Болезни Военный билет Призыв

Химические модели объектов природы

О.С.ГАБРИЕЛЯН,
И.Г.ОСТРОУМОВ,
А.К.АХЛЕБИНИН

СТАРТ В ХИМИЮ

7 класс

Продолжение. Начало см. в № 1, 2/2006

Глава 1.
Химия в центре естествознания

(продолжение)

§ 3. Моделирование

Кроме наблюдения и эксперимента в познании естественного мира и химии большую роль играет моделирование.

Мы уже говорили о том, что одна из главных целей наблюдения – поиск закономерностей в результатах экспериментов.

Однако некоторые наблюдения неудобно или невозможно проводить непосредственно в природе. Естественную среду воссоздают в лабораторных условиях с помощью особых приборов, установок, предметов, т.е. моделей. В моделях копируются только самые важные признаки и свойства объекта и опускаются несущественные для изучения. Слово «модель» имеет франко-итальянские корни и переводится на русский как «образец». Моделирование – это изучение некоторого явления с помощью его моделей, т.е. заменителей, аналогов.

Например, для того чтобы изучить молнию (природное явление), ученым не нужно было дожидаться непогоды. Молнию можно смоделировать на уроке физики и в школьной лаборатории. Двум металлическим шарикам нужно сообщить противоположные электрические заряды – положительный и отрицательный. При сближении шариков до определенного расстояния между ними проскакивает искра – это и есть молния в миниатюре. Чем больше заряд на шариках, тем раньше при сближении проскакивает искра, тем длиннее искусственная молния. Такую молнию получают с помощью специального прибора, который называется электрофорной машиной.

Изучение модели позволило ученым определить, что природная молния – это гигантский электрический разряд между двумя грозовыми облаками или между облаками и землей. Однако настоящий ученый стремится найти практическое применение каждому изучаемому явлению. Чем мощнее электрическая молния, тем выше ее температура. А ведь превращение электрической энергии в теплоту можно «укротить» и использовать, например, для сварки и резки металлов. Так родился знакомый сегодня каждому процесс электросварки.

Каждая естественная наука использует свои модели, которые помогают зримо представить себе реальное природное явление или объект.

Самая известная географическая модель – глобус. Это миниатюрное объемное изображение нашей планеты, с помощью которой вы можете изучать расположение материков и океанов, стран и континентов, гор и морей. Если же изображение земной поверхности нанести на лист бумаги, то такая модель называется картой.

Моделирование в физике используется особенно широко. На уроках по этому предмету вы будете знакомиться с самыми разными моделями, которые помогут вам изучить электрические и магнитные явления, закономерности движения тел, оптические явления.

При изучении биологии модели также широко используются. Достаточно упомянуть, например, модели – муляжи цветка, органов человека и т.д.

Не менее важно моделирование и в химии. Условно химические модели можно разделить на две группы: материальные и знаковые (или символьные).

Материальные модели атомов, молекул, кристаллов, химических производств химики используют для большей наглядности.

Вы, наверное, видели изображение модели атома, напоминающее строение Солнечной системы (рис. 30).

Для моделирования молекул химических веществ используют шаростержневые или объемные модели. Их собирают из шариков, символизирующих отдельные атомы. Различие состоит в том, в шаростержневых моделях шарики-атомы расположены друг от друга на некотором расстоянии и скреплены друг с другом стерженьками. Например, шаростержневая и объемная модели молекул воды показаны на рис. 31.

Модели кристаллов напоминают шаростержневые модели молекул, однако изображают не отдельные молекулы вещества, а показывают взаимное расположение частиц вещества в кристаллическом состоянии (рис. 32).

Однако чаще всего химики пользуются не материальными, а знаковыми моделями – это химические символы, химические формулы, уравнения химических реакций.

Разговаривать на химическом языке, языке знаков и формул, вы начнете уже со следующего урока.

1. Что такое модель и что – моделирование?

2. Приведите примеры: а) географических моделей; б) физических моделей; в) биологических моделей.

3. Какие модели используют в химии?

4. Изготовьте из пластилина шаростержневые и объемные модели молекул воды. Какую форму имеют эти молекулы?

