать, что совпадение частоты вынуждающей силы с собственной частотой колебаний системы и является резонансом .

За примерами резонанса ходить далеко не нужно. Оконное стекло, дрожащее с определенной частотой каждый раз, когда мимо проезжает трамвай или грузовая машина; дрожание струны музыкального инструмента после того, как мы прикоснулись к соседней струне, настроенной в унисон с первой, и т. п. - все это явления резонанса.

Зарядим конденсатор некоторым количеством электричества (рис.4, а) и замкнем его после этого на катушку индуктивности (рис.4, б). Конденсатор начнет немедленно разряжаться. Через катушку индуктивности потечет разрядный ток, а появление тока в катушке приведет к возникновению магнитного поля вокруг нее. При этом в катушке возникнет ЭДС самоиндукции, которая будет задерживать разряд конденсатора. Когда конденсатор разрядится, то ток в катушке не прекратится, так как он будет теперь поддерживаться ЭДС самоиндукции за счет энергии, запасенной в магнитном поле катушки во время разряда конденсатора. Этот продолжающийся ток перезарядит конденсатор в обратном направлении, т. е. та пластина, которая была прежде положительной, станет отрицательной, и наоборот (рис.4, в).

Рисунок 4. Вверху - электрические, внизу - механические.

После этого конденсатор снова начнет разряжаться, снова перезарядится (рис.4, г, д) и т. д. Колебания тока в контуре будут продолжаться до тех пор, пока вся электрическая энергия, сообщенная контуру при заряде конденсатора, не превратится в тепловую энергию. Это произойдет тем скорее, чем больше активное сопротивление контура.

Итак, разряд конденсатора через катушку индуктивности является колебательным процессом. Во время этого процесса конденсатор несколько раз заряжается и разряжается, энергия поочередно переходит из электрического поля конденсатора в магнитное поле катушки и обратно.

Рисунок 5. Колебания в колебательном контуре.

Колебания тока, имеющие место при этом разряде, носят затухающий характер (рис.6).

Рисунок 6. Затухающие колебания в контуре.

Частота колебаний при выбранных величинах емкости и индуктивности является величиной вполне определенной и называется собственной частотой контура. Собственная частота контура будет тем больше, чем меньше величины емкости и индуктивности контура.

Если в колебательный контур ввести источник переменного тока, частота которого совпадает с собственной частотой контура, то колебания в контуре достигнут наибольшей величины, т. е. будет иметь место явление резонанса.

Между электрическими и механическими колебаниями может быть проведена далеко идущая параллель.

В табл. 1 слева даны электрические величины и явления, а справа аналогичные им величины и явления из области механики применительно к нашей механической модели колебательного контура.

Аналогия электрических и механических величин
Электрические величины Механические величины
Индуктивность колебательного контура Масса шара;
Емкость колебательного контура Гибкость пружин
Активное сопротивление контура Механическое трение
Пластины конденсатора Пружины
Заряд конденсатора Деформация (сжатие и растяжение) пружин
Положительный заряд пластин Сжатие пружины
Отрицательный заряд пластины Растяжение пружины
Сила тока Скорость движения шара
Направление тока Направление движения шара
Электродвижущая сила самоиндукции Сила инерции шара
Амплитуда (наибольшее мгновенное значение тока) Амплитуда (наибольшее отклонение шара от положения равновесия)
Частота (число циклов в секунду) Частота (число колебаний в се¬кунду)
Резонанс (совпадение частоты внешней ЭДС с собственной частотой конура) Резонанс (совпадение частоты толчков вынуждающей силы с собственной частотой колебаний шара)

Различные моменты электрического колебания и соответствующие им моменты колебания нашей механической модели колебательного контура изображены на рис.4.

Отличительной особенностью вынужденных колебаний является зависимость их амплитуды А от частоты ν изменения внешней силы. Для изучения этой зависимости можно воспользоваться уже знакомой нам установкой, изображенной на рисунке 36. Если вращать ручку кривошипа очень медленно, то груз вместе с пружиной будет перемещаться вверх и вниз так же, как и точка подвеса О. Амплитуда вынужденных колебаний при этом будет невелика. При более быстром вращении груз начнет колебаться сильнее, и при частоте вращения, равной собственной частоте пружинного маятника (ν= ν соб), амплитуда его колебаний достигнет максимума. При дальнейшем увеличении частоты вращения ручки амплитуда вынужденных колебаний груза опять станет меньше. А очень быстрое вращение ручки оставит груз почти неподвижным: из-за своей инертности пружинный маятник, не успевая следовать изменениям внешней силы, будет просто «дрожать на месте».

