Болезни Военный билет Призыв

Формула сложения векторов. Сложение и вычитание векторов. Умножение вектора на число

Вектор \(\overrightarrow{AB}\) можно рассматривать как перемещение точки из положения \(A\) (начало движения) в положение \(B\) (конец движения). То есть траектория движения в этом случае не важна, важны только начало и конец!

\(\blacktriangleright\) Два вектора коллинеарны, если они лежат на одной прямой или на двух параллельных прямых.
В противном случае векторы называются неколлинеарными.

\(\blacktriangleright\) Два коллинеарных вектора называются сонаправленными, если их направления совпадают.
Если их направления противоположны, то они называются противоположно направленными.

Правила сложения коллинеарных векторов:

сонаправленных конца первого. Тогда их сумма – вектор, начало которого совпадает с началом первого вектора, а конец – с концом второго (рис. 1).

\(\blacktriangleright\) Для того, чтобы сложить два противоположно направленных вектора, можно отложить второй вектор от начала первого. Тогда их сумма – вектор, начало которого совпадает с началом обоих векторов, длина равна разности длин векторов, направление совпадает с направлением большего по длине вектора (рис. 2).


Правила сложения неколлинеарных векторов \(\overrightarrow {a}\) и \(\overrightarrow{b}\) :

\(\blacktriangleright\) Правило треугольника (рис. 3).

Нужно от конца вектора \(\overrightarrow {a}\) отложить вектор \(\overrightarrow {b}\) . Тогда сумма – это вектор, начало которого совпадает с началом вектора \(\overrightarrow {a}\) , а конец – с концом вектора \(\overrightarrow {b}\) .

\(\blacktriangleright\) Правило параллелограмма (рис. 4).

Нужно от начала вектора \(\overrightarrow {a}\) отложить вектор \(\overrightarrow {b}\) . Тогда сумма \(\overrightarrow {a}+\overrightarrow {b}\) – вектор, совпадающей с диагональю параллелограмма, построенного на векторах \(\overrightarrow {a}\) и \(\overrightarrow {b}\) (начало которого совпадает с началом обоих векторов).

\(\blacktriangleright\) Для того, чтобы найти разность двух векторов \(\overrightarrow {a}-\overrightarrow{b}\) , нужно найти сумму векторов \(\overrightarrow {a}\) и \(-\overrightarrow{b}\) : \(\overrightarrow{a}-\overrightarrow{b}=\overrightarrow{a}+(-\overrightarrow{b})\) (рис. 5).

Задание 1 #2638

Уровень задания: Сложнее ЕГЭ

Дан прямоугольный треугольник \(ABC\) с прямым углом \(A\) , точка \(O\) – центр описанной около данного треугольника окружности. Координаты вектора \(\overrightarrow{AB}=\{1;1\}\) , \(\overrightarrow{AC}=\{-1;1\}\) . Найдите сумму координат вектора \(\overrightarrow{OC}\) .

Т.к. треугольник \(ABC\) - прямоугольный, то центр описанной окружности лежит на середине гипотенузы, т.е. \(O\) - середина \(BC\) .


Заметим, что \(\overrightarrow{BC}=\overrightarrow{AC}-\overrightarrow{AB}\) , следовательно, \(\overrightarrow{BC}=\{-1-1;1-1\}=\{-2;0\}\) .

Т.к. \(\overrightarrow{OC}=\dfrac12 \overrightarrow{BC}\) , то \(\overrightarrow{OC}=\{-1;0\}\) .

Значит, сумма координат вектора \(\overrightarrow{OC}\) равна \(-1+0=-1\) .

Ответ: -1

Задание 2 #674

Уровень задания: Сложнее ЕГЭ

\(ABCD\) – четырёхугольник, на сторонах которого отложены векторы \(\overrightarrow{AB}\) , \(\overrightarrow{BC}\) , \(\overrightarrow{CD}\) , \(\overrightarrow{DA}\) . Найдите длину вектора \(\overrightarrow{AB} + \overrightarrow{BC} + \overrightarrow{CD} + \overrightarrow{DA}\) .