5. Запишите формулу цветка крестоцветных, если вы изучали это семейство растений на уроках биологии. Можно ли назвать эту формулу моделью?

6. Запишите уравнение для расчета скорости движения тела, если известны путь и время, за которое он пройден телом. Можно ли назвать это уравнение моделью?

§ 4. Химические знаки и формулы

К символьным моделям в химии относят знаки или символы химических элементов, формулы веществ и уравнения химических реакций, которые лежат в основе «химической письменности». Ее основоположником является шведский химик Йенс Якоб Берцелиус. Письменность Берцелиуса строится на важнейшем из химических понятий – «химический элемент». Химическим элементом называют вид одинаковых атомов.

Берцелиус предложил обозначать химические элементы первой буквой их латинских названий. Так символом кислорода стала первая буква его латинского названия: кислород – О (читается «о», т.к. латинское название этого элемента oxygenium ). Соответственно водород получил символ H (читается «аш», т.к. латинское название этого элемента hydrogenium ), углерод – С (читается «цэ», т.к. латинское название этого элемента carboneum ). Однако латинские названия хрома (chromium ), хлора (chlorum ) и меди (cuprum ) так же, как и углерода, начинаются на «С». Как же быть? Берцелиус предложил гениальное решение: такие символы записывать первой и одной из последующих букв, чаще всего второй. Так, хром обозначается Сr (читается «хром»), хлор – Cl (читается «хлор»), медь – Cu (читается «купрум»).

Русские и латинские названия, знаки 20 химических элементов и их произношения приведены в табл. 2.

В нашей таблице уместилось всего 20 элементов. Чтобы увидеть все 110 элементов, известных на сегодняшний день, нужно посмотреть в таблицу химических элементов Д.И.Менделеева.

Таблица 2

Названия и символы некоторых химических элементов

Русское название Химический знак Произношение Латинское название
Азот N Эн Nytrogenium
Алюминий Al Алюминий Aluminium
Водород Н Аш Hydrogenium
Железо Fe Феррум Ferrum
Золото Au Аурум Aurum
Kалий K Kалий Kalium
Kальций Ca Kальций Calcium
Kислород О О Oxigenium
Магний Mg Магний Magnium
Медь Cu Kупрум Cuprum
Натрий Na Натрий Natrium
Ртуть Hg Гидраргирум Hydrargirum
Свинец Pb Плюмбум Plumbum
Сера S Эс Sulphur
Серебро Ag Аргентум Argentum
Углерод С Цэ Carboneum
Фосфор Р Пэ Phosporus
Хлор Cl Хлор Chlorum
Хром Cr Хром Chromium
Цинк Zn Цинк Zincum

Чаще всего в состав веществ входят атомы нескольких химических элементов. Изобразить мельчайшую частицу вещества, например молекулу, можно с помощью моделей-шариков так, как вы это делали на предыдущем уроке. На рис. 33 изображены объемные модели молекул воды (а) , сернистого газа (б) , метана (в) и углекислого газа (г) .

Чаще для обозначения веществ химики пользуются не материальными моделями, а знаковыми. С помощью символов химических элементов и индексов записываются формулы веществ. Индекс показывает, сколько атомов данного элемента входит в состав молекулы вещества. Он записывается внизу справа от знака химического элемента. Например, формулы упомянутых выше веществ записывают так: Н 2 О, SO 2 , CH 4 , CO 2 .

Химическая формула – основная знаковая модель в нашей науке. Она несет очень важную для химика информацию. Химическая формула показывает: конкретное вещество; одну частицу этого вещества, например одну молекулу; качественный состав вещества, т.е. атомы каких элементов входят в состав данного вещества; количественный состав , т.е. сколько атомов каждого элемента входит в состав молекулы вещества.

По формуле вещества можно определить также, простое оно или сложное.

Простыми веществами называют вещества, состоящие из атомов одного элемента. Сложные вещества образованы атомами двух или более различных элементов.

Например, водород Н 2 , железо Fe, кислород О 2 – простые вещества, а вода Н 2 О, углекислый газ СО 2 и серная кислота H 2 SO 4 – сложные.

1. Знаки каких химических элементов содержат заглавную букву С? Запишите их и произнесите.