Резкое возрастание амплитуды вынужденных колебаний при ν = ν coб называется резонансом .

График зависимости амплитуды вынужденных колебаний от частоты изменения внешней силы изображен на рисунке 38. Этот график называют резонансной кривой . Максимум этой кривой приходится на частоту ν, равную собственной частоте колебаний ν соб.

Явление резонанса можно продемонстрировать и с нитяными маятниками. Подвесим на рейке массивный шар 1 и несколько легких маятников, имеющих нити разной длины (рис. 39). Каждый из этих маятников имеет свою собственную частоту колебаний, которую можно определить, зная длину нити и ускорение свободного падения.

Теперь, не трогая легких маятников, выведем шар 1 из положения равновесия и отпустим. Качания массивного шара вызовут периодические изгибания рейки, вследствие которых на каждый из легких маятников начнет действовать периодически изменяющаяся сила упругости. Частота ее изменений будет равна частоте колебаний шара. Под действием этой силы маятники начнут совершать вынужденные колебания. При этом мы увидим, что маятники 2 и 3 останутся почти неподвижными. Маятники 4 и 5 будут колебаться с немного большей амплитудой. А у маятника 6, имеющего такую же длину нити и, следовательно, собственную частоту колебаний, как у шара 1, амплитуда окажется максимальной. Это и есть резонанс.


Резонанс можно наблюдать и с помощью установки, изображенной на рисунке 40. Основание маятника метронома 1 соединяют нитью 3 с нитью маятника 2. Маятник в этом опыте качается с наибольшей амплитудой тогда, когда частота колебаний метронома («дергающего» за нить маятника) совпадает с частотой свободных колебаний этого маятника.

Резонанс возникает из-за того, что внешняя сила, действуя в такт со свободными колебаниями тела, все время совершает положительную работу. За счет этой работы энергия колеблющегося тела увеличивается и амплитуда колебаний возрастает.

Явление резонанса может играть как полезную, так и вредную роль.

Известно, например, что тяжелый язык большого колокола может раскачать даже ребенок, но лишь тогда, когда будет действовать на веревку в такт со свободными колебаниями языка.

На применении резонанса основано действие язычкового частотомера . Этот прибор представляет собой набор укрепленных на общем основании упругих пластин различной длины. Собственная частота каждой пластины известна. При контакте частотомера с колебательной системой, частоту которой нужно определить, с наибольшей амплитудой начинает колебаться та пластина, частота которой совпадает с измеряемой частотой. Заметив, какая пластина вошла в резонанс, мы определим частоту колебаний системы.

С резонансом можно встретиться и тогда, когда это совершенно нежелательно. Так, например, в 1750 г. близ города Анжера во Франции через цепной мост длиной 102 м шел в ногу отряд солдат. Частота их шагов совпала с частотой свободных колебаний моста. Из-за этого размахи колебаний моста резко увеличились (наступил резонанс), и цепи оборвались. Мост обрушился в реку.

В 1830 г. по той же причине обрушился подвесной мост около Манчестера в Англии, когда по нему маршировал военный отряд.

В 1906 г. из-за резонанса разрушился и так называемый Египетский мост в Петербурге, по которому проходил кавалерийский эскадрон.

Теперь для предотвращения подобных случаев войсковым частям при переходе через мост приказывают «сбить ногу» и идти не строевым, а вольным шагом.

Если же через мост переезжает поезд, то, чтобы избежать резонанса, он проходит его либо на медленном ходу, либо, наоборот, на максимальной скорости (чтобы частота ударов колес о стыки рельсов не оказалась равной собственной частоте моста).

Собственной частотой обладает и сам вагон (колеблющийся на своих рессорах). Когда частота ударов его колес на стыках рельсов оказывается ей равной, вагон начинает сильно раскачиваться.

С резонансом можно встретиться не только на суше, но и в море и даже в воздухе. Так, например, при некоторых частотах вращения гребного вала в резонанс входили целые корабли. А на заре развития авиации некоторые авиационные двигатели вызывали столь сильные резонансные колебания частей самолета, что он разваливался в воздухе.

