Болезни Военный билет Призыв

Формулы и уравнения, которые изменили мир. Более сложные примеры уравнений

5 февраля 2018 в 16:00

Почему самые сложные уравнения физики такие трудные?

  • Научно-популярное ,
  • Физика
  • Перевод

Уравнения Навье-Стокса описывают простые повседневные явления, вроде воды, текущей из садового шланга - однако на них основана задача, решение которой оценили в миллион долларов

В физике есть уравнения, описывающие всё, от растяжения пространства-времени до полёта фотона. Однако же лишь один набор уравнений считается настолько математически сложным, что его выбрали в роли одной из семи "Задач тысячелетия ", за решение которых предлагает премию в миллион долларов: это уравнения Навье-Стокса , описывающие течение жидкостей.

Недавно я о том, как для этих уравнений был получен новый важный результат. И эта работа свидетельствует о том, что прогресс на пути к «премии тысячелетия» будет более тяжёлым, чем ожидалось. Почему же эти уравнения, описывающие такие знакомые явления, как вода, текущая по шлангу, математически понять гораздо сложнее, чем, допустим, уравнения поля Эйнштейна, включающие в себя такие ошеломляющие объекты, как чёрные дыры?

Ответ, как я понял, кроется в турбулентности. Это явление испытывали мы все, в полёте в неоднородном воздухе на высоте в 10 000 м, или при наблюдении за воронкой от уходящей в слив воды в ванне. Однако из осведомлённости не следует познание: турбулентность - одна из наименее понятных областей физического мира.

Пример потока без турбулентности - это спокойная река. Каждая её часть движется в одном и том же направлении с одной и той же скоростью. Турбулентная жидкость появляется, когда поток реки ломается так, что разные части потока начинают двигаться в разных направлениях с разными скоростями. Физики описывают формирование турбулентности сперва как появление воронки в гладком потоке, а затем как формирование мелких воронок в первой воронке, и ещё более мелких воронок в этих воронках - море воронок, уходящих внутрь жидкости, так, что жидкость разбивается на дискретные части, каждая из которых взаимодействует друг с другом и движется в своём собственном направлении.

Исследователи хотят понять, как именно гладкий поток разбивается на турбулентные завихрения, и смоделировать будущую форму жидкости, после того, как турбулентность взяла своё. Но Задача тысячелетия формулируется более скромно: нужно лишь доказать, что решения всегда существуют. То есть, вопрос в том, могут ли уравнения описать любую жидкость, с любыми начальными условиями, и до бесконечно далёкого будущего?

«Первый шаг - просто попытаться доказать, что у уравнений есть какие-то решения, - говорит Чарли Фефферман, математик из Принстонского университета. - Это не даёт настоящего понимания поведения жидкостей, но если у вас и этого нет, то вы вообще ничего не знаете».

Так как можно доказать существование решений? Начать нужно с того, чтобы понять, из-за чего их может не оказаться. Уравнения Навье-Стокса подразумевают подсчёт изменения таких величин, как скорость и давление. Математиков беспокоит следующий вариант развития событий: вы прогоняете эти уравнения, и через какое-то конечное время они сообщают вам, что частица жидкости движется с бесконечной скоростью. А это проблема - подсчитать изменение бесконечного значения не проще, чем поделить на ноль. Математики называют такие ситуации «взрывом», и в случае взрыва уравнения перестают работать и решений не находится.


Уравнения Навье-Стокса описывают поток несжимаемой жидкости.

В целом произведение массы (голубая часть) на ускорение (фиолетовая) приравнивается к силам, действующим на жидкость (оранжевая):

  • ρ - плотность жидкости;
  • dV/dt - изменение скорости по времени;
  • V ∇V - скорость и направление движения;
  • ∇P - изменение внутреннего давления;
  • ρ g - влияние внешних сил (к примеру, гравитации);
  • μ ∇ 2 V - влияние внутренних сил (вязкость).

Доказательство отсутствия взрывов (и существования решений) равносильно доказательству того, что максимальная скорость любой частицы жидкости остаётся ограниченной неким конечным значением. Одной из наиболее важных величин оказывается кинетическая энергия жидкости.