2. Из табл. 2 выпишите отдельно знаки элементов-металлов и элементов-неметаллов. Произнесите их названия.

3. Что такое химическая формула? Запишите формулы следующих веществ:

а) серной кислоты, если известно, что в состав ее молекулы входят два атома водорода, один атом серы и четыре атома кислорода;

б) сероводорода, молекула которого состоит из двух атомов водорода и одного атома серы;

в) сернистого газа, молекула которого содержит один атом серы и два атома кислорода.

4. Что объединяет все эти вещества?

Изготовьте из пластилина объемные модели молекул следующих веществ:

а) аммиака, молекула которого содержит один атом азота и три атома водорода;

б) хлороводорода, молекула которого состоит из одного атома водорода и одного атома хлора;

в) хлора, молекула которого состоит из двух атомов хлора.

Напишите формулы этих веществ и прочитайте их.

5. Приведите примеры превращений, когда известковая вода является определяемым веществом, а когда – реактивом.

6. Проведите домашний эксперимент по определению крахмала в продуктах питания. Какой реактив вы использовали при этом?

7. На рис. 33 изображены модели молекул четырех химических веществ. Сколько химических элементов образуют эти вещества? Запишите их символы и произнесите их названия.

8. Возьмите пластилин четырех цветов. Скатайте самые маленькие шарики белого цвета – это модели атомов водорода, синие шарики побольше – модели атомов кислорода, черные шарики – модели атомов углерода и, наконец, самые большие шарики желтого цвета – модели атомов серы. (Конечно, цвет атомов мы выбрали условно, для наглядности.) С помощью шариков-атомов изготовьте объемные модели молекул, показанных на рис. 33.

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

HTML-версии работы пока нет.
Cкачать архив работы можно перейдя по ссылке, которая находятся ниже.

Подобные документы

    Гомологический ряд метана. Строение молекулы метана. Углы между всеми связями. Физические свойства алканов. Лабораторные способы получения. Получение из солей карбоновых кислот. Тип гибридизации атомов углерода в алканах. Структурная изомерия алканов.

    презентация , добавлен 08.10.2014

    Электронная модель молекулы. Теория отталкивания электронных пар валентной оболочки. Реакционная способность молекул. Классификация химических реакций. Степени свободы молекулы, их вращательное движение. Описание симметрии колебаний, их взаимодействие.

    презентация , добавлен 15.10.2013

    Характеристика строения атома. Определение числа протонов, электронов, нейтронов. Рассмотрение химической связи и полярности молекулы в целом. Уравнения диссоциации и константы диссоциации для слабых электролитов. Окислительно-восстановительные реакции.

    контрольная работа , добавлен 09.11.2015

    Структура молекулы, связи атомов и свойства ацетиленов как химических веществ. Особенности получения алкинов термолизом метана и гидрированием углерода в промышленности и реакцией элиминирования в лаборатории. Реакции алкинов с участием тройной связи.

    контрольная работа , добавлен 05.08.2013

    Главные положения классической теории химического строения молекулы. Характеристики, определяющие ее реакционную способность. Гомологический рад алканов. Номенклатура и изометрия углеводородов. Классификация кислородосодержащих органических соединений.

    презентация , добавлен 25.01.2017

    Химический элемент - совокупность атомов одного вида. Открытие химических элементов. Размеры атомов и молекул. Формы существования химических элементов. Некоторые сведения о молекулярном и немолекулярном строении веществ. Атомно-молекулярное учение.

    презентация , добавлен 15.04.2012

    Общая последовательность расчёта электронного строения молекулы по методу МО ЛКАО. Простой метод Хюккеля. Примеры молекулярных структур для метода МОХ. Аллил в методе МОХ. Общие свойства электронного распределения в системе хюккелевского углеводорода.

    Разработка интерактивных моделей микромира и методика их использования при изучении школьного курса химии

    1.4.1 Химические модели

    Кроме наблюдения и эксперимента в познании естественного мира и химии большую роль играет моделирование. Одна из главных целей наблюдения - поиск закономерностей в результатах экспериментов. Однако некоторые наблюдения неудобно или невозможно проводить непосредственно в природе. Естественную среду воссоздают в лабораторных условиях с помощью особых приборов, установок, предметов, т.е., моделей. В моделях копируются только самые важные признаки и свойства объекта и опускаются несущественные для изучения. Так в химии модели условно можно разделить на две группы: материальные и знаковые.