\(\overrightarrow{AB} + \overrightarrow{BC} = \overrightarrow{AC}\) , \(\overrightarrow{AC} + \overrightarrow{CD} = \overrightarrow{AD}\) , тогда
\(\overrightarrow{AB} + \overrightarrow{BC} + \overrightarrow{CD} + \overrightarrow{DA} = \overrightarrow{AC} + \overrightarrow{CD} + \overrightarrow{DA}= \overrightarrow{AD} + \overrightarrow{DA} = \overrightarrow{AD} - \overrightarrow{AD} = \vec{0}\) .
Нулевой вектор имеет длину, равную \(0\) .

Вектор можно воспринимать как перемещение, тогда \(\overrightarrow{AB} + \overrightarrow{BC}\) – перемещение из \(A\) в \(B\) , а затем из \(B\) в \(C\) – в итоге это перемещение из \(A\) в \(C\) .

При такой трактовке становится очевидным, что \(\overrightarrow{AB} + \overrightarrow{BC} + \overrightarrow{CD} + \overrightarrow{DA} = \vec{0}\) , ведь в итоге здесь из точки \(A\) переместились в точку \(A\) , то есть длина такого перемещения равна \(0\) , значит, и сам вектор такого перемещения есть \(\vec{0}\) .

Ответ: 0

Задание 3 #1805

Уровень задания: Сложнее ЕГЭ

Дан параллелограмм \(ABCD\) . Диагонали \(AC\) и \(BD\) пересекаются в точке \(O\) . Пусть , , тогда \(\overrightarrow{OA} = x\cdot\vec{a} + y\cdot\vec{b}\)

\[\overrightarrow{OA} = \frac{1}{2}\overrightarrow{CA} = \frac{1}{2}(\overrightarrow{CB} + \overrightarrow{BA}) = \frac{1}{2}(\overrightarrow{DA} + \overrightarrow{BA}) = \frac{1}{2}(-\vec{b} - \vec{a}) = - \frac{1}{2}\vec{a} - \frac{1}{2}\vec{b}\] \(\Rightarrow\) \(x = - \frac{1}{2}\) , \(y = - \frac{1}{2}\) \(\Rightarrow\) \(x + y = -1\) .

Ответ: -1

Задание 4 #1806

Уровень задания: Сложнее ЕГЭ

Дан параллелограмм \(ABCD\) . Точки \(K\) и \(L\) лежат на сторонах \(BC\) и \(CD\) соответственно, причем \(BK:KC = 3:1\) , а \(L\) – середина \(CD\) . Пусть \(\overrightarrow{AB} = \vec{a}\) , \(\overrightarrow{AD} = \vec{b}\) , тогда \(\overrightarrow{KL} = x\cdot\vec{a} + y\cdot\vec{b}\) , где \(x\) и \(y\) – некоторые числа. Найдите число, равное \(x + y\) .

\[\overrightarrow{KL} = \overrightarrow{KC} + \overrightarrow{CL} = \frac{1}{4}\overrightarrow{BC} + \frac{1}{2}\overrightarrow{CD} = \frac{1}{4}\overrightarrow{AD} + \frac{1}{2}\overrightarrow{BA} = \frac{1}{4}\vec{b} - \frac{1}{2}\vec{a}\] \(\Rightarrow\) \(x = -\frac{1}{2}\) , \(y = \frac{1}{4}\) \(\Rightarrow\) \(x + y = -0,25\) .

Ответ: -0,25

Задание 5 #1807

Уровень задания: Сложнее ЕГЭ

Дан параллелограмм \(ABCD\) . Точки \(M\) и \(N\) лежат на сторонах \(AD\) и \(BC\) соответственно, причем \(AM:MD = 2:3\) , а \(BN:NC = 3:1\) . Пусть \(\overrightarrow{AB} = \vec{a}\) , \(\overrightarrow{AD} = \vec{b}\) , тогда \(\overrightarrow{MN} = x\cdot\vec{a} + y\cdot\vec{b}\)

