Болезни Военный билет Призыв

Химические свойства этилена определяются наличием у него. Применение этилена. Свойства этилена

Яркий представитель непредельных углеводородов — этен (этилен). Физические свойства: бесцветный горючий газ, взрывоопасный в смеси с кислородом и воздухом. В значительных количествах этилен получают из нефти для последующего синтеза ценных органических веществ (одноатомных и двухатомных спиртов, полимеров, уксусной кислоты и других соединений).

этилена, sp 2 -гибридизация

Углеводороды, сходные по строению и свойствам с этеном, называются алкенами. Исторически закрепился еще один термин для этой группы — олефины. Общая формула C n H 2n отражает состав всего класса веществ. Первый его представитель — этилен, в молекуле которого атомы углерода образуют не три, а всего две õ-связи с водородом. Алкены — непредельные или ненасыщенные соединения, их формула C 2 H 4 . Смешиваются по форме и энергии только 2 p- и 1 s-электронное облако атома углерода, всего формируются три õ-связи. Это состояние называется sp2-гибридизацией. Четвертая валентность углерода сохраняется, в молекуле возникает π-связь. В структурной формуле особенность строения находит отражение. Но символы для обозначения разных типов связи на схемах обычно используются одинаковые — черточки или точки. Строение этилена определяет его активное взаимодействие с веществами разных классов. Присоединение воды и других частиц происходит благодаря разрыву непрочной π-связи. Освободившиеся валентности насыщаются за счет электронов кислорода, водорода, галогенов.

Этилен: физические свойства вещества

Этен при обычных условиях (нормальном атмосферном давлении и температуре 18°C) — бесцветный газ. Он обладает сладким (эфирным) запахом, его вдыхание оказывает наркотическое действие на человека. Затвердевает при -169,5°C, плавится при таких же температурных условиях. Кипит этен при -103,8°C. Воспламеняется при нагревании до 540°C. Газ хорошо горит, пламя светящееся, со слабой копотью. Этилен растворяется в эфире и ацетоне, значительно меньше — в воде и спирте. Округленная молярная масса вещества — 28 г/моль. Третий и четвертый представители гомологического ряда этена — тоже газообразные вещества. Физические свойства пятого и следующих алкенов отличаются, они являются жидкостями и твердыми телами.

Получение и свойства этилена

Немецкий химик Иоган Бехер случайно использовал в опытах с концентрированной серной кислотой. Так впервые был получен этен в лабораторных условиях (1680 год). В середине XIX века А.М. Бутлеров дал соединению название этилен. Физические свойства и также были описаны известным русским химиком. Бутлеров предложил структурную формулу, отражающую строение вещества. Способы его получения в лаборатории:

  1. Каталитическое гидрирование ацетилена.
  2. Дегидрогалогенирование хлорэтана в реакции с концентрированным спиртовым раствором сильного основания (щелочи) при нагревании.
  3. Отщепление воды от молекул этилового Проходит реакция в присутствии серной кислоты. Ее уравнение: Н2С-СН2-OH → Н2С=СН2 + Н2О

Промышленное получение:

  • переработка нефти — крекинг и пиролиз углеводородного сырья;
  • дегидрирование этана в присутствии катализатора. H 3 C-CH 3 → H 2 C=CH 2 + H 2

Строение этилена объясняет его типичные химические реакции — присоединение частиц атомами C, которые находятся при кратной связи:

  1. Галогенирование и гидрогалогенирование. Продуктами этих реакций являются галогенопроизводные.
  2. Гидрирование (насыщение этана.
  3. Окисление до двухатомного спирта этиленгликоля. Его формула: OH-H2C-CH2-OH.
  4. Полимеризация по схеме: n(H2C=CH2) → n(-H2C-CH2-).

Области применения этилена

При фракционной в больших объемах Физические свойства, строение, химическая природа вещества позволяют использовать его в производстве этилового спирта, галогенопроизводных, спиртов, оксида, уксусной кислоты и других соединений. Этен — мономер полиэтилена, а также исходное соединение для полистирола.

Дихлорэтан, который получают из этена и хлора, является хорошим растворителем, используется в производстве поливинилхлорида (ПВХ). Из полиэтилена низкого и высокого давления изготавливают пленку, трубы, посуду, из полистирола — футляры для CD-дисков и другие детали. ПВХ — это основа линолеума, непромокаемых плащей. В сельском хозяйстве этеном обрабатываются плоды перед уборкой урожая для ускорения созревания.