1. Что такое резонанс? При каком условии он возникает? 2. Опишите опыты, в которых можно наблюдать явление резонанса. 3. Какую роль - полезную или вредную - играет резонанс в жизни людей? Приведите примеры.

МБОУ Локотская средняя общеобразовательная школа №1 им. П.А.Маркова

Тема исследовательской работы:

« Резонанс в природе и технике»

Выполнил :

ученик 10 класса

Костюков Сергей

Научный руководитель:

учитель физики

Головнёва Ирина

Александровна

«Старт в науку»

Локоть 2013

    Что такое резонанс?

    Вред и польза резонанса.

    Примеры резонанса.

    История открытия.

    Электрический резонанс.

    Применение электрического резонанса.

    Резонанс в механике, электротехнике, СВЧ,

акустике, оптике и астрофизике.

Целью проекта является изучение явления резонанса.

Актуальность проекта.

Явление резонанса имеет большое значение почти для всех прикладных отраслей электротехники и очень активно используют в радиотехнике, в прикладной акустике, в электротехнике, электронике и других отраслях.

Для достижения цели были поставлены следующие задачи:

Проанализировать специальную литературу по данной теме.

Изучить историю возникновения резонанса.

Раскрыть сущность явления резонанса.

Показать использование явления резонанса в различных отраслях техники.

Теоретическая часть.

Резонанс - явление резкого возрастания амплитуды вынужденных колебаний, которое наступает при приближении частоты внешнего воздействия к некоторым значениям (резонансным частотам),

определяемым свойствами системы.

Увеличение амплитуды - это лишь следствие резонанса, а причина - совпадение внешней (возбуждающей) частоты с внутренней (собственной) частотой колебательной системы.

При помощи явления резонанса можно выделить и усилить даже весьма слабые периодические колебания.

Резонанс явление, заключающееся в том, что при некоторой частоте вынуждающей силы колебательная система оказывается особенно отзывчивой на действие этой силы. Степень отзывчивости в теории колебаний описывается величиной, называемой добротность.

Использование:

Растворение порошкового молока в воде.

Резонаторы в музыкальных инструментах.

Магнитно-резонансное обследование организма.

Раскачивание качелей.

Раскачивание языка колокола.

Резонансные замки и ключи.

Вред:

Разрушение сооружений.

Обрыв проводов.

Расплескивание воды из ведра.

Раскачивание вагона на стыках рельсов.

Вибрации в трубопроводах.

Раскачивание груза на подъёмном кране.

Разрушение моста в результате того, что по нему шли маршевым шагом.

Резонанс моста под действием периодических толчков при прохождении поезда по стыкам рельсов.

Некоторые возникшие в последнее время обстоятельства позволили воспринимать горные удары как лабораторную модель природных землетрясений. То есть предположить, что и природные землетрясения имеют резонансное происхождение.

Известны случаи, когда целые корабли входили в резонанс при определённых числах оборотов гребного вала.

Явление резонанса впервые было описано Галилео Галилеем в 1602 г в работах, посвященных исследованию маятников и музыкальных струн.

Применение явления электрического резонанса в технике.

Если частота ω внешней силы приближается к собственной частоте ω0, возникает резкое возрастание амплитуды вынужденных колебаний. Это явление называется резонансом. Зависимость амплитуды xm вынужденных колебаний от частоты ω вынуждающей силы называется резонансной характеристикой или резонансной кривой (рис 2).

При резонансе амплитуда xm колебания груза может во много раз превосходить амплитуду ym колебаний свободного (левого) конца пружины, вызванного внешним воздействием. В отсутствие трения амплитуда вынужденных колебаний при резонансе должна неограниченно возрастать. В реальных условиях амплитуда установившихся вынужденных колебаний определяется условием: работа внешней силы в течение периода колебаний должна равняться потерям механической энергии за то же время из-за трения. Чем меньше трение (т. е. чем выше добротность Q колебательной системы), тем больше амплитуда вынужденных колебаний при резонансе.

У колебательных систем с не очень высокой добротностью (

Явление резонанса может явиться причиной разрушения мостов, зданий и других сооружений, если собственные частоты их колебаний совпадут с частотой периодически действующей силы, возникшей, например, из-за вращения несбалансированного мотора.

Рисунок 2.