\[\overrightarrow{MN} = \overrightarrow{MA} + \overrightarrow{AB} + \overrightarrow{BN} = \frac{2}{5}\overrightarrow{DA} + \overrightarrow{AB} + \frac{3}{4}\overrightarrow{BC} = - \frac{2}{5}\overrightarrow{AD} + \overrightarrow{AB} + \frac{3}{4}\overrightarrow{BC} = -\frac{2}{5}\vec{b} + \vec{a} + \frac{3}{4}\vec{b} = \vec{a} + \frac{7}{20}\vec{b}\] \(\Rightarrow\) \(x = 1\) , \(y = \frac{7}{20}\) \(\Rightarrow\) \(x\cdot y = 0,35\) .

Ответ: 0,35

Задание 6 #1808

Уровень задания: Сложнее ЕГЭ

Дан параллелограмм \(ABCD\) . Точки \(P\) лежит на диагонали \(BD\) , точка \(Q\) лежит на стороне \(CD\) , причем \(BP:PD = 4:1\) , а \(CQ:QD = 1:9\) . Пусть \(\overrightarrow{AB} = \vec{a}\) , \(\overrightarrow{AD} = \vec{b}\) , тогда \(\overrightarrow{PQ} = x\cdot\vec{a} + y\cdot\vec{b}\) , где \(x\) и \(y\) – некоторые числа. Найдите число, равное \(x\cdot y\) .

\[\begin{gathered} \overrightarrow{PQ} = \overrightarrow{PD} + \overrightarrow{DQ} = \frac{1}{5}\overrightarrow{BD} + \frac{9}{10}\overrightarrow{DC} = \frac{1}{5}(\overrightarrow{BC} + \overrightarrow{CD}) + \frac{9}{10}\overrightarrow{AB} =\\ = \frac{1}{5}(\overrightarrow{AD} + \overrightarrow{BA}) + \frac{9}{10}\overrightarrow{AB} = \frac{1}{5}(\overrightarrow{AD} - \overrightarrow{AB}) + \frac{9}{10}\overrightarrow{AB} = \frac{1}{5}\overrightarrow{AD} + \frac{7}{10}\overrightarrow{AB} = \frac{1}{5}\vec{b} + \frac{7}{10}\vec{a}\end{gathered}\]

\(\Rightarrow\) \(x = \frac{7}{10}\) , \(y = \frac{1}{5}\) \(\Rightarrow\) \(x\cdot y = 0,14\) . и \(ABCO\) – параллелограмм; \(AF \parallel BE\) и \(ABOF\) – параллелограмм \(\Rightarrow\) \[\overrightarrow{BC} = \overrightarrow{AO} = \overrightarrow{AB} + \overrightarrow{BO} = \overrightarrow{AB} + \overrightarrow{AF} = \vec{a} + \vec{b}\] \(\Rightarrow\) \(x = 1\) , \(y = 1\) \(\Rightarrow\) \(x + y = 2\) .

Ответ: 2

Старшеклассники, которые готовятся к сдаче ЕГЭ по математике и при этом рассчитывают на получение достойных баллов, обязательно должны повторить тему «Правила сложения и вычитания нескольких векторов». Как видно из многолетней практики, подобные задания каждый год включаются в аттестационное испытание. Если у выпускника вызывают трудности задачи из раздела «Геометрия на плоскости», к примеру, в которых требуется применить правила сложения и вычитания векторов, ему обязательно стоит повторить или вновь разобраться в материале, чтобы успешно сдать ЕГЭ.

Образовательный проект «Школково» предлагает новый подход в подготовке к аттестационному испытанию. Наш ресурс выстроен таким образом, чтобы учащиеся смогли выявить наиболее сложные для себя разделы и восполнить пробелы в знаниях. Специалисты «Школково» подготовили и систематизировали весь необходимый материал для подготовки к сдаче аттестационного испытания.

Для того чтобы задачи ЕГЭ, в которых необходимо применить правила сложения и вычитания двух векторов, не вызывали затруднений, мы рекомендуем прежде всего освежить в памяти базовые понятия. Найти этот материал учащиеся смогут в разделе «Теоретическая справка».

