Болезни Военный билет Призыв

Этапы алгоритм построения точки по заданным координатам. Построение ортогональных проекций точек

При построении точки по заданным координатам, необходимо помнить, что в соответствии с правилами черчения масштаб по оси Ох уменьшается в 2 раза в сравнении с масштабом по осями Оу и Оz.

1.Построить точкy: А(2; 1; 3) х А = 2; у A = 1; z A = 3

а) обычно в первую очередь строят проекцию точки на плоскость Оху. Отметить точки х A =2 и у A =1 и провести через них прямые, параллельные осям Ох и Оу. Точка их пересечения имеет координаты (2;1; 0) Построена точка A 1 (2;1; 0.)

А(2; 1; 3)

0 у A =1

х A =2 у

A 1 (2;1; 0) 0 у A =1 у

х х A =2 A 1 (2;1; 0)

х

б) далее из точки A 1 (2;1; 0) восстанавливают перпендикуляр к плоскости Оху (проводят прямую, параллельную оси Оz ) и откладывают на ней отрезок, равный трем: z A = 3.

2.Построить точкy: B(3; - 2; 1) х B = 3; у B = -2; Z B = 1

z

у B = - 2

B(3; -2; 1) О у

B 1 (3;-2) х B =3

х

3. Построить точку C(-2; 1; 3 ) zC (-2; 1; 3)

Х А = -2; Y A = 1; Z A = 3

х C = - 2 C 1 (-2;1;0)

у A =1 у

4.Дан куб. А...D 1 , ребро которого равно1 . Начало координат совпадает с точкой В, ребра ВА, ВС и ВВ 1 совпадают с положительными лучами осей координат. Назвать координаты всех остальных вершин куба. Вычислить диагональ куба.

z

АВ = ВС = ВВ 1 ВD 1 = =

В 1 (0;0;1) С 1 (0;1;1) = =

А 1 (1;0;1) D 1 (1;1;1)

В(0;0;0) С(0;1;0) у

А(1;0;0) D(1;1;0)

5.Постройте точки А(1;1;-1) и В(1; -1;1). Пересекает ли отрезок ось координат? плоскость координат? проходит ли отрезок через начало координат? Найдите координаты точек пересечения, если они есть. z Точки лежат в плоскости, перпендикулярной оси Ох.

Отрезок пересекает ось Ох и плоскость хОу в точке

В(1; -1;1)

0(0;0;0)

С(1;0;0)

А(1;1;-1)

6.Найти расстояние между двумя точками: А(1;2;3) и В(-1;1;1).

а) АВ = = = =3

б) С(3;4;0) и D(3; -1;2).

СD = = =

В пространстве для определения координат середины отрезка вводится третья координата.

В (х В; у В;z B)

С ( ; ; )

А(х А; у А; z A)

7.Найти координаты С середины отрезков: а) АВ, если А(3; – 2; – 7), В(11; – 8; 5),

х М = = 7; у М = = - 5; z М = = - 1; С(7; - 5; - 1)

8. Координаты точки А(х;у;z). Напишите координаты точек, симметричных данной относительно:

а) координатных плоскостей

б) координатных прямых



в) начала координат

а) Если точка А 1 симметрична данной относительно координатной плоскости хОу, то разница в
координатах точек будет только в знаке координаты z: А 1 (х;у;-z).

точка А 2 Охz, тогда А 2 (х; -у;z).

точка А 3 симметрична данной относительно плоскости Оуz, тогда А 2 (-х; у;z).

б) Если точка А 4 симметрична данной относительно координатной прямой Ох, то разница в
координатах точек будет только в знаках координат у и z: А 4 (х; -у;-z).

точка А 5 Оу, тогда А 5 (-х; у; -z).

точка А 6 симметрична данной относительно прямой Оz, тогда А 6 (-х; -у; z).

в) Если точка А 7 симметрична данной относительно начала координат, то А 6 (-х; -у; -z).

ПРЕОБРАЗОВАНИЕ КООРДИНАТ

Переход от одной системы координат в другую называется преобразованием системы координат.

Мы будем рассматривать два случая преобразования системы координат, и выведем формулы зависимости между координатами произвольной точки плоскости в разных системах координат. (Методика преобразованием системы координат аналогична преобразованию графиков).

1.Параллельный перенос . В этом случае меняется положение начала координат, а направление осей и масштаб остаются неизменными.

Если начало координат переходит в точку 0 1 с координатами 0 1 (х 0 ; у 0), то для точки М(х;у) связь между координатами системы х0у и х 0 0у 0 выражена формулами:

х = х 0 + х"

у = у 0 + у"

Полученные формулы позволяют найти старые координаты по известным новым х" и у" и наоборот.

у М(х;у) М(х"; у")


0 1 (х 0 ; у 0),х"

х 0 х"

2.Поворот осей координат . В этом случае обе оси поворачиваются на один и тот же угол , а начало координат и масштаб остаются неизменными.

М(х;у)

у 1 х 1

Координаты точки М в старой системе М(х;у) и М(х"; у") - в новой. Тогда полярный радиус в обеих системах одинаков, а полярные углы соответственно равны + и , где - полярный угол в новой системе координат.

