Болезни Военный билет Призыв

Где обучиться робототехнике. Самостоятельное обучение: возможно ли? Физика и прикладная математика

Робототехника со стороны может казаться достаточно комплексным и требовательным предметом, который не то что дома, но и в специальных учебных заведениях получается освоить с трудом. В то же время занятиями по робототехнике в школах уже трудно кого-то удивить, как и самыми разными онлайн-уроками от китайского языка до графического дизайна. Но можно ли научиться создавать и программировать робота дома по дистанционной программе? Сегодня разбираем русскоязычные бесплатные онлайн-курсы по робототехнике.

Сразу оговоримся, что каждый курс предполагает, что роботов надо из чего-то собирать. Разные преподаватели предпочитают работать с разными конструкторами и на разных платформах, поэтому, прежде чем приступить к занятиям, стоит внимательно изучить эти вопросы и приобрести необходимую электронику заранее в соответствии с вашими интересами и запросами.

Возраст: от 13 лет

Платформа: Arduino

Преподаватели: руководитель и научный сотрудник направления робототехники Лаборатории инновационных образовательных технологий МФТИ Алексей Перепёлкин и Дмитрий Савицкий

Длительность: 6 недель

Эта программа существует уже почти два года, за это время её прошли несколько сотен человек. Из основных плюсов студенты выделяют структурированность и доступность учебного материала. Видео-лекции расскажут, как проектировать, собирать и программировать устройства. Каждую неделю - новое практическое задание. Создателям удалось рассказать о сложном простыми словами, и курс действительно подходит даже тем, у кого нет бэкграунда по теме. Можете не сомневаться: к концу занятий вы перейдете на «ты» с роботами и самостоятельно соберете 3D-принтер.

2. Курс «Роботы в быту» от МГТУ им. Н.Э. Баумана на «Универсариуме»

Возраст: от 15 лет

Преподаватели: Андрей Витальевич Кравцов и Борис Сергеевич Старшинов - к.т.н., доц., проф. Академии военных наук, доцент кафедры «Основы физики» МГТУ им. Н.Э. Баумана

Длительность: 1 месяц

Это более общий и теоретический курс для аудитории, которая понимает, чем мехатроника отличается от робототехники. Он состоит из четырех модулей, и практические задания предусмотрены на последнем этапе из 6 занятий с захватывающим названием «Применение робототехнических устройств в экстремальных условиях».

3. Курс «Основы программирования роботов» от МГУПИ на «Универсариуме»

Возраст: от 13 лет

Платформа: Arduino

Преподаватели: Андрей Назарович Будняк - Заместитель директора ЦТПО МГУПИ, Вице-президент Ассоциации спортивной робототехники, победитель соревнований Российской Федерации 2012 года по робо-сумо в номинации «Самый технологичный робот». Победитель и лауреат многочисленных соревнований по спортивной робототехнике: Кубок Политехнического музея, GEEK PICNIC, Чемпионат России по робо-сумо, RobotChallenge в Вене.

Длительность: по своему усмотрению

Ближайший курс: лекции доступны в записи

Курс от титулованного робототехника, победителя всевозможных соревнований Андрея Будняка рассчитан на тех, кто освоил школьную программу по физике и информатике (особенно разделы о электричестве и алгоритмах). При этом курс будет полезен даже тем, кто далек от электроники, но может применять микроконтроллеры в своей работе: архитекторы, дизайнеры, врачи, звуковики. В общем, всё, что вы хотели знать о регуляторах, индикаторах, приводах и датчиках, но боялись спросить.

4. Курс «Arduino для начинающих» от «Занимательной робототехники»

Возраст: от 10 лет

Платформа: Arduino

Длительность: по своему усмотрению

Ближайший курс: уроки доступны в записи

Команда «Занимательной робототехники» создала простой курс для новичков, где есть текстовые объяснения, фотографии и обучающие видео. Роль ведущего исполняет мальчик Саша, который последовательно выполняет все необходимые действия и сопровождает их комментариями. В этом заключается сразу и основной плюс и главный минус этой программы: действительно, каждый сможет повторить манипуляции, описанные в пошаговой инструкции, тем более когда есть подробное видео, но при этом часто остаются пробелы в понимании, что и зачем делается. С другой стороны, у курса довольно оживленное онлайн-коммьюнити, где все вопросы можно обсудить.

5. Уроки на Robot Class

Возраст: от 10 лет

Платформа: разные

Преподаватель: Олег Евсегнеев

Длительность: по своему усмотрению

Ближайший курс: уроки доступны в записи

Сборник разрозненных уроков по робототехнике и программированию от Олега Евсегнеева, которые разделены по уровню сложности: для новичков и для продвинутых. Это скорее тематический блог, нежели полноценный курс, но найти что-то полезное и интересное для себя смогут все, кто уже интересуется робототехникой. В отличие от других вариантов здесь нет видео - только текст с фотографиями, формулами, схемами и кусками кода. И такой, казалось бы, устаревший формат даже немного освежает.

6. Курс «Мой друг – робот. Социокультурные аспекты социальной робототехники» на Coursera

Платформа: нет

Преподаватель: Надежда Зильберман, кандидат филологических наук, доцент кафедры гуманитарных проблем информатики Томского государственного университета ()

Длительность: 7 недель

Этот курс не занимается техническими особенностями разработки роботов. Эта программа исходит из предпосылки, что роботы с минуту на минуту станут часть повседневности (а на самом деле - уже давно стали). Здесь обсуждаются именно социокультурные аспекты робототехники: как выглядит робот, как он взаимодействует с человеком, какие отношения выстраиваются между роботом и «хозяином» и на чем основывается этика этих отношений. Интересный теоретический курс, пройдя который вы узнаете, что такое «синдром Франкенштейна» и познакомитесь с «эффектом зловещей долины».