Если вы уже вспомнили правило вычитания векторов и основные определения по данной теме, предлагаем закрепить полученные знания, выполнив соответствующие упражнения, которые подобрали специалисты образовательного портала «Школково». Для каждой задачи на сайте представлен алгоритм решения и дан правильный ответ. В теме «Правила сложения векторов» представлены различные упражнения; выполнив два-три сравнительно легких задания, учащиеся могут последовательно переходить к более сложным.

Оттачивать собственные навыки по таким, например, заданиям, как школьники имеют возможность в режиме онлайн, находясь в Москве или любом другом городе России. При необходимости задание можно сохранить в разделе «Избранное». Благодаря этому вы сможете быстро найти интересующие примеры и обсудить алгоритмы нахождения правильного ответа с преподавателем.

X и y называется вектор z такой, что z+y=x .

Вариант 1. Начальные точки всех векторов совпадают с началом координат.

Построим разность векторов и .

Для построения разницы векторов z=x-y , нужно сложить вектор x с противоположным к y вектором y" . Противоположный вектор y" строится просто:

Вектор y" является противоположным к вектору y , так как y+y"= 0, где 0 - нулевой вектор соответствующего размера. Далее выполняется сложение векторов x и y" :

Из выражения (1) видно что для построения разницы векторов достаточно вычислить разницы соответствующих координатов векторов x и y .

Рис. 1

На рисунке Рис. 1 в двухмерном пространстве представлен разность векторов x =(10,3) и y =(2,4).

Вычислим z=x-y =(10-3,3-4)=(7,-1). Сравним полученный результат с геометрической интерпретацией. Действительно, после построения вектора y" и параллельного перемещения начальной точки вектора y" на конечную точку вектора x , получим вектор y"" , а после сложения векторов x и y"" , получим вектор z .

Вариант 2. Начальные точки векторов произвольные.

Рис. 2

На рисунке Рис. 2 в двухмерном пространстве представлен разность векторов x =AB и y =CD , где A (1,0), B (11,3), C (1,2), D (3,6). Для вычисления вектора z=x-y , построен противоположный к вектору y вектор y" :

Далее нужно сложить векторы x и y" . Вектор y" перемещается параллельно так, чтобы точка C" совпала с точкой B . Для этого вычисляются разницы координатов точек B и С .

ов, сначала необходимо разобраться в таком понятии, как откладывание вектора от данной точки.

Определение 1

Если точка $A$ начала какого-либо вектора $\overrightarrow{a}$, то говорят, что вектор $\overrightarrow{a}$ отложен от точки $A$ (рис. 1).

Рисунок 1. $\overrightarrow{a}$ отложенный от точки $A$

Введем следующую теорему:

Теорема 1

От любой точки $K$ можно отложить вектор $\overrightarrow{a}$ и притом только один.

Доказательство.

Существование: Здесь нужно рассмотреть два случая:

    Вектор $\overrightarrow{a}$ - нулевой.

    В этом случае, очевидно, что искомый вектор -- вектор $\overrightarrow{KK}$.

    Вектор $\overrightarrow{a}$ -- ненулевой.

    Обозначим точкой $A$ -- начало вектора $\overrightarrow{a}$, а точкой $B$ - конец вектора $\overrightarrow{a}$. Проведем через точку $K$ прямую $b$ параллельную вектору $\overrightarrow{a}$. Отложим на этой прямой отрезки $\left|KL\right|=|AB|$ и $\left|KM\right|=|AB|$. Рассмотрим векторы $\overrightarrow{KL}$ и $\overrightarrow{KM}$. Из этих двух векторов искомым будет тот, который будет сонаправлен с вектором $\overrightarrow{a}$ (рис. 2)

Рисунок 2. Иллюстрация теоремы 1

Единственность: единственность сразу следует из построения, проведенного в пункте «существование».

Теорема доказана.

Вычитание векторов. Правило первое

Пусть нам даны векторы $\overrightarrow{a}$ и $\overrightarrow{b}$.