    Материальные модели атомов, молекул, кристаллов, химических производств химики используют для большей наглядности.

    Наиболее распространенным изображением атома является модель, напоминающая строение Солнечной системы.

    Для моделирования молекул веществ часто используют шаростержневые модели. Модели этого типа собирают из цветных шариков, обозначающих входящие в состав молекулы атомы. Шарики содиняют стержнями, символизирующие химические связи. С помощью шаростержневых моделей довольно точно воспроизводятся валентные углы в молекуле, но межъядерные расстояния отражаются лишь приблизительно, поскольку длины стержней, соединяющих шарики, не пропорциональны длинам связей.

    Модели Дрединга достаточно точно передают валентные углы и соотношение длин связей в молекулах. Ядра атомов в них, в отличие от шаростержневых моделей, обозначаются не шариками, а точками соединения стержней.

    Полусферические модели, называемые также моделями Стюарта - Бриглеба, собирают из шаров со срезанными сегментами. Модели атомов соединяют между собой плоскостями срезов с помощью кнопок. Полусферические модели точно передают как соотношение длин связей и валентных углов, так и заполненность межъядерного пространства в молекулах. Однако эта заполненность не всегда позволяет получить наглядное представление о взаимном расположении ядер.

    Модели кристаллов напоминают шаростержневые модели молекул, однако изображают не отдельные молекулы вещества, а показывают взаимное расположение частиц вещества в кристаллическом состоянии.

    Однако чаще химики пользуются не материальными, а знаковыми моделями - это химические символы, химические формулы, уравнения химических реакций. С помощью символов химических элементов и индексов записываются формулы веществ. Индекс показывает, сколько атомов данного элемента входит в состав молекулы вещества. Он записывается справа от знака химического элемента.

    Химическая формула - основная знаковая модель в химии. Она показывает: конкретное вещество; одну частицу этого вещества; качественный состав вещества, т.е., атомы каких элементов входят в состав данного вещества; количественный состав, т.е., сколько атомов каждого элемента входит в состав молекулы вещества.

    Все вышеприведенные модели широко используются при создании интерактивных компьютерных моделей.

    Выбор реактора для проведения реакции окисления сернистого ангидрида в серный ангидрид

    Центральным аппаратом в любой химико-технологической системе, включающей целый ряд машин и аппаратов, соединенных между собой различными связями, является химический реактор - аппарат, в котором протекает химический процесс. Выбор типа...

    Вначале создается компьютерная модель объекта, а также применяется компьютерное моделирование для формирования молекул на месте проведения исследования. Модель может быть как двухмерной, так и трехмерной...

    Инновационный путь развития технологии создания новых лекарственных средств

    В разумности модели молекулы, используемой для квантово-химических построений, согласно которой анализу подлежит система ядер и электронов и ее поведение описывается уравнениями квантовой теории, сомнений нет...

    Инновационный путь развития технологии создания новых лекарственных средств

    Для методов определения биологической активности вводится понятие о дескрипторах и QSAR. Молекулярный дескриптор - это числовые значения, характеризующие свойства молекул. Например, они могут представлять физико-химические свойства...

    Исследование кинетики реакции алкилирования изобутана изобутиленом до изооктана методом математического моделирования

    Исследование кинетики реакции хлорирования бензола

    R = k*C1*Ck? Для наилучшей обработки полученной модели проведем преобразование вида функции, т. к. зависимость скорости реакции от времени постоянна и для первых 3 опытов равна 0,0056...

    Метод моделирования в химии

    В настоящее время можно найти множество различных определений понятий «модель» и «моделирование». Рассмотрим некоторые из них. «Под моделью понимают отображение фактов, вещей и отношений определенной области знаний в виде более простой...

    Научные основы реологии

    Напряженно-деформированное состояние тела в общем случае является трехмерным и описать его свойства с использованием простых моделей нереально. Однако в тех редких случаях, когда деформируются одноосные тела...