Робототехники олицетворяют собой сочетание противоположностей. Как специалисты, они искушены в тонкостях своей специализации. Как универсалы, они способны охватить проблему в целом в той степени, что позволяет имеющаяся обширная база знаний. Предлагаем вашему вниманию интересный материал на тему умений и навыков, которые необходимы настоящему робототехнику.

А кроме самого материала также комментарии одного из наших робо-экспертов, куратора екатеринбургского , Олега Евсегнеева.

Инженеры-робототехники, как правило, попадают в две категории специалистов: думающих (теоретиков) и делающих (практиков). Это означает, что робототехники должны отличаться хорошим сочетанием двух противоположных стилей работы. «Склонные к исследованиям» люди вообще любят решать проблемы, думая, читая и изучая. С другой стороны, специалисты-практики любят решать проблемы лишь «испачкав руки», можно так сказать.

В робототехнике нужен тонкий баланс между напряженными исследованиями и расслабленной паузой, то есть работа над реальной задачей. В представленный перечень попали 25 профессиональных умений, сгруппированных в 10 существенных для роботостроителей навыков.

1. Системное мышление

Один из менеджеров проекта однажды заметил, что многие, связанные с робототехникой люди, оказываются впоследствии менеджерами проектов или системными инженерами. В этом есть особый смысл, так как роботы являются очень сложными системами. Занимающийся роботами специалист должен быть хорошим механиком, электронщиком, электриком, программистом и даже обладать познаниями в психологии и когнитивной деятельности.

Хороший робототехник в состоянии понять и теоретически обосновать, как совместно и слаженно взаимодействуют все эти разнообразные системы. Если инженер-механик может вполне обоснованно сказать: «это не моя работа, тут нужен программист или электрик», то робототехник должен хорошо разбираться во всех этих дисциплинах.

Вообще, системное мышление является важным навыком для всех инженеров. Наш мир – одна большая сверхсложная система. Навыки системной инженерии помогают правильно понять, что и как связано в этом мире. Зная это, можно создавать эффективные системы управления реальным миром.

2. Мышление программиста

Программирование является довольно важным навыком для робототехника. При этом не имеет значения, занимаетесь ли вы низкоуровневыми системами управления (используя лишь MATLAB для проектирования контроллеров) или являетесь специалистом по информатике, проектирующим высокоуровневые когнитивные системы. Занимающиеся роботами инженеры могут быть привлечены к работе по программированию на любом уровне абстракции. Основное различие между обычным программированием и программированием роботов заключается в том, что робототехник взаимодействует с оборудованием, электроникой и беспорядком реального мира.

Сегодня используется более 1500 языков программирования. Несмотря на то, что вам явно не нужно будет учить их все, хороший робототехник обладает мышлением программиста. А они будут комфортно чувствовать себя при изучении любого нового языка, если вдруг это потребуется. И тут мы плавно переходим к следующему навыку.

Комментарий Олега Евсегнеева: Я бы добавил, что для создания современных роботов требуется знание языков низкого, высокого и даже сверхвысокого уровня. Микроконтроллеры должны работать очень быстро и эффективно. Чтобы этого достичь, нужно углубляться в архитектуру вычислительного устройства, знать особенности работы с памятью и низкоуровневыми протоколами. Сердцем робота может быть тяжелая операционная система, например, ROS. Здесь уже может понадобиться знание ООП, умение пользоваться серьезными пакетами машинного зрения, навигации и машинного обучения. Наконец, чтобы написать интерфейс робота в веб и связать его с сетью интернет, неплохо будет научиться скриптовым языкам, тому же python.

3. Способность к самобучению

О робототехнике невозможно знать все, всегда есть что-то неизвестное, что придется изучать, когда возникнет в том необходимость при реализации очередного проекта. Даже после получения высшего образования по специальности робототехника и нескольких лет работы в качестве аспиранта многие только начинают по-настоящему понимать азы робототехники.

Стремление к постоянному изучению чего-то нового является важной способностью на протяжении всей вашей карьеры. Поэтому использование эффективных лично для вас методов обучения и хорошее восприятие прочитанного помогут вам быстро и легко получать новые знания, когда в этом возникает необходимость.

Комментарий Олега Евсегнеева: Это ключевой навык в любом творческом деле. С помощью него можно получить другие навыки

4. Математика

В робототехнике имеется не так много основополагающих навыков. Одним из таких основных навыков является математика. Вам, вероятно, трудно будет добиться успеха в робототехнике без надлежащего знания, по крайней мере, алгебры, математического анализа и геометрии. Это связано с тем, что на базовом уровне робототехника опирается на способность понимать и оперировать абстрактными понятиями, часто представляемыми в виде функций или уравнений. Геометрия является особенно важной для понимания таких тем, как кинематика и технические чертежи (которых вам, вероятно, придется много сделать в течение карьеры, включая те, что будут выполнены на салфетке).