Определение 2

Разностью двух векторов $\overrightarrow{a}$ и $\overrightarrow{b}$ называется такой вектор $\overrightarrow{c}$, который при сложении с вектором $\overrightarrow{b}$ дает вектор $\overrightarrow{a}$, то есть

\[\overrightarrow{b}+\overrightarrow{c}=\overrightarrow{a}\]

Обозначение: $\overrightarrow{a}-\overrightarrow{b}=\overrightarrow{c}$.

Построение разности двух векторов рассмотрим с помощью задачи.

Пример 1

Пусть даны векторы $\overrightarrow{a}$ и $\overrightarrow{b}$. Построить вектор $\overrightarrow{a}-\overrightarrow{b}$.

Решение.

Построим произвольную точку $O$ и отложим от нее векторы $\overrightarrow{OA}=\overrightarrow{a}$ и $\overrightarrow{OB}=\overrightarrow{b}$. Соединив точку $B$ с точкой $A$, получим вектор $\overrightarrow{BA}$ (рис. 3).

Рисунок 3. Разность двух векторов

По правилу треугольника для построения суммы двух векторов видим, что

\[\overrightarrow{OB}+\overrightarrow{BA}=\overrightarrow{OA}\]

\[\overrightarrow{b}+\overrightarrow{BA}=\overrightarrow{a}\]

Из определения 2, получаем, что

\[\overrightarrow{a}-\overrightarrow{b}=\overrightarrow{BA}\]

Ответ: $\overrightarrow{a}-\overrightarrow{b}=\overrightarrow{BA}$.

Из этой задачи получаем следующее правило для нахождения разности двух векторов. Чтобы найти разность $\overrightarrow{a}-\overrightarrow{b}$ нужно от произвольной точки $O$ отложить векторы $\overrightarrow{OA}=\overrightarrow{a}$ и $\overrightarrow{OB}=\overrightarrow{b}$ и соединить конец второго вектор с концом первого вектора.

Вычитание векторов. Правило второе

Вспомним следующее необходимое нам понятие.

Определение 3

Вектор $\overrightarrow{a_1}$ называется произвольным для вектора $\overrightarrow{a}$, если эти векторы противоположно направлены и имеют равную длину.

Обозначение: Вектор $(-\overrightarrow{a})$ противоположный для вектора $\overrightarrow{a}$.

Для того чтобы ввести второе правило для разности двух векторов, нам необходимо в начале ввести и доказать следующую теорему.

Теорема 2

Для любых двух векторов $\overrightarrow{a}$ и $\overrightarrow{b}$ справедливо следующее равенство:

\[\overrightarrow{a}-\overrightarrow{b}=\overrightarrow{a}+(-\overrightarrow{b})\]

Доказательство.

По определению 2, имеем

Прибавим к обеим частям вектор $\left(-\overrightarrow{b}\right)$, получим

Так как векторы $\overrightarrow{b}$ и $\left(-\overrightarrow{b}\right)$ противоположны, то $\overrightarrow{b}+\left(-\overrightarrow{b}\right)=\overrightarrow{0}$. Имеем

Теорема доказана.

Из этой теоремы получаем следующее правило для разности двух векторов: Чтобы найти разность $\overrightarrow{a}-\overrightarrow{b}$ нужно от произвольной точки $O$ отложить вектор $\overrightarrow{OA}=\overrightarrow{a}$, затем от полученной точки $A$ отложить вектор $\overrightarrow{AB}=-\overrightarrow{b}$ и соединить начало первого вектора с концом второго вектора.

Пример задачи на понятие разности векторов

Пример 2

Пусть дан параллелограмм $ADCD$, диагонали которого пересекаются в точке $O$. $\overrightarrow{AB}=\overrightarrow{a}$, $\overrightarrow{AD}=\overrightarrow{b}$ (рис. 4). Выразить через векторы $\overrightarrow{a}$ и $\overrightarrow{b}$ следующие векторы:

а) $\overrightarrow{DC}+\overrightarrow{CB}$

б) $\overrightarrow{BO}-\overrightarrow{OC}$

Рисунок 4. Параллелограмм

Решение.