Т. 5. стр. 495-496

ЭТИЛЕН (этен) СН 2 = СH 2 , молекулярная масса 28,05; бесцветный газ со слабым запахом; температура плавления -169,15°С, температура кипения -103,71°С; d -104 4 0,566; t крит 9,2°С, р крит 5,042 МПа; η (жидкости) 0,161 мПа·с; γ (жидкости) 16,4 мН/м; давление пара (кПа): 4110 (0°С), 2200 (-25°С), 151 (-100°С); Ср 62,16 Дж/(моль·К) (-193°С); ΔH 0 сгор -1400 кДж/моль. Растворимость (мл в 100 мл растворителя при 0°С): вода 25,6, этанол 359; хорошо растворим в диэтиловом эфире и углеводородах.

В природе этилен практически не встречается. В незначительных количествах образуется в тканях растений и животных как промежуточный продукт обмена веществ. Он обладает свойствами фитогормонов - замедляет рост, ускоряет старение клеток, созревание и опадение плодов.

По химическим свойствам - типичный представитель олефинов, обладает высокой реакционной способностью, особенно в реакциях электрофильного присоединения. При взаимодействии этилена с хлором образуется дихлорэтан, который при дегидрохлорировании превращается в винилхлорид; последний может быть получен в одну стадию в присутствии силицида кремния при 450-550°С. Гидратация этилена приводит к этиловому спирту, гидрогалогенирование - к этилхлориду, взаимодействие с SCl 2 или S 2 Cl 2 - к иприту S(CH 2 CH 2 Cl) 2 , окисление кислородом или воздухом в присутствии оксида Ag при 200-300°С - к этиленоксиду; жидкофазное окисление кислородом в водных растворах PdCl 2 и СuСl 2 при 130°С и 0,3 МПа - к ацетальдегиду; в тех же условиях в присутствии СН 3 СООН образуется винилацетат.

Этилен - алкилирующий агент, широко используется для алкилирования бензола; реакцию проводят в газовой фазе при 400-450°С и давлении 1,4 МПа в присутствии АlСl 3 в стационарном слое кизельгура, пропитанного Н 3 РO 4 (возможно использование BF 3 и цеолитов).

Этилен исходное соединение для получения полиэтилена высокого и низкого давления и олигомеров этилена, являющихся основой ряда синтетических смазочных масел. Сополимеризацией этилена с пропиленом на катализаторах Циглера-Натты получают этилен-пропиленовые каучука, обладающие повышенной устойчивостью к окислению и истиранию. В промышленности получают также сополимеры этилена со стиролом и винилацетатом.

Основной метод получения этилена - пиролиз жидких дистиллятов нефти или низших парафиновых углеводородов. Реакцию обычно проводят в трубчатых печах при 750-900°С и давлении 0,3 МПа. В России, Западной Европе и Японии сырьем служит прямогонный бензин; выход этилена около 30% с одновременным образованием значит, количества жидких продуктов, в том числе ароматических углеводородов. При пиролизе газойля выход этилена 15-25%. В США основное сырье - легкие алканы (этан, пропан, бутан), что обусловлено их высоким содержанием в природном газе месторождений Северной Америки; выход этилена около 50%.

Разработан метод получения этилена из метана: 2СН 4 → С 2 Н 4 + Н 2 ; реакцию проводят на оксидах Mn, Tl, Cd или Рb при 500-900°С в присутствии кислорода. Газы пиролиза разделяют дробной абсорбцией, глубоким охлаждением и ректификацией под давлением. Наиболее чистый этилен получают дегидратацией этанола при 400-450°С над Al 2 O 3 , этот метод пригоден для лабораторного получения этилена.

Применяют этилен в промышленном органическом синтезе (в ряде процессов он вытесняет ацетилен), а также как регулятор роста растений, для ускорения созревания плодов, дефолиации растений и снижения преждевременного опадания плодов.

Этилен взрывоопасен, КПВ 3-34% (по объему), температура вспышки 136,1°С, температура самовоспламенения 540°С, ПДК в атмосферном воздухе 3 мг/м 3 , в воздухе рабочей зоны 100 мг/м 3 .

Мировое производство 50 млн. т в год (1988).

Лит.: Kirk-Othmer encyclopedia, 3 ed., v. 9, N. Y., 1980, p. 393-431.

История открытия этилена

Этилен впервые был получен немецким химиком Иоганном Бехером в 1680 году при действии купоросного масла (H 2 SO 4) на винный (этиловый) спирт (C 2 H 5 OH).