Комментарий Олега Евсегнеева: Поведение робота, его реакция на окружающие раздражители, способность учиться – это все математика. Простой пример. Современные беспилотники хорошо летают благодаря фильтру Калмана – мощному математическому инструменту для уточнения данных о положении робота в пространстве. Робот Asimo умеет различать предметы благодаря нейронным сетям. Даже робот-пылесос использует сложную математику, чтобы правильно построить маршрут по комнате.

5. Физика и прикладная математика

Есть некоторые люди (чистые математики, например), которые стремятся оперировать математическими понятиями без привязки к реальному миру. Создатели роботов не относятся к такому типу людей. Познания в физике и прикладной математике важны в робототехнике, потому что реальный мир никогда не бывает таким точным, как математика. Возможность решить, когда результат расчета достаточно хорош, чтобы на самом деле работать – это ключевой навык для инженера-робототехника. Что плавно подводит нас к следующему пункту.

Комментарий Олега Евсегнеева: Есть хороший пример – автоматические станции для полета на другие планеты. Знание физики позволяет настолько точно рассчитать траекторию их полета, что спустя годы и миллионы километров аппарат попадает в точно заданную позицию.

6. Анализ и выбор решения

Быть хорошим робототехником означает постоянно принимать инженерные решения. Что выбрать для программирования - ROS или другую систему? Сколько пальцев должен иметь проектируемый робот? Какие датчики выбрать для использования? Робототехника использует множество решений и среди них почти нет единственно верного.

Благодаря обширной базе знаний, используемой в робототехнике, вы могли бы найти для себя более выгодное решение определенных проблем, чем специалисты из более узких дисциплин. Анализ и принятие решений необходимы для того, чтобы извлечь максимальную пользу из вашего решения. Навыки аналитического мышления позволят вам анализировать проблему с различных точек зрения, в то время как навыки критического мышления помогут использовать логику и рассуждения, чтобы сбалансировать сильные и слабые стороны каждого решения.

Робот – один из стилей современного уличного танца. Стиль робот лежал в основе стиля поппинг (popping dance). Направление робот оказало сильное влияние на развитие других направлений, таких как танец дабстеп , электрик буги . Даже в стиле хип-хоп применяются техники взятые из стиля робот. Поэтому обучение роботу сделает Ваш танец более выразительным и сногсшибательным.

Демонстрация робота. Обучающее видео он-лайн.

Школа танца робот в Москве есть в Москве. Если хотите быстро освоить это направление под чутким руководством опытных тренеров - приходите, поможем:)

1. О танце робот. Базовая техника танец робот (обучение видео курс по роботу)

В первую очередь, обратите внимание на фиксацию дайм стоп и на то, как правильно делать изоляции. Именно эти вещи дают ощущение механичности и железа, создавая по вашему желанию образ терминатора или движущегося комбайна))) Так же не спешите и не старайтесь угнаться за музыкой, ведь ваш робот не опаздывает на поезд!

Еще один маленький секрет, который позволит Вам выносить мозг любому зрителю. Постарайтесь не просто двигаться как робот, а постарайтесь в момент танца стать роботом! Тогда все Ваши движения преобразятся и станут правдивыми!

2. Последовательности в robot dance. Обучение для начинающих

Как таковой базовой техники в этом стиле нет, но ее заменяют принципы исполнения танца. Один из самых главных принципов - принцип последовательности движений. То есть одно следующее движение не начинается, пока не закончиться предыдущее. Разумеется, из этого правила, как из любого правила есть исключения, но на первых порах это здорово помогает избежать каши и неразберихи при исполнении танца. Вот, в общем, главное, что надо знать для успешного освоения этого зрелищного стиля!

3. Манипуляции: онлайн урок танца робот

У многих новичков часто возникает вопрос: а что можно делать в роботе? Какие двжиения можно использовать в танце робот? Одним из типов движений руками для robot dance являются "манипуляции". В этом видео уроке я покажу как их правильно делать. Хочу еще раз обратить внимание на то, что все должно делаться с изоляцией, иначе теряется иллюзия и танец робота перестает быть настоящим.

4. Передвижения или походка робота. Онлайн видео урок по роботу.

В этом видео уроке Вы сможете научиться ходить как робот. Я покажу несколько вариантов походки, которая сделает образ робота в вашем танце более цельным и "железным". Есть передвижения простые, которые подойдут новичкам, так и чуть посложнее. В любом случае, я уверен, что потратив совсем немного времени, Вы сможете научиться танцевать робота! Тем более, оно того стоит!

5. Инерция. Как научиться танцевать робот зрелищно.

Посмотрев этот видео урок до конца, Вы узнаете об одной тонкости, которая позволяет сделать танец робота на 100% сильнее. А самое интенесное, что это очень просто.

6. Основные типы динамики. Обучение танец робот.

Хотите научиться танцевать робота действительно круто? Чтобы люди увидев Ваш танец стояли открыв рот? Тогда пора узнать о том, какие есть типы динамики в движениях стиля робот. Вы узнаете одну концепцию, которая поможет Вам выделяться среди других людей и танцоров.

Связки и уроки по стилю robot dance

1. Связка. Смотреть обучающее видео робот.

Пора применить все движения робота, которые мы узнали и сделать танец робота. Не спешите, когда будете учить эту связку. Тут главное не скорость, а качество и иллюзорность. Спокойно повторяйте, пока Вы не почувствуете, что сможете делать последовательность в танце на автомате, без "провалов в памяти".

Уроки танца робот для начинающих и не только в Москве. Приходите к нам на пробную тренировку. Она бесплатная:) Чтобы записатся на него - кликните на розовую кнопочку ниже.