а) Произведем сложение по правилу треугольника, получим

\[\overrightarrow{DC}+\overrightarrow{CB}=\overrightarrow{DB}\]

Из первого правила разности двух векторов, получаем

\[\overrightarrow{DB}=\overrightarrow{a}-\overrightarrow{b}\]

б) Так как $\overrightarrow{OC}=\overrightarrow{AO}$, получим

\[\overrightarrow{BO}-\overrightarrow{OC}=\overrightarrow{BO}-\overrightarrow{AO}\]

По теореме 2, имеем

\[\overrightarrow{BO}-\overrightarrow{AO}=\overrightarrow{BO}+\left(-\overrightarrow{AO}\right)=\overrightarrow{BO}+\overrightarrow{OA}\]

Используя правило треугольника, окончательно имеем

\[\overrightarrow{BO}+\overrightarrow{OA}=\overrightarrow{BA}=-\overrightarrow{AB}=-\overrightarrow{a}\]

В математике и физике студентам и школьникам зачастую попадаются задачи на векторные величины и на выполнение различных операций над ними. В чём же отличие векторных величин от привычных нам скалярных, единственная характеристика которых - это численное значение? В том, что они обладают направлением.

Максимально наглядно применение векторных величин объясняется в физике. Самыми простыми примерами являются силы (сила трения, сила упругости, вес), скорость и ускорение, поскольку помимо численных значений они также обладают направлением действия. Для сравнения приведём пример скалярных величин : это может быть расстояние между двумя точками или масса тела. Для чего же необходимо выполнять действия над векторными величинами такие как сложение или вычитание? Это нужно, чтобы было возможно определить результат действия системы векторов, состоящей из 2 или более элементов.

Определения векторной математики

Введём главные определения, используемые при выполнении линейных операций.

  1. Вектором называют направленный (имеющий точку начала и точку конца) отрезок.
  2. Длина (модуль) - это длина направленного отрезка.
  3. Коллинеарными называют такие два вектора, которые либо параллельны одной и той же прямой, либо одновременно лежат на ней.
  4. Противоположно направленными векторами называют коллинеарные и при этом направленные в разные стороны. Если же их направление совпадает, то они являются сонаправленными.
  5. Вектора являются равными, когда они сонаправлены и одинаковы по модулю.
  6. Суммой двух векторов a и b является такой вектор c , начало которого совпадает с началом первого, а конец - с концом второго при условии, что b начинается в той же точке, в которой заканчивается a .
  7. Разностью векторов a и b называют сумму a и (- b ), где (- b ) - противоположно направленный к вектору b . Также определение разности двух векторов может быть дано следующее: разностью c пары векторов a и b называют такой c , который при сложении с вычитаемым b образует уменьшаемое a.

Аналитический метод

Аналитический способ подразумевает получение координат разности по формуле без построения. Возможно выполнить вычисление для плоского (двухмерного), объёмного (трёхмерного) или же n-мерного пространства.

Для двухмерного пространства и векторных величин a {a₁; a₂ } и b {b₁; b₂ } расчёты будут иметь следующий вид: c {c₁; c₂ } = {a₁ – b₁; a₂ – b₂ }.

В случае с добавлением третьей координаты расчёт будет проводиться аналогично, и для a {a₁; a₂ ; a₃ } и b {b₁; b₂; b₃ } координаты разности будут также получены попарным вычитанием: c {c₁; c₂; c₃ } = {a₁ – b₁; a₂ – b₂; a₃ – b₃ }.

Вычисление разности графически

Для того чтобы построить разность графическим способом, следует воспользоваться правилом треугольника. Для этого необходимо выполнить следующую последовательность действий:

  1. По заданным координатам построить векторы, для которых нужно найти разность.
  2. Совместить их концы (т. е. построить два направленных отрезка, равных заданным, которые будут оканчиваться в одной и той же точке).
  3. Соединить начала обоих направленных отрезков и указать направление; результирующий будет начинаться в той же точке, где начинался вектор, являющийся уменьшаемым, и заканчиваться в точке начала вычитаемого.