CH 3 -CH 2 -OH+H 2 SO 4 →CH 2 =CH 2 +H 2 O

Вначале его отождествляли с «горючим воздухом», т. е. с водородом. Позднее, в 1795 году этилен подобным же образом получили голландские химики Дейман, Потс-ван-Трусвик, Бонд и Лауеренбург и описали под названием «маслородного газа», так как обнаружили способность этилена присоединять хлор с образованием маслянистой жидкости - хлористого этилена («масло голландских химиков»), (Прохоров,1978).

Изучение свойств этилена, его производных и гомологов началось с середины XIX века. Начало практического использования этих соединений положили классические исследования А.М. Бутлерова и его учеников в области непредельных соединений и особенно создания Бутлеровым теории химического строения. В 1860 году он получил этилен действием меди на йодистый метилен, установив структуру этилена.

В 1901 году Дмитрий Николаевич Нелюбов выращивал горох в лаборатории, В Санкт-Петербурге, но семена давали искривленные, укороченные проростки, у которых верхушка была согнута крючком и не сгибалась. В теплице и на свежем воздухе проростки были ровные, рослые, и верхушка на свету быстро распрямляла крючок. Нелюбов предложил, что фактор, вызывающий физиологический эффект, находится в воздухе лаборатории.

В то время помещения освещали газом. В уличных фонарях горел тот же газ, и давно было замечено, что при аварии в газопроводе стоящие рядом с местом утечки газа деревья преждевременно желтеют и сбрасывают листья.

Осветительный газ содержал разнообразные органические вещества. Чтобы удалить примесь газа, Нелюбов пропускал его через разогретую трубку с оксидом меди. В «очищенном» воздухе проростки гороха развивались нормально. Для того чтобы выяснить, какое именно вещество вызывает ответ проростков, Нелюбов добавлял различные компоненты светильного газа по очереди, и обнаружил, что добавка этилена вызывает:

1) замедление роста в длину и утолщение проростка,

2) «не разгибающуюся» апикальную петельку,

3) Изменение ориентации проростка в пространстве.

Эта физиологическая реакция проростков была названа тройным ответом на этилен. Горох оказался настолько чувствительным к этилену, что его стали использовать в биотестах для определения низких концентрациях этого газа. Вскоре было обнаружено, что этилен вызывает и другие эффекты: листопад, созревание плодов и т.д. Оказалось, что этилен способны синтезировать сами растения, т.е. этилен является фитогормоном (Петушкова,1986).

Физические свойства этилена

Этиле́н - органическое химическое соединение, описываемое формулой С 2 H 4 . Является простейшим алкеном (олефином ).

Этилен – бесцветный газ со слабым сладким запахом плотностью 1,178 кг/м³ (легче воздуха), его вдыхание оказывает наркотическое действие на человека. Этилен растворяется в эфире и ацетоне, значительно меньше - в воде и спирте. При смешении с воздухом образует взрывоопасную смесь

Затвердевает при –169,5°C, плавится при таких же температурных условиях. Кипит этен при –103,8°C. Воспламеняется при нагревании до 540°C. Газ хорошо горит, пламя светящееся, со слабой копотью. Округленная молярная масса вещества - 28 г/моль. Третий и четвертый представители гомологического ряда этена - тоже газообразные вещества. Физические свойства пятого и следующих алкенов отличаются, они являются жидкостями и твердыми телами.

Получение этилена

Основные способы получения этилена:

Дегидрогалогенирование галогенпроизводных алканов под действием спиртовых растворов щелочей

CH 3 -CH 2 -Br + KOH → CH 2 = CH 2 + KBr + H 2 O;

Дегалогенирование дигалогенпроизводных алканов под действием активных металлов

Сl-CH 2 -CH 2 -Cl + Zn → ZnCl 2 + CH 2 = CH 2 ;

Дегидратация этилена при его нагревании с серной кислотой (t >150˚ C) или пропускании его паров над катализатором

CH 3 -CH 2 -OH → CH 2 = CH 2 + H 2 O;

Дегидрирование этана при нагревании (500С) в присутствии катализатора (Ni, Pt, Pd)

CH 3 -CH 3 → CH 2 = CH 2 + H 2 .

Химические свойства этилена

Для этилена характерны реакции, протекающщие по механизму электрофильного, присоединения, реакции радикального замещения, окисления, восстановления, полимеризации.

1. Галогенирование (электрофильное присоединение) - взаимодействие этилена с галогенами, например, с бромом, при котором происходит обесцвечивание бромной воды:

CH 2 = CH 2 + Br 2 = Br-CH 2 -CH 2 Br.

Галогенирование этилена возможно также при нагревании (300С), в этом случае разрыва двойной связи не происходит – реакция протекает по механизму радикального замещения:

CH 2 = CH 2 + Cl 2 → CH 2 = CH-Cl + HCl.