Когда вы начинаете моделировать поток при помощи уравнений Навье-Стокса, у вашей жидкости есть некое начальное количество энергии. В турбулентных потоках энергия может начать концентрироваться. Вместо того, чтобы равномерно распространяться по всей реке, кинетическая энергия может собираться в водоворотах произвольно малого размера, и частицы в этих водоворотах (теоретически) могут разогнаться до бесконечной скорости.

«При переходе на всё меньшие и меньшие масштабы, кинетическая энергия становится всё менее и менее полезной для контроля решения. Решение может делать, что угодно, и я не буду знать, как его контролировать», - говорит Влад Викол, математик из Принстонского университета, написавший новую работу вместе с Тристаном Бакмастером.

Математики классифицируют частично дифференциальные уравнения на основании того, до какой степени они могут начать вести себя плохо на бесконечно малых масштабах. Уравнения Навье-Стокса находятся на экстремальном конце этой шкалы. Сложность математики уравнений в каком-то смысле отражает сложность турбулентных потоков, которые они должны уметь описывать.

«Когда вы увеличиваете масштаб в каком-то месте, то с математической точки зрения вы теряете информацию о решении, - говорит Викол. - Но турбулентность должна описывать именно это - передачу кинетической энергии от крупных ко всё более мелким масштабам, поэтому она прямо-таки просит вас увеличивать масштаб».

Говоря о математических свойствах физических уравнений, естественно задаться вопросом: а изменят ли эти рассуждения то, как мы расцениваем физический мир? В случае с уравнениями Навье-Стокса и Задачей тысячелетия ответ будет одновременно «да» и «нет». После почти 200 лет экспериментов ясно, что уравнения работают: течение, предсказанное Навье-Стоксом, последовательно совпадает с течением, наблюдаемым в экспериментах. Если вы - физик, работающий в лаборатории, вам этого может быть достаточно. Но математикам нужно знать больше - они хотят проверить, можно ли следовать этим уравнениям до упора, чтобы следить за тем, как именно меняется поток, от одного момента времени к другому (для любой начальной конфигурации жидкости), и даже уловить источник турбулентности.

«Поведение жидкостей таит в себе сюрпризы, - говорит Фефферман. - Эти сюрпризы в принципе объясняются фундаментальными уравнениями, управляющие потоками жидкостей, но как перейти от уравнений, управляющих движением жидкости, к описанию того, как на самом деле движется жидкость - это загадка».

Математик Ян Стюарт (Ian Stewart) в своей новой книге «В поисках неизвестного: 17 уравнений, которые изменили мир» рассматривает несколько наиболее важных уравнений всех времен и приводит примеры их практического применения.

Согласно Теореме Пифагора в прямоугольном треугольнике квадрат длины гипотенузы равен сумме квадратов длин катетов.

Важность : Теорема Пифагора — важнейшее уравнение в геометрии, которое связывает ее с алгеброй и является основой тригонометрии. Без него было бы невозможно создать точную картографию и навигацию.

Современное использование : Триангуляция используется и по сей день, чтобы точно определить относительное расположение для GPS навигации.

Логарифм - это степень, в которую надо возвести основание, чтобы получить аргумент.

Важность : Логарифмы стали настоящей революцией, позволив астрономам и инженерам делать расчеты более быстро и точно. С появлением компьютеров они не потеряли своего значения, поскольку все еще существенны для ученых.

Современное использование : Логарифмы важная составляющая для понимания радиоактивного распада.

Основная теорема анализа или формула Ньютона - Лейбница дает соотношение между двумя операциями: взятием определенного интеграла и вычислением первообразной.

Важность : Теорема анализа фактически создала современный мир. Исчисление имеет важное значение в нашем понимание того, как измерять тела, кривые и площади. Она является основой многих природных законов и источником дифференциальных уравнений.

Современное использование : Любая математическая проблема, где требуется оптимальное решение. Существенное значение для медицины, экономики и информатики.

Классическая теория тяготения Ньютона описывает гравитационное взаимодействие.

Важность : Теория позволяет рассчитать силу гравитации между двумя объектами. Хотя позднее она была вытеснена теорией относительности Эйнштейна, теория все равно необходима для практического описания того, как объекты взаимодействуют друг с другом. Мы используем ее и по сей день для проектирования орбит спутников и космических аппаратов.