Работающий на стыке кибернетики, психологии и бихевиоризма (науки о поведении), и инженер, составляющий алгоритмы для промышленных роботизированных комплексов, среди основных инструментов которого - высшая математика и мехатроника, работают в самой перспективной отрасли ближайших лет - робототехнике. Роботы, несмотря на сравнительную новизну термина, издавна знакомы человечеству. Вот лишь несколько фактов из истории развития умных механизмов.

Железные люди Анри Дро

Еще в мифах Древней Греции упоминались механические рабы, созданные Гефестом для выполнения тяжелых и однообразных работ. А первым изобретателем и разработчиком человекоподобного робота стал легендарный Леонардо да Винчи. До наших дней сохранились подробнейшие чертежи итальянского гения, описывающие механического рыцаря, способного имитировать человеческие движения руками, ногами, головой.

Созданию первых автоматических механизмов с программным управлением положили начало в конце XVΙΙΙ века европейские часовые мастера. Наиболее преуспели на этом поприще швейцарские специалисты отец и сын Пьер-Жак и Анри Дро. Ими создана целая серия ("пишущий мальчик", "рисовальщик", "музыкантша") в основе управления которыми лежали часовые механизмы. Именно в честь Анри Дро в дальнейшем все программируемые человекоподобные автоматы стали называть "андроидами".

У истоков программирования

Основы программирования промышленных роботов были заложены на заре XIX века во Франции. Здесь же и были разработаны первые программы для автоматических текстильных станков (прядильных и ткацких). Стремительно растущая армия Наполеона остро нуждалась в обмундировании и, следовательно, тканях. Изобретатель из Лиона Жозеф Жаккар предложил способ быстрой перенастройки ткацкого станка для производства различных видов продукции. Нередко эта процедура требовала огромного количества времени, колоссальных усилий и внимания целого коллектива. Суть нововведения сводилась к использованию картонных карточек с перфорированными отверстиями. Иглы, попадая в просеченные места, необходимым образом смещали нити. Смена карт быстро проводилась оператором станка: новая перфокарта - новая программа - новый тип ткани или узора. Французская разработка стала прообразом современных автоматизированных комплексов, роботов с возможностью программирования.

Идею, предложенную Жаккаром, с восторгом использовали в своих автоматических устройствах многие изобретатели:

  • Начальник статистического управления С. Н. Корсаков (Россия, 1832 г.) - в механизме для сравнивания и анализа идей.
  • Математик Чарльз Бэббидж (Англия, 1834 г.) - в аналитической машине для решения широкого круга математических задач.
  • Инженер (США, 1890 г.) - в устройстве для хранения и обработки статистических данных (табуляторе). Для заметки: в 1911 году компания. Холлерита получила название IBM (International Business Machines).

Перфокарты были основными носителями информации вплоть до 60-х годов прошлого века.

Своим названием интеллектуальные машины обязаны чешскому драматургу В пьесе "R.U.R.", увидевшей свет в 1920 году, писатель назвал роботом искусственного человека, созданного для тяжелых и опасных участков производства (robota (чешск.) - каторга). А что отличает робота от механизмов и автоматических устройств? В отличие от последних, робот не только выполняет определенные действия, слепо следуя заложенному алгоритму, но и способен более тесно взаимодействовать с окружающей средой и человеком (оператором), адаптировать свои функции при изменении внешних сигналов и условий.

Принято считать, что первый действующий робот был сконструирован и реализован в 1928 году американским инженером Р. Уэнсли. Человекоподобный "железный интеллектуал" получил имя Герберт Телевокс. На лавры пионеров претендуют также ученый-биолог Макото Нисимура (Япония, 1929 г.) и английский военнослужащий Уильям Ричардс (1928 г.). Созданные изобретателями антропоморфные механизмы имели схожий функционал: способны были двигать конечностями и головой, выполнять голосовые и звуковые команды, отвечать на простые вопросы. Основным предназначением устройств была демонстрация научно-технических достижений. Очередной виток в развитии технологий позволил в скором времени создать и первых индустриальных роботов.

Поколение за поколением

Разработка робототехники представляет собой непрерывный, поступательный процесс. К настоящему моменту сформировались три ярко выраженных поколения "умных" машин. Каждое характеризуется определенными показателями и сферами применения.

Первое поколение роботов создавалось для узкого вида деятельности. Машины способны выполнять только определенную запрограммированную последовательность операций. Устройства управления роботами, схемотехника и программирование практически исключают автономное функционирование и требуют создания специального технологического пространства с необходимым дополнительным оборудованием и информационно-измерительными системами.

Машины второго поколения называют очувствленными, или адаптивными. Программирование роботов осуществляется с учетом большого набора внешних и внутренних сенсоров. На основе анализа информации, поступающей с датчиков, вырабатываются необходимые управляющие воздействия.

И наконец, третье поколение - интеллектуальные роботы, которые способны:

  • Обобщать и анализировать информацию,
  • Совершенствоваться и самообучаться, накапливать навыки и знания,
  • Распознавать образы и изменения ситуации, и в соответствии с этим выстраивать работу своей исполнительной системы.

В основе искусственного интеллекта лежит алгоритмическое и программное обеспечение.

Общая классификация

На любой представительной современной выставке роботов многообразие "умных" машин способно поразить не только простых обывателей, но и специалистов. А какие бывают роботы? Наиболее общую и содержательную классификацию предложил советский ученый А. Е. Кобринский.