Резонансные кривые при различных уровнях затухания: 1 – колебательная система без трения; при резонансе амплитуда xm вынужденных колебаний неограниченно возрастает; 2, 3, 4 – реальные резонансные кривые для колебательных систем с различной добротностью: Q2 Q3 Q4. На низких частотах (ω ω0) xm → 0.

Электрический резонанс.

Явление возрастания амплитуды колебаний тока при совпадении частоты внешнего источника с собственной частотой электрической цепи называется электрическим резонансом.

Явление электрического резонанса играет полезную роль при настройке радиоприемника на нужную радиостанцию, изменяя величины индуктивности и ёмкости, можно добиться того, что собственная частота колебательного контура совпадёт с частотой электромагнитных волн, излучаемых какой-либо радиостанцией. В результате этого в контуре возникнут резонансные малы. Это приводит к настройке радиоприёмника на нужную станцию.

Еще одной из особенностей электрического резонанса является возможность использование его в двигателях с активными постоянными магнитами. Поскольку управляющий электромагнит периодически меняет полярность, т.е. питается переменным током, электромагниты можно включить в состав колебательного контура с емкостью.

Соединение электромагнитов может быть последовательное, параллельное или комбинированное, а емкость подбирается по резонансу на рабочей частоте двигателя, при этом среднее значение тока через электромагниты будет большим, а внешняя подпитка по току будет компенсировать в основном активные потери. По всей видимости, данный режим работы будет наиболее привлекательным с точки зрения экономичности, а двигатель в этом случае будет называться магнитно- резонансный шаговый.

Механика.

Наиболее известная большинству людей механическая резонансная система - это обычные качели. Если вы будете подталкивать качели в соответствии с их резонансной частотой, размах движения будет увеличиваться, в противном случае движения будут затухать.

Резонансные явления могут вызвать необратимые разрушения в различных механических системах. В основе работы механических резонаторов лежит преобразование потенциальной энергии в кинетическую.

Струна.

Струны таких инструментов, как лютня, гитара, скрипка или пианино, имеют основную резонансную частоту, напрямую зависящую от длины, массы и силы натяжения струны. Увеличение натяжения струны и уменьшение её массы (толщины) и длины увеличивает её резонансную частоту. Однако частоты, не гармонические колебания, которые и воспринимаются как музыкальные ноты.

Электроника.

В электронных устройствах резонанс возникает на определённой частоте, когда индуктивная и ёмкостная составляющие реакции системы уравновешены, что позволяет энергии циркулировать между магнитным полем индуктивного элемента и электрическим полем конденсатора.

Механизм резонанса заключается в том, что магнитное поле индуктивности генерирует электрический ток, заряжающий конденсатор, а разрядка конденсатора создаёт магнитное поле в

повторяется многократно, по аналогии с механическим маятником.

В СВЧ электронике широко используются объёмные резонаторы, чаще всего цилиндрической или тороидальной геометрии с размерами порядка длины волны, в которых возможны добротные колебания электромагнитного поля на отдельных частотах, определяемых граничными условиями.

Оптика.

В оптическом диапазоне самым распространенным типом резонатора является резонатор Фабри- Перо, образованный

парой зеркал, между которыми в резонансе устанавливается стоячая волна. Виды оптических резонаторов типа Фабри - Перо:

1. Плоско - параллельный;

2. Концентрический (сферический);

3. Полусферический;

4. Конфокальный;

5. Выпукло-вогнутый.

Акустика.

Резонансные явления можно наблюдать на механических колебаниях любой частоты, в частности и на звуковых колебаниях. Пример звукового или акустического резонанса мы имеем в следующем опыте.

Поставим рядом два одинаковых камертона, обратив отверстия ящиков, на которых они укреплены, друг к другу (рис. 40). Ящики нужны потому, что они усиливают звук камертонов. Это происходит вследствие резонанса между камертоном и столбом воздуха, заключенного в ящике; поэтому ящики называются резонаторами или резонансными ящиками. Подробнее мы объясним действие этих ящиков ниже, при изучении распространения звуковых волн в воздухе. В опыте, который мы сейчас разберем, роль ящиков чисто вспомогательная.

Рис. 40. Резонанс камертонов

Ударим один из камертонов и затем приглушим его пальцами. Мы услышим, как звучит второй камертон.

Возьмем два разных камертона, т. е. с различной высотой тона, и повторим опыт. Теперь каждый из камертонов уже не будет откликаться на звук другого камертона.