2. Гидрогалогенирование - взаимодействие этилена с галогенводородами (HCl, HBr) с образование галогенпроизводных алканов:

CH 2 = CH 2 + HCl → CH 3 -CH 2 -Cl.

3. Гидратация - взаимодействие этилена с водой в присутствии минеральных кислот (серной, фосфорной) с образованием предельного одноатомного спирта – этанола:

CH 2 = CH 2 + H 2 О → CH 3 -CH 2 -ОН.

Среди реакций электрофильного присоединения выделяют присоединение хлорноватистой кислоты (1), реакции гидрокси- и алкоксимеркурирования (2, 3) (получение ртутьорганических соединений) и гидроборирование (4):

CH 2 = CH 2 + HClO → CH 2 (OH)-CH 2 -Cl (1);

CH 2 = CH 2 + (CH 3 COO) 2 Hg + H 2 O → CH 2 (OH)-CH 2 -Hg-OCOCH 3 + CH 3 COOH (2);

CH 2 = CH 2 + (CH 3 COO) 2 Hg + R-OH → R-CH 2 (OCH 3)-CH 2 -Hg-OCOCH 3 + CH 3 COOH (3);

CH 2 = CH 2 + BH 3 → CH 3 -CH 2 -BH 2 (4).

Реакции нуклеофильного присоединения характерны для производных этилена, содержащих электроноакцепторные заместители. Среди реакций нуклеофильного присоединения особое место занимают реакции присоединения циановодородной кислоты, аммиака, этанола. Например,

2 ON-CH = CH 2 + HCN → 2 ON-CH 2 -CH 2 -CN.

4. окисление. Этилен легко окисляется. Если этилен пропускать через раствор перманганата калия, то он обесцветится. Эта реакция используется для отличия предельных и непредельных соединений. В результате образуется этиленгликоль

3CH 2 = CH 2 + 2KMnO 4 +4H 2 O = 3CH 2 (OH)-CH 2 (OH) +2MnO 2 + 2KOH.

При жестком окислении этилена кипящим раствором перманганата калия в кислой среде происходит полный разрыв связи (σ-связи) с образованием муравьиной кислоты и углекислого газа:

Окисление этилена кислородом при 200С в присутствии CuCl 2 и PdCl 2 приводит к образованию ацетальдегида:

CH 2 = CH 2 +1/2O 2 = CH 3 -CH = O.

5. гидрирование. При восстановлении этилена происходит образование этана, представителя класса алканов. Реакция восстановления (реакция гидрирования) этилена протекает по радикальному механизму. Условием протекания реакции является наличие катализаторов (Ni, Pd, Pt), а также нагревание реакционной смеси:

CH 2 = CH 2 + H 2 = CH 3 -CH 3 .

6. Этилен вступает в реакцию полимеризации . Полимеризация - процесс образования высокомолекулярного соединения – полимера-путем соединения друг с другом с помощью главных валентностей молекул исходного низкомолекулярного вещества – мономера. Полимеризация этилена происходит под действием кислот (катионный механизм) или радикалов (радикальный механизм):

n CH 2 = CH 2 = -(-CH 2 -CH 2 -) n -.

7. Горение:

C 2 H 4 + 3O 2 → 2CO 2 + 2H 2 O

8. Димеризация. Димеризация - процесс образования нового вещества путём соединения двух структурных элементов (молекул, в том числе белков, или частиц) в комплекс (димер), стабилизируемый слабыми и/или ковалентными связями.

2CH 2 =CH 2 →CH 2 =CH-CH 2 -CH 3

Применение

Этилен используют в двух основных категориях: в качестве мономера, из которого построены большие углеродные цепи, и в качестве исходного материала для других двух-углеродных соединений. Полимеризации - это повторяющиеся объединения множества мелких молекул этилена в более крупные. Этот процесс происходит при высоких давлениях и температурах. Области применения этилена многочисленны. Полиэтилен – это полимер, который используется особенно массово в производстве упаковочных пленок, проволочных покрытий и пластиковых бутылок. Еще одно применение этилена в качестве мономера касается формирования линейных α-олефинов. Этилен является исходным материалом для приготовления ряда двух-углеродных соединений, таких как этанол (технический спирт ), окись этилена (антифриз, полиэфирные волокна и пленки) , ацетальдегида и винил хлорида. Кроме этих соединений, этилен с бензолом образует этилбензол, который используется в производстве пластмасс и синтетического каучука. Рассматриваемое вещество является одним из простейших углеводородов. Однако свойства этилена делают его биологически и хозяйственно значимым.