Современное использование : Позволяет найти наиболее энергоэффективные пути для вывода спутников и космических зондов. Также делает возможным спутниковое телевидение.

Комплексные числа

Комплексные числа — расширение поля вещественных чисел.

Важность : Многие современные технологии, в том числе цифровые фотокамеры, не могли быть изобретены без комплексных чисел. Кроме того, они позволяют проводить анализ, который нужен инженерам для решения практических задач в авиации.

Современное использование : Широко используется в электротехнике и сложных математических теориях.

Важность : Внесла вклад в понимание топологического пространства, в котором рассматриваются только свойства непрерывности. Необходимый инструмент для инженеров и биологов.

Современное использование : Топология используется, чтобы понять поведение и функции ДНК.

Важность : Уравнение является основой современной статистики. Естественные и социальные науки не могли бы существовать в своей нынешней форме без него.

Современное использование : Используется в клинических испытаниях для определения эффективности лекарств по сравнению с отрицательными побочными эффектами.

Дифференциальное уравнение, описывающее поведение волн.

Важность : Волны исследуются с целью определения времени и места землетрясений, а также для прогнозирования поведения океана.

Современное использование : Нефтяные компании используют взрывчатку, а затем считывают данные от последующих звуковых волн для определения геологических формаций.

Важность : Уравнение позволяет разбивать, очищать и анализировать сложные шаблоны.

Современное использование : Используется при сжатии информации изображений в формате JPEG, а так же для обнаружения структуры молекул.

Уравнения Навье-Стокса

Уравнения Навье-Стокса

В левой части уравнения — ускорение небольшого количества жидкости, в правой — силы, которые воздействуют на него.

Важность : Как только компьютеры стали достаточно мощными, чтобы решить это уравнение, они открыли сложную и очень полезную области физики. Она особенно полезна для создания более качественной аэродинамики у транспортных средств.

Современное использование : Среди прочего, уравнение помогло в усовершенствовании современных пассажирских самолетов.

Описывают электромагнитное поле и его связь с электрическими зарядами и токами в вакууме и сплошных средах.

Важность : Помогли в понимании электромагнитных волн, что способствовало созданию многих технологий, которые мы используем сегодня.

Современное использование : Радар, телевидение и современные средства связи.

Вся энергия и тепло со временем исчезнет.

Важность : Имеет существенное значение для нашего понимания энергии и Вселенной через понятие энтропии. Открытие закона помогло улучшить паровой двигатель.

Современное использование : Помог доказать, что материя состоит из атомов, физики до сих пор пользуются этим знанием.

Энергия равна массе, умноженной на квадрат скорости света.

Важность : Наверное, самое известное уравнение в истории. Оно полностью изменило нашу точку зрения на материю и реальность.

Современное использование : Помогло создать ядерное оружие. Используется в GPS навигации.

Уравнение Шрёдингера

Описывает материю как волну, а не как частицу.

Важность : Перевернула представления физиков — частицы могут существовать в диапазоне возможных состояний.

Современное использование : Существенный вклад в использование полупроводников и транзисторов, и, таким образом, в большинство современных компьютерных технологий.

Оценивает количество данных в куске кода путем расчета вероятности его символов.

Важность : Это уравнение, которое открыло дверь в Информационную Эпоху.

Современное использование : В значительной степени все, что связано с обнаружением ошибок в кодировании (программировании).

Оценка изменений в популяции живых существ из поколения в поколение с ограниченными ресурсами.

Важность : Помогла в развитии , которая полностью изменила наше понимание того, как работают природные системы.

Современное использование : Используется для моделирования землетрясений и прогноза погоды.

Модель Блэка-Скоулза

Одна из моделей ценообразования опционов.

Важность : Помогла создать несколько триллионов долларов. Согласно некоторым экспертам, неправильное использование формулы (и ее производных) способствовало финансовому кризису. В частности, уравнение имеет несколько предположений, которые не справедливы на реальных финансовых рынках.

Современное использование : Даже после кризиса используются для определения цен.