По назначению и выполняемым функциям роботов подразделяют на производственно-промышленные и исследовательские. Первые, в соответствии с характером выполняемых работ, могут быть технологическими, подъемно-транспортными, универсальными или специализированными. Исследовательские предназначены для изучения областей и сфер, опасных или недоступных для человека (космическое пространство, земные недра и вулканы, глубоководные слои мирового океана).

По типу управления можно выделить биотехнические (копирующие, командные, киборги, интерактивные и автоматические), по принципу - жестко программируемые, адаптивные и гибко программируемые. Бурное развитие современной предоставляет разработчикам практически безграничные возможности при проектировании интеллектуальных машин. Но отличное схемное и конструктивное решение будет служить лишь дорогостоящей оболочкой без соответствующего программного и алгоритмического обеспечения.

Чтобы кремний микропроцессора смог взять на себя функции мозга робота, необходимо "залить" в кристалл соответствующую программу. Обычный человеческий язык не способен обеспечить четкую формализацию задач, точность и надежность их логической оценки. Поэтому требуемая информация представляется в определенном виде с помощью языков программирования роботов.

В соответствии с решаемыми задачами управления выделяют четыре уровня такого специально созданного языка:

  • Низший уровень используется для управления исполнительными приводами в виде точных значений линейного или углового перемещения отдельных звеньев интеллектуальной системы,
  • Уровень манипулятора позволяет осуществлять общее управление всей системой, позиционируя рабочий орган робота в координатном пространстве,
  • Уровень операций служит для формирования рабочей программы, путем указания последовательности необходимых действий для достижения конкретного результата.
  • На высшем уровне - заданий - программа без детализации указывает что надо сделать.

Робототехники стремятся свести программирование роботов к общению с ними на языках высшего уровня. В идеале оператор ставит задачу: "Произвести сборку двигателя внутреннего сгорания автомобиля" и ожидает от робота полного выполнения задания.

Языковые нюансы

В современной робототехнике программирование роботов развивается по двум векторам: роботоориентированное и проблемно ориентированное программирование.

Наиболее распространенные роботоориентированные языки - AML и AL. Первый разработан фирмой IBM только для управления интеллектуальными механизмами собственного производства. Второй - продукт специалистов Стэндфордского университета (США) - активно развивается и оказывает существенное влияние на формирование новых языков этого класса. Профессионал легко разглядит в языке характерные черты Паскаля и Алгола. Все языки, ориентированные на роботов, описывают алгоритм, как последовательность действий "умного" механизма. В связи с этим программа зачастую выходит очень громоздкой и неудобной в практической реализации.

При программировании роботов на проблемно ориентированных языках, в программе указывается последовательность не действий, а целей или промежуточных позиций объекта. Наиболее популярным в этом сегменте является язык AUTOPASS (IBM), в котором состояние рабочей среды представлено в виде графов (вершины - объекты, дуги - связи).

Обучение роботов

Любой современный робот представляет собой обучаемую и адаптивную систему. Вся необходимая информация, включающая знания и умения, передается ей в процессе обучения. Это осуществляется, как непосредственным занесением в память процессора соответствующих данных (детальное программирование - семплинг), так и с использованием сенсоров робота (методом наглядной демонстрации) - все движения и перемещения механизмов робота заносятся в память и затем воспроизводятся в рабочем цикле. Обучаясь, система перестраивает свои параметры и структуру, формирует информационную модель внешнего мира. Это и есть основное отличие роботов от автоматизированных линий, промышленных автоматов с жесткой структурой и других традиционных средств автоматизации. Перечисленные методы обучения обладают существенными недостатками. Например, при семплинге перенастройка требует определенного времени и труда квалифицированного специалиста.

Весьма перспективной выглядит программа для программирования роботов, представленная разработчиками Лаборатории информационных технологий при Массачусетском технологическом институте (CSAIL MIT) на международной конференции промышленной автоматизации и робототехники ICRA-2017 (Сингапур). Созданная ими платформа C-LEARN обладает достоинствами обоих методов. Она предоставляет роботу библиотеку элементарных движений с заданными ограничениями (например, усилие хвата для манипулятора в соответствии с формой и жесткостью детали). В то же время, оператор демонстрирует роботу ключевые движения в трехмерном интерфейсе. Система, исходя из поставленной задачи, формирует последовательность операций для выполнения рабочего цикла. C-LEARN позволяет переписать существующую программу для робота другой конструкции. Оператору при этом не требуются углубленные знания в области программирования.

Робототехника и искусственный интеллект

Специалисты Оксфордского университета предупреждают, что в ближайшие два десятилетия машинные технологии заменят более половины сегодняшних рабочих мест. Действительно, роботы давно уже трудятся не только на опасных и трудных участках. Например, программирование значительно потеснило брокеров-людей на мировых биржах. Несколько слов об искусственном интеллекте.

В представлении обывателя это антропоморфный робот, способный заменить человека во многих сферах жизни. Отчасти так и есть, но в большей степени искусственный интеллект - это самостоятельная отрасль науки и технологии, с помощью компьютерных программ, моделирующая мышление "Homo sapiens", работу его мозга. На сегодняшнем этапе развития ИИ больше помогает людям, развлекает их. Но, по прогнозам экспертов, дальнейший прогресс в области робототехники и искусственного интеллекта может поставить перед человечеством целый ряд морально-этических и юридических вопросов.