Результат операции вычитания показан на рисунке ниже .

Также существует метод построения разности, незначительно отличающийся от предыдущего. Его суть заключается в применении теоремы о разности векторов, которая формулируется следующим образом: для того чтобы найти разность пары направленных отрезков, достаточно найти сумму первого из них с отрезком, противоположно направленным ко второму. Алгоритм построения будет иметь следующий вид:

  1. Построить исходные направленные отрезки.
  2. Тот, что является вычитаемым, необходимо отразить, т. е. построить противоположно направленный и равный ему отрезок; затем совместить его начало с уменьшаемым.
  3. Построить сумму: соединить начало первого отрезка с концом второго.

Результат такого решения изображён на рисунке:

Решение задач

Для закрепления навыка разберём несколько заданий, в которых требуется рассчитать разность аналитически или графически.

Задача 1 . На плоскости заданы 4 точки: A (1; -3), B (0; 4), C (5; 8), D (-3; 2). Определить координаты вектора q = AB - CD, а также рассчитать его длину.

Решение . Вначале следует найти координаты AB и CD . Для этого из координат конечных точек вычтем координаты начальных. Для AB началом является A (1; -3), а концом – B (0; 4). Рассчитаем координаты направленного отрезка:

AB {0 - 1; 4 - (- 3)} = {- 1; 7}

Аналогичный расчёт выполняется для CD :

CD {- 3 - 5; 2 - 8} = {- 8; - 6}

Теперь, зная координаты, можно найти разность векторов. Формула для аналитического решения плоских задач была рассмотрена ранее: для c = a - b координаты имеют вид {c₁; c₂ } = {a₁ – b₁; a₂ – b₂ }. Для конкретного случая можно записать:

q = {- 1 - 8; 7 - (- 6)} = { - 9; - 1}

Чтобы найти длину q , воспользуемся формулой | q | = √(q₁² + q ₂²) = √((- 9)² + (- 1)²) = √(81 + 1) = √82 ≈ 9,06.

Задача 2 . На рисунке изображены векторы m, n и p.

Необходимо построить для них разности: p - n; m - n; m - n - p. Выяснить, какая из них обладает наименьшим модулем.

Решение . В задаче требуется выполнить три построения. Рассмотрим каждую часть задания более подробно.

Часть 1. Для того чтобы изобразить p - n, воспользуемся правилом треугольника. Для этого при помощи параллельного переноса соединим отрезки так, чтобы совпала их конечная точка. Теперь соединим начальные точки и определим направление. В нашем случае вектор разности начинается там же, где и вычитаемый n.

Часть 2. Изобразим m - n . Теперь для решения воспользуемся теоремой о разности векторов. Для этого следует построить вектор, противоположный n, а затем найти его сумму с m. Полученный результат будет выглядеть так:

Часть 3. Для того чтобы найти разность m - n - p, следует разбить выражение на два действия. Поскольку в векторной алгебре действуют законы аналогичные законам арифметики, то возможны варианты:

  • m - (n + p) : в этом случае вначале строится сумма n + p , которая затем вычитается из m ;
  • (m - n) - p : здесь сначала нужно найти m - n , а затем отнять от этой разности p ;
  • (m - p) - n : первым действием определяется m - p , после чего из полученного результата нужно вычесть n .

Так как в предыдущей части задачи мы уже нашли разность m - n , нам остаётся лишь вычесть из неё p . Построим разность двух данных векторов при помощи теоремы о разности. Ответ показан на изображении ниже (красным цветом обозначен промежуточный результат, а зелёным - окончательный).

Остаётся определить, модуль какого из отрезков является наименьшим. Вспомним, что понятия длины и модуля в векторной математике являются идентичными. Оценим визуально длины p - n, m - n и m - n - p . Очевидно, что самым коротким и обладающим наименьшим модулем является ответ в последней части задачи, а именно m - n - p .

Никто не будет спорить, что к месту назначения невозможно добраться не зная направления движения. В физике это понятие называется вектором . До этого момента мы с вами оперировали некоторыми числами и значениями, которые называются величинами. Вектор отличается от величины наличием направления.