    Синтез и анализ ХТС в производстве бензина

    Химическая модель процесса каталитического крекинга имеет очень сложный вид. Рассмотрим наиболее простую из реакций протекающих вс процессе крекинга: СnН2n+2 > CmH2m+2 + CpH2p...

    Синтез химико-технологической системы (ХТС)

    Производственные процессы разнообразны по своим особенностям и степени сложности. Если процесс сложный и расшифровка его механизма требует большой затраты сил и времени, используют эмпирический подход. Математические модели...

    Сравнение реакторов идеального вытеснения и полного смешения в изотермическом режиме работы

    1.4.1 Химические модели

    Кроме наблюдения и эксперимента в познании естественного мира и химии большую роль играет моделирование. Одна из главных целей наблюдения – поиск закономерностей в результатах экспериментов. Однако некоторые наблюдения неудобно или невозможно проводить непосредственно в природе. Естественную среду воссоздают в лабораторных условиях с помощью особых приборов, установок, предметов, т.е., моделей. В моделях копируются только самые важные признаки и свойства объекта и опускаются несущественные для изучения. Так в химии модели условно можно разделить на две группы: материальные и знаковые .

    Модели химических и промышленных аппаратов

    Материальные модели атомов, молекул, кристаллов, химических производств химики используют для большей наглядности.

    Наиболее распространенным изображением атома является модель, напоминающая строение Солнечной системы.

    Для моделирования молекул веществ часто используют шаростержневые модели. Модели этого типа собирают из цветных шариков, обозначающих входящие в состав молекулы атомы. Шарики содиняют стержнями, символизирующие химические связи. С помощью шаростержневых моделей довольно точно воспроизводятся валентные углы в молекуле, но межъядерные расстояния отражаются лишь приблизительно, поскольку длины стержней, соединяющих шарики, не пропорциональны длинам связей.

    Модели Дрединга достаточно точно передают валентные углы и соотношение длин связей в молекулах. Ядра атомов в них, в отличие от шаростержневых моделей, обозначаются не шариками, а точками соединения стержней.

    Полусферические модели, называемые также моделями Стюарта – Бриглеба, собирают из шаров со срезанными сегментами. Модели атомов соединяют между собой плоскостями срезов с помощью кнопок. Полусферические модели точно передают как соотношение длин связей и валентных углов, так и заполненность межъядерного пространства в молекулах. Однако эта заполненность не всегда позволяет получить наглядное представление о взаимном расположении ядер.

    Модели кристаллов напоминают шаростержневые модели молекул, однако изображают не отдельные молекулы вещества, а показывают взаимное расположение частиц вещества в кристаллическом состоянии.

    Однако чаще химики пользуются не материальными, а знаковыми моделями – это химические символы, химические формулы, уравнения химических реакций. С помощью символов химических элементов и индексов записываются формулы веществ. Индекс показывает, сколько атомов данного элемента входит в состав молекулы вещества. Он записывается справа от знака химического элемента.

    Химическая формула – основная знаковая модель в химии. Она показывает: конкретное вещество; одну частицу этого вещества; качественный состав вещества, т.е., атомы каких элементов входят в состав данного вещества; количественный состав, т.е., сколько атомов каждого элемента входит в состав молекулы вещества.

    Все вышеприведенные модели широко используются при создании интерактивных компьютерных моделей .

    1.4.2 Классификация компьютерных моделей

    Среди различных типов педагогических программных средств особо выделяют те, в которых используются компьютерные модели. Применение компьютерных моделей позволяет не только повысить наглядность процесса обучения и интенсифицировать его, но и кардинально изменить этот процесс. В последние годы совершенствование компьютеров проходит бурными темпами, и их возможности для моделирования стали практически безграничными, поэтому значение компьютерных моделей при изучении школьных дисциплин может существенно возрасти. Э.Е. Нифантьев, А.К. Ахлебинин, В.Н. Лихачев отмечают, что основное преимущество компьютерных моделей – возможность моделирования практически любых процессов и явлений, интерактивного взаимодействия пользователя с моделью, а также осуществления проблемного, исследовательского подходов в процессе обучения .