В этом году на выставке роботов в Женеве самый совершенный андроид София заявила, что учится быть человеком. В октябре София впервые в истории искусственного интеллекта была признана гражданкой Саудовской Аравии с полноценными правами. Первая ласточка?

Основные тенденции робототехники

В 2017 году специалисты цифровой индустрии отметили несколько выдающихся решений в области технологий виртуальной реальности. Не осталась в стороне и робототехника. Очень перспективным выглядит направление совершенствующее управление сложным робомеханизмом через виртуальный шлем (VR). Эксперты пророчат востребованность такой технологии в бизнесе и промышленности. Вероятные сценарии использования:

  • Управление беспилотной техникой (складскими погрузчиками и манипуляторами, дронами, трейлерами),
  • Проведение медицинских исследований и хирургических операций,
  • Освоение труднодоступных объектов и областей (дно океана, полярные области). Кроме того, программирование роботов позволяет им осуществлять и автономную работу.

Еще один популярный тренд - connected car. Совсем недавно представители гиганта Apple заявили о старте разработок собственного "беспилотника". Все больше фирм выражают свою заинтересованность в создании машин, способных самостоятельно перемещаться по пересеченным трассам, сохраняя грузы и оборудование.

Возрастающая сложность алгоритмов программирования роботов и машинного обучения предъявляет повышенные требования к вычислительным ресурсам и, следовательно, к "железу". По-видимому, оптимальным выходом в этом случае будет подключение устройств к облачной инфраструктуре.

Важное направление - когнитивная робототехника. Стремительный рост количества "умных" машин заставляет разработчиков все чаще задумываться о том, как научить роботов слаженно взаимодействовать.

Павел Баскир - о том, как запустить, масштабировать и монетизировать интереснейший образовательный проект

IT-инструменты, которые использует Павел Баскир

  • FlowPlan
  • 1С:Образовательное учреждение
  • 1С:Бухгалтерия («облачная»)

Московский предприниматель Павел Баскир хотел, чтобы его 10-летнему сыну было интересно учиться чему-то новому. И запустил в Москве сеть кружков по образовательной робототехнике. Дети во время занятий на площадках «Лиги роботов» получают знания по математике, информатике, физике и другим дисциплинам, а потом конструируют и испытывают модели роботов. Проекту нет ещё и года, но за это время он уже дважды серьёзно расширялся..

38 лет, предприниматель, учредитель московской «Лиги роботов» . Учился в МАИ на факультете радиоэлектроники, в Российском экономическом университете им. Плеханова и Open University UK (МИМ ЛИНК), но оконченного высшего образования так и не имеет. С 1997 по 2015 год года владел и управлял компаниями, которые являлись партнерами-франчайзи фирмы «1С». Затем продал бизнес и открыл по франшизе кружки робототехники «Лига роботов» в Москве. Бизнес начинался с одного кружка, сейчас их 40.



Старт

Московская «Лига роботов» началась с конструктора Lego Mindstorm, который Павел Баскир подарил сыну на Новый год. Игрушка давала возможность в игровой форме познакомить сына с дисциплинами, которые необходимы для создания роботов – математике, физике, информатике.

Павел стал искать образовательную программу, которая бы использовала принципы роботехники. Этот поиск привел его вместе с сыном на конференцию «Skolkovo Robotics», где они познакомились с Николаем Паком из Новосибирска, основателем открытого инженерного движения «Лига роботов».

Проект зародился в 2011 году в Новосибирске и с тех пор успешно развивается и в других городах - Томске, Симферополе, Астане и др. Его участники знакомятся с роботехникой, участвуют в конкурсах и конференциях, занимаются проектной деятельностью.

Павла Баскира заинтересовал опыт «Лиги роботов»: привлекло наличие авторской методики обучения робототехнике для школьников всех возрастов. Это была не просто система теоретических знаний, а действующая схема, отработанная на тысячах учеников. Как предпринимателю Павлу понравилось, что у новосибирской команды есть франшиза и уже работающие по ней проекты в других городах. Он купил франшизу и открыл «Лигу роботов» в Москве. «Этот опыт «отчуждаем». Мы не привязаны к каким-то конкретным людям, мы берём материал и можем уже дальше по нему работать», - замечает Павел.

Методика

Каждое занятие «Лиги роботов» длится три часа и проходит по выходным дням один раз в неделю. Ребенок изучает теорию из тех разделов, которые необходимо знать для робототехники – математики, физики, программирования, инженерии, механики. Потом, основываясь на полученных знаниях, ребята собирают робота, программируют его и испытывают в действии.

«Наша методика полезна больше для общего образования. Робототехника для нас – это не цель, а средство изучения разных наук. Знания мы даем в прикладном виде»

Каждый курс рассчитан на три месяца (триместр) и состоит из 12 уроков. Последние два урока в триместре – проектные занятия. Ребёнок делает своего робота, используя конструктор Lego, и презентует родителям.


У каждого занятия есть сценарий. Преподаватель работает в рамках сценария, иногда адаптируя его под особенности группы или примеры из своего профессионального опыта. Работа десятков преподавателей контролируется и синхронизируется различными способами. Это системы дистанционного контроля, общение через соцсети, обратная связь от родителей и коллег. Раз в неделю преподаватели участвуют в общем собрании, где обсуждаются текущие вопросы, педагогические моменты, а также актуальные события из мира робототехники.