Вместо заключения

В мире существует множество других важных уравнений и формул, которые изменили судьбу человечества в целом и нашу личную жизнь в частности. Среди них, модель Ходжкина-Хаксли, Фильтр Калмана и, конечно, уравнение поисковой системы Google. Мы надеемся, что нам удалось показать насколько важна математика, и насколько бесценен ее вклад для всех людей.

52. Более сложные примеры уравнений .
Пример 1 .

5/(x – 1) – 3/(x + 1) = 15/(x 2 – 1)

Общий знаменатель есть x 2 – 1, так как x 2 – 1 = (x + 1)(x – 1). Умножим обе части этого уравнения на x 2 – 1. Получим:

или, после сокращения,

5(x + 1) – 3(x – 1) = 15

5x + 5 – 3x + 3 = 15

2x = 7 и x = 3½

Рассмотрим еще уравнение:

5/(x-1) – 3/(x+1) = 4(x 2 – 1)

Решая, как выше, получим:

5(x + 1) – 3(x – 1) = 4
5x + 5 – 3x – 3 = 4 или 2x = 2 и x = 1.

Посмотрим, оправдываются ли наши равенства, если заменить в каждом из рассмотренных уравнений x найденным числом.

Для первого примера получим:

Видим, что здесь нет места никаким сомнениям: мы нашли такое число для x, что требуемое равенство оправдалось.

Для второго примера получим:

5/(1-1) – 3/2 = 15/(1-1) или 5/0 – 3/2 = 15/0

Здесь возникают сомнения: мы встречаемся здесь с делением на нуль, которое невозможно. Если в будущем нам удастся придать определенный, хотя бы и косвенный, смысл этому делению, то тогда мы можем согласиться с тем, что найденное решение x – 1 удовлетворяет нашему уравнению. До этой же поры мы должны признать, что наше уравнение вовсе не имеет решения, имеющего прямой смысл.

Подобные случаи могут иметь место тогда, когда неизвестное входит как-либо в знаменатели дробей, имеющихся в уравнении, причем некоторые из этих знаменателей, при найденном решении, обращаются в нуль.

Пример 2 .

Можно сразу видеть, что данное уравнение имеет форму пропорции: отношение числа x + 3 к числу x – 1 равно отношению числа 2x + 3 к числу 2x – 2. Пусть кто-либо, в виду такого обстоятельства, решит применить сюда для освобождения уравнения от дробей основное свойство пропорции (произведение крайних членов равно произведению средних). Тогда он получит:

(x + 3) (2x – 2) = (2x + 3) (x – 1)

2x 2 + 6x – 2x – 6 = 2x 2 + 3x – 2x – 3.

Здесь может возбудить опасения, что мы не справимся с этим уравнением, то обстоятельство, что в уравнение входят члены с x 2 . Однако, мы можем от обеих частей уравнения вычесть по 2x 2 - от этого уравнение не нарушится; тогда члены с x 2 уничтожатся, и мы получим:

6x – 2x – 6 = 3x – 2x – 3

Перенесем неизвестные члены влево, известные вправо - получим:

3x = 3 или x = 1

Вспоминая данное уравнение

(x + 3)/(x – 1) = (2x + 3)/(2x – 2)

мы сейчас же подметим, что найденное значение для x (x = 1) обращает в нуль знаменателей каждой дроби; от такого решения мы, пока не рассмотрели вопроса о делении на нуль, должны отказаться.

Если мы подметим еще, что применение свойства пропорции усложнило дело и что можно было бы получить более простое уравнение, умножая обе части данного на общий знаменатель, а именно на 2(x – 1) - ведь 2x – 2 = 2 (x – 1), то получим:

2(x + 3) = 2x – 3 или 2x + 6 = 2x – 3 или 6 = –3,

что невозможно.

Это обстоятельство указывает, что данное уравнение не имеет таких, имеющих прямой смысл решений, которые не обращали бы знаменателей данного уравнения в нуль.
Решим теперь уравнение:

(3x + 5)/(x – 1) = (2x + 18)/(2x – 2)

Умножим обе части уравнения 2(x – 1), т. е. на общий знаменатель, получим:

6x + 10 = 2x + 18

Найденное решение не обращает в нуль знаменатель и имеет прямой смысл:

или 11 = 11

Если бы кто-либо, вместо умножения обеих частей на 2(x – 1), воспользовался бы свойством пропорции, то получил бы:

(3x + 5)(2x – 2) = (2x + 18)(x – 1) или
6x 2 + 4x – 10 = 2x 2 + 16x – 18.