Нетрудно объяснить этот результат. Колебания одного камертона (1) действуют через воздух с некоторой силой на второй камертон (2), заставляя его совершать вынужденные колебания. Так как камертон 1 совершает гармоническое колебание, то сила, действующая на камертон 2, будет меняться по закону гармонического колебания с частотой камертона 1. Если частота силы та же, что и собственная частота камертона 2, то имеет место резонанс - камертон 2 сильно раскачивается. Если же частота силы иная, то вынужденные колебания камертона 2 будут настолько слабыми, что мы их не услышим.

Так как камертоны обладают очень небольшим затуханием, то резонанс у них острый (§ 14). Поэтому уже небольшая разность между частотами камертонов приводит к тому, что один перестает откликаться на колебания другого. Достаточно, например, приклеить к ножкам одного из двух одинаковых камертонов кусочки пластилина или воска, и камертоны уже будут расстроены, резонанса не будет.

Мы видим, что все явления при вынужденных колебаниях происходят у камертонов так же, как и в опытах с вынужденными колебаниями груза на пружине (§ 12).

Если звук представляет собой ноту (периодическое колебание), но не является тоном (гармоническим колебанием), то это означает, как мы знаем, что он состоит из суммы тонов: наиболее низкого (основного) и обертонов. На такой звук камертон должен резонировать всякий раз, когда частота камертона совпадает с частотой какой-либо из гармоник звука. Опыт можно произвести с упрощенной сиреной и камертоном, поставив отверстие резонатора камертона против прерывистой воздушной струи. Если частота камертона равна , то, как легко убедиться, он будет откликаться па звук сирены не только при 300 прерываниях в секунду (резонанс на основной тон сирены), но и при 150 прерываниях - резонанс на первый обертон сирены, и при 100 прерываниях - резонанс па второй обертон, и т. д.

Нетрудно воспроизвести со звуковыми колебаниями опыт, аналогичный опыту с набором маятников (§ 16). Для этого нужно только иметь набор звуковых резонаторов - камертонов, струн, органных труб. Очевидно, струны рояля или пианино образуют как раз такой и притом очень обширный набор колебательных систем с разными собственными частотами. Если, открыв рояль и нажав педаль, громко пропеть над струнами какую-нибудь ноту, то мы услышим, как инструмент откликается звуком той же высоты и сходного тембра. И здесь наш голос создает через воздух периодическую силу, действующую на все струны. Однако откликаются только те из них, которые находятся в резонансе с гармоническими колебаниями - основным и обертонами, входящими в состав спетой нами ноты.

Таким образом, и опыты с акустическим резонансом могут служить прекрасными иллюстрациями справедливости теоремы Фурье.

Резонанс - один из важнейших физических процессов, используемых при проектировании звуковых устройств, большинство из которых содержат резонаторы, например, струны и корпус скрипки, трубка у флейты, корпус у барабанов.

Инфразвук высокой интенсивности, влекущий за собой резонанс, из-за совпадения частот колебаний внутренних органов и инфразвука, приводит к нарушению работы практически всех внутренних органов, возможен смертельный исход из-за остановки сердца, или разрыва кровеносных сосудов. Следует принимать особые меры защиты против появления звуковых колебаний со следующими частотами, потому что совпадение частот приводит к возникновению резонанса:

Собственные (резонансные) частоты некоторых частей тела человека

20-30 Гц
резонанс головы
40-100 Гц
резонанс глаз
0.5-13 Гц
резонанс вестибулярного аппарата
4-6 Гц
резонанс сердца
2-3 Гц
резонанс желудка
2-4 Гц
резонанс кишечника
6-8 Гц
резонанс почек
2-5 Гц
резонанс рук
5-7 Гц
вызывает чувство страха и паники

Астрофизика.

Орбитальный резонанс в небесной механике - это ситуация, при которой два (или более) небесных тела имеют периоды обращения, которые относятся как небольшие натуральные числа. В результате эти небесные тела оказывают регулярное гравитационное

влияние друг на друга, которое может стабилизировать их орбиты.

Общественный резонанс.

Общественный резонанс - это реакция множества людей (возмущение, волнение, отклики и т.д.) на определенные действия (информация, поведение, высказывание и т.п.) кого-либо или чего-либо. Общественный резонанс может быть вызван искусственно путем привлечения средствами массовой информации общественного внимания к тому или иному социальному или политическому событию.