Свойства этилена дают хорошую коммерческую основу для большого количества органических (содержащих углерод и водород) материалов. Одиночные молекулы этилена могут быть соединены вместе для получения полиэтилена (что означает много молекул этилена). Полиэтилен используется для изготовления пластмасс. Кроме того, он может быть использован для изготовления моющих средств и синтетических смазочных материалов , которые представляют собой химические вещества, используемые для уменьшения трения. Применение этилена для получения стиролов актуально в процессе создания резины и защитной упаковки. Кроме того, он используется в обувной промышленности, особенно это касается спортивной обуви, а также при производстве автомобильных покрышек . Применение этилена является коммерчески важным, а сам газ является одним из наиболее часто производимых углеводородов в глобальном масштабе.

Этилен используется в производстве стекла специального назначения для автомобильной промышленности.




ПРОМЫШЛЕННЫЙ СПОСОБ ПОЛУЧЕНИЯ КРЕКИНГ АЛКАНОВ АЛКАН АЛКАН + АЛКЕН С БОЛЕЕ ДЛИННОЙ С МЕНЕЕ ДЛИНОЙ С БОЛЕЕ ДЛИННОЙ С МЕНЕЕ ДЛИНОЙ УГЛЕРОДНОЙ УГЛЕРОДНОЙ УГЛЕРОДНОЙ УГЛЕРОДНОЙ ЦЕПЬЮ ЦЕПЬЮ ЦЕПЬЮ ЦЕПЬЮ ПРИМЕР: t= C t= C С 10 Н 22 C 5 H 12 + C 5 H 10 С 10 Н 22 C 5 H 12 + C 5 H 10 декан пентан пентен декан пентан пентен






ЛАБОРАТОРНЫЙ СПОСОБ ПОЛУЧЕНИЯ ДЕГИДРОГАЛОГЕНИРОВАНИЕ УДАЛИТЬ ВОДОРОД ГАЛОГЕН ДЕЙСТВИЕ УДАЛИТЬ ВОДОРОД ГАЛОГЕН ДЕЙСТВИЕПРИМЕР: спиртовой спиртовой H H раствор H H раствор Н-С–С-Н+KOHН 2 С=СН 2 +KCl+H 2 O Н Cl этен Н Cl этен хлорэтан (этилен) хлорэтан (этилен)







РЕАКЦИЯ ПОЛИМЕРИЗАЦИИ Это процесс соединения одинаковых молекул в более крупные. ПРИМЕР: n CH 2 =CH 2 (-CH 2 -CH 2 -)n этилен полиэтилен (мономер) (полимер) n – степень полимеризации, показывает число молекул, вступивших в реакцию -CH 2 -CH 2 - структурное звено


Применение этилена СвойствоПрименениеПример 1. ПолимеризацияПроизводство полиэтилена, пластмасс 2. Галогенирование Получение растворителей 3. Гидрогалогени- рование Для: местная анестезия, получения растворите- лей, в с/х для обеззараживания зернохранилищ


СвойствоПрименениеПример 4. Гидратация Получение этилового спирта, используемого как растворитель, анти-септик в медицине, в производстве синтетического каучука 5. Окисление раствором KMnO 4 Получение антифризов, тормозных жидкостей, в производстве пластмасс 6. Особое свойство этилена: Этилен ускоряет созревание плодов

Ответ: Этилен - важнейший представитель ряда непредельных углеводородов с одной двойной связью: формула -
Газ, почти без запаха, плохо растворим в воде. На воздухе горит светящимся пламенем. Благодаря наличию
- связи этилен легко вступает в реакции присоединения:
(дибромэтан)
(этиловый спирт) Благодаря наличию двойной связи молекулы этилена могут соединяться между собой, образую цепи большой длины (из многих тысяч исходных молекул). Эта реакция называется реакцией полимеризации:
Полиэтилен широко применяется в промышленности и в быту. Он очень малоактивен, не бьется, хорошо обрабатывается. Примеры: трубы, тара (бочки, ящики), изоляционный материал, пленка для упаковки, стекла, игрушки и многое другое. Другим простейшим непредельным углеводородом является полипропилен:
При его полимеризации образуется полипропилен - полимер. Полимер по своим совокупным свойствам и применению аналогичен полиэтилену.

Полипропилен более прочен, чем полиэтилен, поэтому из него изготавливается много деталей для разнообразных машин, а также множество точных деталей, например, для экскалаторов. Примерно 40% полипропилена перерабатывается в волокна.