Здесь уже члены с x 2 не уничтожались бы. Перенеся все неизвестные члены в левую часть, а известные в правую, получили бы

4x 2 – 12x = –8

x 2 – 3x = –2

Это уравнение мы теперь решить не сумеем. В дальнейшем мы научимся решать такие уравнения и найдем для него два решения: 1) можно взять x = 2 и 2) можно взять x = 1. Легко проверить оба решения:

1) 2 2 – 3 · 2 = –2 и 2) 1 2 – 3 · 1 = –2

Если мы вспомним начальное уравнение

(3x + 5) / (x – 1) = (2x + 18) / (2x – 2),

то увидим, что теперь мы получим оба его решения: 1) x = 2 есть то решение, которое имеет прямой смысл и не обращает знаменателя в нуль, 2) x = 1 есть то решение, которое обращает знаменателя в нуль и не имеет прямого смысла.

Пример 3 .

Найдем общего знаменателя дробей, входящих в это уравнение, для чего разложим на множители каждого из знаменателей:

1) x 2 – 5x + 6 = x 2 – 3x – 2x + 6 = x(x – 3) – 2(x – 3) = (x – 3)(x – 2),

2) x 2 – x – 2 = x 2 – 2x + x – 2 = x (x – 2) + (x – 2) = (x – 2)(x + 1),

3) x 2 – 2x – 3 = x 2 – 3x + x – 3 = x (x – 3) + (x – 3) = (x – 3) (x + 1).

Общий знаменатель равен (x – 3)(x – 2)(x + 1).

Умножим обе части данного уравнения (а его мы теперь можем переписать в виде:

на общего знаменателя (x – 3) (x – 2) (x + 1). Тогда, после сокращения каждой дроби получим:

3(x + 1) – 2(x – 3) = 2(x – 2) или
3x + 3 – 2x + 6 = 2x – 4.

Отсюда получим:

–x = –13 и x = 13.

Это решение имеет прямой смысл: оно не обращает в нуль ни одного из знаменателей.

Если бы мы взяли уравнение:

то, поступая совершенно так же, как выше, получили бы

3(x + 1) – 2(x – 3) = x – 2

3x + 3 – 2x + 6 = x – 2

3x – 2x – x = –3 – 6 – 2,

откуда получили бы

что невозможно. Это обстоятельство показывает, что нельзя найти для последнего уравнения решения, имеющего прямой смысл.

Математика, как известно, «царица наук». Те, кто ей занимается всерьез, - люди особые - они живут в мире формул и цифр. В познании мира математики есть и практический смысл: за решение ряда задач институт Клэя готов дать миллион долларов.

1. Гипотеза Римана

Все мы помним ещё со школы ряд таких чисел, которые можно поделить только на само себя и на один. Они называются простыми (1, 2, 3, 5, 7, 11, 13, 17…). Самое большое из известных на сегодня простых чисел было найдено в августе 2008 года и состоит из 12 978 189 цифр. Для математиков эти числа очень важны, но как они распределяются по числовому ряду до сих пор до конца не ясно.

В 1859 году немецкий математик Бернхард Риман предложил свой способ их поиска и проверки, найдя метод, по которому можно определить максимальное количество простых чисел, не превышающих определенное заданное число. Математики подвергли проверке этот метод уже на полутора триллионах простых чисел, но никто не может доказать, что и дальше проверка будет успешной.

Это не простые «игры разума». Гипотеза Римана широко используется при расчете систем безопасности передачи данных, поэтому ее доказательство имеет большой практический смысл.

2. Уравнения Навье-Стокса

Уравнения Навье-Стокса являются основой для расчетов в геофизической гидродинамике, в том числе для описания движения течений в мантии Земли. Используются эти уравнения и в аэродинамике.