    В. Н. Лихачев предлагает классифицировать учебные компьютерные модели по ряду критериев, основными среди которых являются наличие анимации при отображении модели, способ управления, способ визуального отображения модели. По наличию анимации УКМ могут быть динамическими и статическими. Динамические содержат анимационные фрагменты для отображения моделируемых объектов и процессов, в статических они отсутствуют. По способу управления УКМ могут быть управляемые, которые позволяют изменять параметры модели, и неуправляемые, которые такой возможности не предоставляют.

    Среди демонстрационных (неуправляемых) моделей можно выделить еще две группы по возможности взаимодействия с пользователем: интерактивные и неинтерактивные. Интерактивные позволяют изменять вид отображения модели или точку наблюдения на модель, не изменяя при этом ее параметров. Неинтерактивные таких возможностей не предоставляют.

    Э.Е. Нифантьев, А.К. Ахлебинин и В.Н. Лихачев считают наиболее полезной с методической точки зрения классификацию по моделирующему объекту. По уровню представляемых объектов модели, используемые в преподавании химии, можно разделить на две группы: модели макромира , которые отражают внешние свойства моделируемых объектов и их изменение и модели микромира , которые отражают строение объектов и происходящие в них изменения на уровне их атомно-молекулярного представления. А модели таких объектов, как химические вещества, химические реакции и физико – химические процессы, могут быть созданы как на уровне микромира, так и на уровне макромира.

    Классификацию УКМ можно представить в виде схемы для большей наглядности.

    1.4.3 Компьютерные модели микромира

    Объектами для моделирования на уровне микромира являются атомы, ионы, молекулы, кристаллические решетки, структурные элементы атомов. На уровне микромира моделируются особенности строения вещества, взаимодействия частиц, из которых состоит вещество. Для моделирования химических реакций на уровне микромира большой интерес представляют механизмы протекания химических процессов. А в моделях физико-химических процессов рассматриваются процессы, происходящие на электронном или атомно-молекулярном уровне.

    Понятно, что УКМ, моделирующие модели микромира, становятся отличными помощниками при изучении строения атомов, типов химической связи, строения вещества и т.д..

    Модели атомов 1 – 3 периодов периодической таблицы Менделеева реализованы в программе «1С: Репетитор. Химия » в виде моделей атома Бора. Более современные представления о строении атома реализованы в программе ChemLand, где рассматривается распределение электронов по энергетическим подуровням атомов элементов и вид отдельных орбиталей на различных энергетических уровнях.

    Особый интерес представляет программа HyperChem . Она представляет собой одну из основных профессиональных программ для теоретического расчета различных термодинамических и электронных параметров молекул. С ее помощью оказывается возможным строить пространственные модели различных соединений, изучать особенности их геометрического строения, определять форму и энергию молекулярных орбиталей, характер распределения электронной плотности, дипольный момент и т. д. Все выходные данные предоставляются в виде цветных рисунков, которые затем можно распечатать на принтере, получая качественное изображение химических соединений в требуемых ракурсах и проекциях. Достоинством программы является возможность рассмотреть молекулу с разных сторон, ознакомиться с особенностями ее пространственного строения. Это представляется чрезвычайно важным, поскольку, как показывает практика преподавания, у учеников обычно не формируется представления о молекулах как о пространственных структурах. Традиционное изображение химических веществ в одной плоскости приводит к потере целого измерения и не стимулирует развития пространственного воображения.

    В мультимедийном курсе «Химия для всех » используется программа – стереодемонстратор молекул. Она позволяет предоставлять объемные изображения молекул, состоящих из атомов водорода, кислорода, углерода и азота. Для демонстрации используют каркасные модели молекул. Модели можно перемещать, поворачивать, демонстрировать одновременно изображения нескольких различных молекул. Программа позволяет создавать новые модели молекул самостоятельно. Всего приведены модели 25 органических молекул, однако дидактическая ценность этих моделей невелика, так как предоставлены модели достаточно простых соединений, которые каждый школьник сможет собрать, используя пластилин и спички.

    Демонстрационные орбитально-лопастные трехмерные модели некоторых молекул реализованы в программе «Метод валентных связей: гибридизация атомных орбиталей». А в программе «Природа химической связи » объясняются причины возникновения химической связи на примере образования молекулы водорода из атомов. Обе указанные программы входят в комплект обучающих программ «Химия для всех – 2000 ».