Рабочее «железо»

На занятиях используют роботов, которых собирают из конструкторов Lego WeDo и Lego Mindstorm. Именно этими конструкторами пользуется новосибирская «Лига роботов», по ним компания и наработала методическую базу. «Нам при выходе на рынок был важен не конструктор, а наработанная по нему методика, - объясняет Павел Баскир. Также для нас было важным, что именно этот конструктор используют для проведения большей части международных олимпиад по робототехнике».

Конструкторы Lego включают в себя датчики, двигатели и контроллер (мозг робота), а также набор механических деталей. Датчики самые разнообразные – света, касания, звуковые, инфракрасные. Роботы активно взаимодействуют с физическим миром: датчики отправляют информацию на контроллер, который по алгоритмам написанной учеником программы «принимает решения» о своих дальнейших действиях для выполнения поставленной задачи. После команды компьютера двигатель приводит в движение шестерёнки, колёса и другие детали.


Для этих конструкторов разработана специальная визуальная среда программирования. Дети не пишут код программы, а перетаскивают в программу и настраивают через параметры готовые программные блоки.

Набор Lego WeDo предназначен для детей дошкольного или младшего школьного возраста. В нём проще детали и они такие же, как в классических конструкторах Lego. Набор Lego Mindstorm рассчитан на ребят постарше: там другой принцип крепления деталей. Стоят наборы 10 и 30 тысяч рублей соответственно. На занятиях они выдаются детям бесплатно.

Преподаватели

Московская «Лига роботов» для поиска преподавателей, которым интересна робототехника и работа с детьми, создала отдельную структуру – Школу преподавателей Лиги роботов (ШПЛР). Всем кандидатам перед началом работы необходимо пройти в ней обучение.

Сначала создатели московской «Лиги роботов» попытались сделать обучение преподавателей платным. Тем самым они хотели проверить мотивацию претендентов и повысить «входной порог», чтобы отсечь случайных людей. Но вскоре от платы отказались. Она отпугивала тех людей, которые хотели прийти, но не понимали, что происходит в московской «Лиге роботов» и за что им надо платить.


Отбор будущих преподавателей проходит в шесть этапов: заполнение мотивационных тестов, личное собеседование перед началом обучения, наблюдение кураторов во время обучения, сдача экзаменов на знание теории, прохождение практики, выходное собеседование. Само обучение длится не менее 40 часов. Преподавателями, в основном, становятся студенты технических вузов. В ШПЛР им дают уроки педагогического мастерства, робототехническую теорию и практику под руководством опытного наставника. С ноября прошлого года по январь 2016 года школа подготовила более 200 человек. В московской «Лиге роботов» считают, что чем больше преподавателей, тем больше гарантии качества и взаимозаменяемости.

Масштабируемость

Павел Баскир на стадии запуска бизнеса понимал, что в Москве «Лигу роботов» надо развивать не на одной, а сразу на нескольких площадках. Для того чтобы «обкатать» сетевую модель управления, необходимо было на начальном этапе выйти не менее чем на 10 площадок. Они были открыты в сентябре 2015 года На них можно было опробовать управленческие решения и методику «Лиги роботов», выявить их слабые места и принять меры, которые позволили бы их улучшить.

Управление несколькими площадками одновременно помогает снизить как расходы на закупки оборудования, так и расходы на обучение персонала. По затратам обучение преподавателей на одну или на 10 площадок отличаются не сильно.

Изначально Павел ориентировал свой проект только на школы и школьников. Он исходил из того, что в школах есть компьютерные классы с оборудованием, которые по выходным пустуют. Их можно использовать для занятий на взаимовыгодных для «Лиги роботов» и школ условиях. Сейчас московская «Лига роботов» заключает с образовательным учреждением договор о сетевой реализации образовательных программ. Компания не платит за помещение для занятий, а школа получает обучение школьных педагогов, комплекты конструкторов, подготовку школьных команд к спортивным соревнованиям по робототехнике. Конструкторы через год после работы кружка в школе становятся собственностью образовательного учреждения. Полученные методики и оборудование школа может использовать для своего основного образовательного процесса.

Чтобы договориться со школами, Павел Баскир и коллеги в мае 2015 года попали на прием в департамент образования Москвы, где рассказали о проекте. Летом они свозили завучей школ в фонд «Сколково», где сделали презентацию достижений современной робототехники и своего проекта. После этого несколько директоров школ предложили сотрудничество.


Неожиданно с аналогичным предложением обратились и те учреждения, которые изначально не рассматривались «Лигой роботов» в качестве потенциальных площадок - библиотеки и центры молодёжного инновационного творчества. Теперь «Лигу роботов» зовут на свою территорию частные детские сады и школы.

Компания проводит также занятия на базе организаций, у которых есть собственные учебные компьютерные классы, простаивающие в выходные дни. За предоставление помещения «Лига роботов» бесплатно обучает детей сотрудников.

На каждой площадке функционирует один кружок робототехники. Пропускная способность кружка – до 100 детей за выходные, но загруженность у секций в разных частях Москвы неодинаковая. Есть районы, где заинтересованных ребят меньше, чем ожидали организаторы. В каждом кружке занимается 6 групп детей, группа обычно формируется из 16 человек.

Аудитория

Сначала московская «Лига роботов» планировала проводить занятия только с ребятами школьного возраста. Но после запуска проекта родители дошкольников тоже стали проявлять интерес. Если есть спрос, то и предложение появится: сейчас компания работает и с детьми от 5 лет.