Суть их в том, что любое движение сопровождается изменениями в среде, завихрениями и потоками. Например, если лодка плывет по озеру, то от её движения расходятся волны, за самолетом образуются турбулентные потоки. Эти процессы, если упрощать, и описывают созданные ещё в первой трети XIX века уравнения Навье-Стокса.

Уравнения есть, но решить их по-прежнему не могут. Более того, неизвестно, существуют ли их решения. Математики, физики и конструкторы успешно пользуются этими уравнениями, подставляя в них уже известные значения скорости, давления, плотности, времени и так далее.

Если у кого-нибудь получится использовать эти уравнения в обратном направлении, то есть вычисляя из равенства параметры, либо докажет, что метода решения нет, тогда этот «кто-нибудь» станет долларовым миллионером.

3. Гипотеза Ходжа

В 1941 году профессор Кембриджа Вильям Ходж предположил, что любое геометрическое тело можно исследовать как алгебраическое уравнение и составить его математическую модель.

Если подойти с другой стороны к описанию этой гипотезы, то можно сказать, что исследовать любой объект удобнее тогда, когда его можно разложить на составные части, а уже эти части исследовать. Однако здесь мы сталкиваемся с проблемой: исследуя отдельно взятый камень, мы не можем сказать фактически ничего о крепости, которая построена из таких камней, о том, сколько в ней помещений, и какой они формы. Кроме того, при составлении изначального объекта из составных частей (на которые мы его разобрали) можно обнаружить лишние части, либо напротив - недосчитаться.

Достижение Ходжа в том, что он описал такие условия, при которых не будут возникать «лишние» части, и не будут теряться необходимые. И все это при помощи алгебраических вычислений. Ни доказать его предположение, ни опровергнуть математики не могут уже 70 лет. Если это получится у вас - станете миллионером.

4. Гипотеза Берча и Свинертон-Дайера

Уравнения вида xn + yn + zn + … = tn были известны ещё математикам древности. Решение самого простого из них («египетский треугольник» - 32 + 42 = 52) было известно ещё в Вавилоне. Его полностью исследовал в III веке нашей эры александрийский математик Диофант, на полях «Арифметики» которого Пьер Ферма сформулировал свою знаменитую теорему.

В докомпьютерную эпоху самое больше решение этого уравнения было предложено в 1769 году Леонардом Эйлером (2 682 4404 + 15 365 6394 + 18 796 7604 = 20 615 6734).

Общего, универсального способа вычисления для таких уравнений нет, но известно, что у каждого из них может быть либо конечное, либо бесконечное число решений.

В 1960 году математикам Берчу и Свинертон-Дайеру, экспериментировавшим на компьютере с некоторыми известными кривыми, удалось создать метод, сводящий каждое такое уравнение к более простому, называемому дзета-функцией. По их предположению, если эта функция в точке 1 будет равна 0, то количество решений искомого уравнения будет бесконечным. Математики предположили, что это свойство будет сохраняться для любых кривых, но ни доказать, ни опровергнуть это предположение пока никто не смог.

Чтобы получить заветный миллион, нужно найти пример, при котором предположение математиков не сработает.

5. Проблема Кука-Левина

Проблема решения-проверки Кука-Левина заключается в том, что на проверку любого решения уходит меньше времени, чем на решение самой задачи. Если наглядно: мы знаем, что где-то на дне океана есть клад, но не знаем, где именно. Его поиски могут проходить поэтому бесконечно долго. Если же мы знаем, что клад находится в таком-то квадрате, определенном заданными координатами, то поиск клада существенно упростится.

И так всегда. Скорее всего. Пока что никому из математиков и простых смертных не удалось найти такую задачу, решение которой заняло бы меньше времени, чем проверка правильности её решения. Если вдруг у вас получится найти такую - срочно пишите в институт Клэя. Если комиссия математиков одобрит - миллион долларов у вас в кармане.

Проблема Кука-Левина была сформулирована ещё в 1971 году, но до сих пор никем не решена. Её решение может стать настоящей революцией в криптографии и системах шифрования, поскольку появятся «идеальные шифры», взлом которых будет фактически невозможен.

P.S. Меня зовут Александр. Это мой личный, независимый проект. Я очень рад, если Вам понравилась статья. Хотите помочь сайту? Просто посмотрите ниже рекламу, того что вы недавно искали.