Кроме того, общественный резонанс используется теми или иными группами для давления на судебные органы, исполнительную и законодательную власть, правительство, общественные организации и политические партии.

Вывод.

В результате создания проекта я провел большую исследовательскую работу, направленнуюна изучение явления резонанса: работа с научной литературой,просмотр видео, опрос учащихся10 класса.В ходе работы выяснил, что явление резонанса является очень важным физическим явлением для человека и используется во многих отраслях науки и техники. Но наряду с пользой резонанс может причинять и вред.

Проект можно использовать в качестве дополнительного материала при изучении темы « Резонанс» в 9 и 11 классах.

Список использованной литературы:

    ru.wikipedia.org

  1. mirslovarei.com - что такое общественный резонанс (материал из Политического словаря)

4. М. Прикладные методы в теории колебаний. - М.: Наука, 1988.

5. Универсальный справочник, С.Ю. Курганов, Н.А. Гырдымова – М.:Эксмо, 2011.

Резонанс. Его применение

Резонансом в электрическом колебательном контуре называется явление резкого возрастания амплитуды вынужденных колебаний силы тока при совпадении частоты внешнего переменного напряжения с собственной частотой колебательного контура.

Использование Резонанса в медицине

Магнитно-резонансная томография, или ее сокращенное название МРТ, считается одним из самых надежных методов лучевой диагностики. Очевидным плюсом использования такого способа проверить состояние организма является то, что оно не является ионизирующим излучением и дает довольно точные результаты при исследовании мышечной и суставной системы организма, помогает с высокой вероятностью диагностировать различные заболевания позвоночника и центральной нервной системы.

Сам процесс обследования довольно прост и абсолютно безболезненный - все, что вы услышите, лишь сильный шум, но от него хорошо защищают наушники, которые выдаст вам перед процедурой врач. Возможны только два вида неудобств, которых не получится избежать. В первую очередь это касается тех людей, которые боятся замкнутых пространств - диагностируемый пациент ложится на горизонтальную лежанку и автоматические реле передвигают его внутрь узкой трубы с сильным магнитным полем, где он находится примерно в течение 20 минут. Во время диагностики не следует шевелиться, чтобы результаты получились как можно точнее. Второе неудобство, которое вызывает резонансная томография при исследовании малого таза, это необходимость наполненности мочевого пузыря.

Если ваши близкие желают присутствовать при диагностировании, они обязаны подписать информационный документ, согласно которому они ознакомлены с правилами поведения в диагностическом кабинете и не имеют никаких противопоказаний для нахождения рядом с сильным магнитным полем. Одной из причин невозможности нахождения в помещении управления МРТ является наличие в организме посторонних металлических компонентов.

Использование резонанса в радиосвязи

Явление электрического резонанса широко используется при осуществлении радиосвязи. Радиоволны от различных передающих станций возбуждают в антенне радиоприемника переменные токи различных частот, так как каждая передающая радиостанция работает на своей частоте. С антенной индуктивно связан колебательный контур (рис. 4.20). Вследствие электромагнитной индукции в контурной катушке возникают переменные ЭДС соответствующих частот и вынужденные колебания силы тока тех же частот. Но только при резонансе колебания силы тока в контуре и напряжения в нем будут значительными, т. е. из колебаний различных частот, возбуждаемых в антенне, контур выделяет только те, частота которых равна его собственной частоте. Настройка контура на нужную частоту обычно осуществляется путем изменения емкости конденсатора. В этом обычно состоит настройка радиоприемника на определенную радиостанцию. Необходимость учета возможности резонанса в электрической цепи. В некоторых случаях резонанс в электрической цепи может принести большой вред. Если цепь не рассчитана на работу в условиях резонанса, то его возникновение может привести к аварии.

Чрезмерно большие токи могут перегреть провода. Большие напряжения приводят к пробою изоляции.

Такого рода аварии нередко случались еще сравнительно недавно, когда плохо представляли себе законы электрических колебаний и не умели правильно рассчитывать электрические цепи.

При вынужденных электромагнитных колебаниях возможен резонанс -- резкое возрастание амплитуды колебаний силы тока и напряжения при совпадении частоты внешнего переменного напряжения с собственной частотой колебаний. На явлении резонанса основана вся радиосвязь.