Группы формируются по возрасту участников и по уровню их подготовленности. Если в «Лигу роботов» придут двое ребят одинакового возраста, но один из них уже занимался в кружке, а другой нет, их распределят в разные группы. И они будут учиться по разным программам. Всего таких программ 13, а общий объем учебного материала более 600 академических часов.


Иногда родители, уверенные в одарённости своего ребёнка, просят перевести его в группу более старшего возраста. Тогда сотрудникам приходится объяснять, что результат лучше, если ребёнок занимается по программе в соответствии со своим возрастом и параллельно со школьной программой. Но эти доводы не все воспринимают с первого объяснения.

Вложения

Инвестиции в проект составили около 4 миллионов рублей. Это были личные накопления Павла Баскира, полученные от продажи предыдущего бизнеса.

Приобретение франшизы обошлось в 500 тысяч рублей. Остальное потратили на аренду офиса, закупку наборов конструктора Lego, подготовку первых 40 преподавателей. Павел Баскир пробовал получить кредит, но безрезультатно. Банки кредитуют под залог имущества и отдают предпочтение тем компаниям, которые уже имеют какую-то историю.

«В принципе, мы не слишком нуждались в заемных средствах, для открытия бизнеса нам хватило своих. Зато мы проверили, можно ли получить кредит, когда речь пойдёт о масштабировании бизнеса»

Цены на свои занятия московская «Лига роботов» устанавливала интуитивно – 1000 рублей за один трехчасовой урок. У большинства конкурентов столько же стоит час занятий. Но невысокие цены способствовали большой пропускной способности. За счёт этого получилось выйти на массовый рынок. Сейчас в секциях «Лиги роботов» в Москве занимается несколько тысяч детей. Ежемесячная выручка составляет более 8 миллионов рублей.

Сложности и нюансы

Изначально Павел Баскир отводил себе в проекте роль учредителя и стратега. «Мечта каждого предпринимателя – он задумывает что-то интересное, и оно само собой воплощается. Конечно, так не бывает. У нас была сформирована управленческая команда во главе с генеральным директором. Но жизнь внесла свои коррективы: пришлось сильно погружаться в процессы и помогать команде. Ребята большие молодцы, берутся за масштабные задачи, которые в этой отрасли ещё никто не делал, получают очень интересный профессиональный опыт. А я в свою очередь им в этом помогаю», - говорит Павел.

Многому приходилось учиться в процессе работы, в том числе взаимодействию с госорганами. Павлу и его команде пришлось осваивать навыки лоббирования интересов – как своего предприятия, так и всей отрасли негосударственного дополнительного образования. Предприниматели изначально рассчитывали, что договориться получится быстрее и проще. Например, до сих пор не уточнена юридическая форма взаимодействия между «Лигой роботов» и департаментом образования Москвы, хотя этим вопросом основатели «Лиги» серьезно занимаются с первого дня работы проекта.

На рынке робототехники существует около сотни организаций, занимающихся образовательной деятельностью в этой сфере. Есть как небольшие сети из кружков робототехники, так и большое количество несетевых кружков, созданных энтузиастами при школах, дворцах творчества и на других площадках. «Мы понимаем, что на рынке есть несколько серьёзных игроков, готовящихся зайти со своими предложениями. Мы всех знаем и к конкуренции готовы», - говорит Павел Баскир.

Занятия в «Лиге роботов» сезонные: из-за каникул и экзаменов выпадают декабрь, январь, май, июнь, июль и август. Зарабатывать в «межсезонье» на занятиях с детьми не получается. В компании эти периоды используют для маркетинга и подготовки преподавателей.

Одним из мероприятий с целью популяризации образовательной робототехники в «межсезонье» стал «Робомарафон» Это серия бесплатных мастер-классов, которые проводятся в течение нескольких месяцев в году в технопарках, библиотеках и центрах молодёжного творчества. «Проектная мощность» последнего «Робомарафона» составляла 12000 обучающихся детей. Его устраивает московская «Лига роботов» совместно с привлечёнными партнёрами. «Робомарафон» - это возможность рассказать о своём проекте и получить новых участников платных занятий. Также «Лига роботов» участвует в научно-технических фестивалях, которые устраивают другие организаторы.



Планы

Московская «Лига роботов» хочет расширять образовательный контент и давать детям не только знания по робототехнике, но и по «дружественным» дисциплинам, например, 3D-моделированию и 3D-печати.

Для этого у создателей проекта теперь есть все возможности. В этом году московская «Лига роботов» получила грант от департамента науки, промышленной политики и предпринимательства Москвы и министерства экономического развития России на открытие собственного центра молодёжного инновационного творчества. Он будет оборудован 3D-принтерами, фрезерами и лазерами – всем оборудованием, необходимым для знакомства школьников с современными технологиями 3D-печати.

В «межсезонье» московская «Лига роботов» планирует проводить летние лагеря – городские или выездные. Также в планах проведение одноразовых мастер-классов для детей и взрослых. Опыт их проведения уже есть. Например, в фонде «Сколково» устраивали «Робоночь», которую посетили около 120 взрослых. Они участвовали в мастер-классах, связанных, по сути, с детскими конструкторами.

Компания работает над корпоративным предложением, которое направлено на проведение мероприятий для детей сотрудников разных организаций и фирм.

Одна из первостепенных задач – увеличить к осени 2016 года количество площадок до ста. Для этого летом будут набирать и готовить новых преподавателей, искать новые территории для проведения занятий.