    Интерактивные демонстрационные каркасные модели используются в программах ChemLand – 115 молекул преимущественно органических соединений, и «Химия для всех ». У этих двух программ есть свои плюсы и минусы: в программе «Химия для всех» модели можно демонстрировать на полный экран монитора, а в программе ChemLand такой функции нет, однако, в программе представлено большое количество молекул. В программе ChemLand используются динамические модели, демонстрирующие пространственное строение молекул с возможностью измерения валентных углов и длин связей , что позволяет проследить изменение полярности треугольной молекулы в зависимости от типа атомов.

    При изучении строения молекул и кристаллов могут быть полезны программы, больше предназначенные для исследовательских целей. Это, например, программа CS Chem3D Pro, которая позволяет создавать, изменять и отображать трехмерную структуру различных молекул. Также полезна программа Crystal Designer, которая предназначена для визуализации трехмерной структуры кристаллической решетки. Эти программы могут быть полезны при создании трехмерных изображений молекул и кристаллов и для их демонстрации на уроках с помощью компьютера.

    Программа «Собери молекулу », хотя и уступает по своим возможностям вышеназванным программам, может эффективно использоваться при индивидуальной работе школьников.

    Модели физико – химических процессов и механизмов реализованы в программе «Химия для всех ». Здесь продемонстрированы неинтерактивные модели по теме «Электролитическая диссоциация»: диссоциация солей, кислот, щелочей, гидролиз солей. В этой же программе реализованы некоторые модели механизмов органических реакций: бромирование алканов, этерификация, общий механизм реакций полимеризации и т.д. Все модели механизмов реакций неинтерактивные, демонстрируются на полный экран, имеют звуковое сопровождение, однако отсутствует текстовое описание происходящих явлений, что существенно ограничивает использование программы.

    В онлайновой версии интерактивного учебника для средней школы по органической химии для X – XI классов под редакцией Г. И. Дерябиной, А. В. Соловова представлены обменный и донорно-акцепторный механизмы образования ковалентной связи, гомолитический и гетеролитический механизмы разрыва ковалентной связи на примере отрыва атома водорода от молекулы метана, процесс sp – гибридизации. Большой интерес представляют интерактивные трехмерные демонстрационные модели органических молекул и механизмов химических реакций: хлорирование метана и общий механизм нуклеофильного замещения. Очень важно, что при работе с моделями можно изменять их положение в пространстве, а для механизма реакции – изменять положение точки наблюдения.

    Еще одна программа, демонстрирующая механизмы химических реакций, программа Organic Reaction Animations. Она содержит 34 механизма органических реакций. Причем, каждый механизм представлен в виде четырех вариантов молекулярных моделей: шаростержневой, объемной и двух вариантов орбитально-лопастных моделей. Один из вариантов орбитально-лопастных моделей демонстрирует изменение в ходе реакции внешних орбиталей субстрата, а другой – реагента. Это облегчает наблюдение за изменением внешних орбиталей реагентов в ходе реакции. При необходимости можно воспользоваться теоретическим материалом .интерактивного многоканального инструмента познания. Разработка учащимися собственных...

  • Компьютерные тестирования

    Тесты >> Информатика

    ... методик ... изучению литературы... разработки тестов и тестирования. Технология компьютеризированного тестирования должна обладать основными характеристиками: наличие интерактивной ... микромиров ); ... (школьный ... их использование при ... модели / Учебное пособие к курсу ...

  • Философия и методология науки

    Учебное пособие >> Философия

    В области биологии при изучении совме­стной эволюции различных биологических видов, их структур и уровней организации... и устоявшихся. Использование методов сопротивляется внешним огра­ничениям, накладываемым на параметры исследования. Модели осуществления...

  • Социально-культурная деятельность (2)

    Учебное пособие >> Социология

    ... их изучения , сохранения, производства, освоения, использования и, как следствие, разработки ... . При изучении курса , ... микромиром ... модели и кончая моделью ... интерактивные педагогические методы и технологии. Среди них - частные методики ... дошкольные, школьные (...