При работе с вектором оперируют его направлением и величиной . Физический параметр без учета направления называют скаляром .

Визуально вектор отображают в виде стрелки. Длина стрелки - величина вектора.

В физике для обозначения векторов используют заглавную букву со стрелкой наверху.

Векторы можно сравнивать. Два вектора будут равны, если они имеют одинаковую величину и направление.

Вектора можно складывать. Результирующий вектор является суммой обоих векторов и определяет расстояние и направление. Например, вы проживаете в Киеве и решили проведать старых друзей в Москве, а оттуда сделать визит к любимой теще во Львов. Насколько далеко вы будете находиться от родного дома, гостюя у мамы жены?

Для ответа на этот вопрос вам надо начертить вектор от исходной точки путешествия (Киев) и до конечной (Львов). Новый вектор определяют результат всего путешествия от начала и до конца.

  • Вектор А - Киев-Москва
  • Вектор В - Москва-Львов
  • Вектор С - Киев-Львов

С = А+В , где С - сумма векторов или результирующий вектор

Вектора можно не только складывать, но и вычитать! Для этого надо совместить основания вычитаемого и вычитающего векторов и соединить их концы со стрелками:

  • Вектор А = С-В
  • Вектор В = С-А

Наложим на наши вектора координатную сетку. Для вектора А можно сказать, что он направлен на 5 клеток вверх (положительное значение оси Y) и на 3 клетки влево (отрицательное значение оси Х): X=-3; Y=5.

Для вектора В: направление на 4 клетки влево и 7 клеток вниз: X=-4; Y=-7.

Т.о., для сложения векторов по осям X и Y надо сложить их координаты. Чтобы получить координаты результирующего вектора по осям X и Y:

Рассмотрим задачу: шар движется со скоростью 10м/с по наклонной плоскости с длиной основания X=1м, распложенной под 30° к горизонту. Требуется определить время, за которое шар переместится от начала к концу плоскости.

В данной задаче скорость является вектором V с величиной 10м/с и направлением α=30° к горизонтали. Чтобы определить скорость перемещения шара вдоль основания наклонной плоскости, нам надо определить X-составляющую перемещения шара, которая является скаляром (имеет только значение, но не направление) и обозначается V x . Аналогично, Y-составляющая скорости также скаляр и обозначается V y . Вектор скорости через составляющие: V = (V x ;V y)


Определим составляющие (V x ;V y). Вспоминаем тригонометрию:

V x = V·cosα
V y = V·sinα

Х-составляющая скорости шара:

V x = V·cosα = V·cos30° = 10,0·0,866 = 8,66 м/с

Горизонтальная скорость шара равна 8,66 м/с.

Т.к. длина основания наклонной плоскости равна 1м, то это расстояние шар преодолеет за:

1,00(м)/8,66(м/с) = 0,12 с

Т.о., шару потребуется 0,12с для перемещения вдоль наклонной плоскости. Ответ: 0,12с

Интереса ради определим Y-составляющую скорости:

V y = V·sinα = 10·1/2 = 5,0 м/с

Поскольку время "путешествия" шара одинаково для обеих составляющих, то можем определить высоту Y, с которой катился шар:

5,0(м/с)·0,12(с) = 0,6 м

Расстояние, пройденное шаром:

Обратная задача

Рассмотрим задачу, обратную предыдущей:

Шар переместился вдоль наклонной плоскости на высоту 0,6м, при этом в горизонтальной плоскости его перемещение составило 1,0м. Необходимо найти расстояние, пройденное шаром и угол.

Расстояние вычисляем по теореме Пифагора:

L = √1,00 2 + 0,60 2 = √1,36 = 1,16м

По тригонометрии:

X = L·cosα; Y = L·sinα

X/L = cosα; Y/L = sinα

Теперь можно найти угол:

α = arccos(X/L); α = arcsin(Y/L)

Подставляем цифры:

α = arccos(1/1,16) = 30°

Промежуточное вычисление L можно исключить:

Y = X·tgα