По формулам перехода от полярных координат к прямоугольным имеем:

x = rcos( + ) x = rcos · cos - rsin ·sin

y = rsin(+ ) y = rcos · sin + rsin · cos

Но rcos = х" и rsin = у" , поэтому

x = х"· cos - у"·sin

y = х"· sin + у"· cos

Письменно ответьте на вопросы:

  1. Что называется прямоугольной системой координат на плоскости? в пространстве?
  2. Какая ось называется осью аппликат? Ординат? Абсцисс?
  3. Каково обозначение единичных векторов на осях координат?
  4. Что называется ортом?
  5. Как вычисляется в прямоугольной системе координат длина отрезка, заданного координатами своих концов?
  6. Как вычисляются координаты середины отрезка, заданного координатами своих концов?
  7. Что называется полярной системой координат?
  8. Какова связь между координатами точки в прямоугольной и полярной системах координат?

Выполните задания:

1. На каком расстоянии от координатных плоскостей находится точка А(1; -2; 3)

2. На каком расстоянии находится точка А(1; -2; 3) от координатных прямых а) Оу; б) Оу; в) Оz;

3. Какому условию удовлетворяют координаты точек пространства, одинаково удаленных:

а) от двух координатных плоскостей Оху и Оуz; АВ

б) от всех трех координатных плоскостей

4. Найдите координаты точки М середины отрезка АВ, А(-2; -4; 1); В(0; -1; 2) и назовите точку, симметричную точки М, относительно а) оси Ох

б) оси Оу

в) оси Оz.

5. Дана точка В(4; - 3; - 4). Найдите координаты оснований перпендикуляров, опущенных из точки на оси координат и координатные плоскости.

6.На оси Оу найти точку, равноудаленную от двух точек А(1; 2; - 1) и В(-2; 3; 1).

7. В плоскости Охz найдите точку, равноудаленную от трех точек А(2; 1; 0); В(-1; 2; 3) и С(0;3;1).

8. Найдите длины сторон треугольника АВС и его площадь, если координаты вершин: А(-2; 0; 1), В(8; - 4; 9), С(-1;2; 3).

9. Найдите координаты проекций точек А(2; -3; 5); В (3;-5; ); С(- ; - ; - ).

10. Даны точки А(1; -1; 0) и В(-3; - 1; 2). Вычислите расстояние от начала координат до данных точек.

ВЕКТОРЫ В ПРОСТРАНСТВЕ. ОСНОВНЫЕ ПОНЯТИЯ

Все величины, с которыми имеют дело в физике, технике, обыденной жизни разделяют на две группы. Первые полностью характеризуются своим численным значением: температура, длина, масса, площадь, работа. Такие величины называются скалярными.

Другие величины, например, сила, скорость, перемещение, ускорение и т.д. определяются не только своим числовым значением, но и направлением. Называются такие величины векторными , или векторами. Векторная величина геометрически изображается в виде вектора.

Вектор -это направленный прямолинейный отрезок, т.е. отрезок, имеющий
определенную длину и направление.

Плоскости проекций V , H , W принимаются за координатные плоскости, а оси проекций X , Y , Z за координатные оси как положительные, так и отрицательные (рис. 10).

Положение точки в пространстве задается тремя координатами – X , Y , Z . Проекции точки задаются двумя координатами: а (х , y ), а′ (х , z ), а′′ (y , z ).

Зная направление для положительного и отрицательного значений координатных осей, принимая во внимание свойства проекций точки, можно построить проекции точки по координатам. Рассмотрим несколько задач на эту тему.

Задача. Построить проекции точки А (–10; 40; –30) (рис. 10).

Рис. 10. Построение проекций точки А по координатам

Для построения фронтальной проекции а′ точки А справа от точки О на оси Х откладываем значение Х = –10. Вниз от точки О по направлению оси Z откладываем значение Z = –30. Пересечением перпендикуляров из точек а X и а Z ,восстановленных к соответствующим осям Х и Z , определяем точку а′.

Для построения горизонтальной проекции а точки А по направлению оси Y вниз от точки О откладываем значение y = – 40. Через точку а Y проводим перпендикуляр до пересечения с линией связи а′а X . Отмечаем точку а – горизонтальную проекцию точки А . По расположению фронтальной и горизонтальной проекций точки А определяем, что точка А расположена в VΙΙΙ октанте.

Для построения профильной проекции а′′ точки А через ее фронтальную проекцию а′ проводим линию связи а′а Z и на ней, вправо от точки а Z , откладываем значение y = 40. Отмечаем точку а′′ – профильную проекцию точки А.

Задача. Построить проекции точек по координатам и указать октант, в котором находится каждая из них.

Исходные данные: А (10; –30; 40), В (70; 50; –10), С (20; 15; 0), D (60; 35; 40), Е (50; –10; –25).

Решение. Порядок выполнения графической части задачи (рис. 11):

1. Проводим оси координат Х , Y , Z. Указываем положительные и отрицательные их направления.

2. Построение точек выполняем в масштабе 1:1.

Точка А (10; –30; 40):

Фронтальную проекцию а′ точки А определяем по координатам Х , Z ; по оси Х откладываем 10 мм, по оси Z – 40 мм.

Горизонтальную проекцию а точки А определяем по координатам Х ,(–Y ), расстояние 30 мм откладываем по оси (–Y Z .

Профильную проекцию а′′ точки А определяем по координатам (–Y ), Z . В этом случае расстояние 30 мм откладывается по оси (–Y ), совпадающей с положительным направлением оси Х . Следовательно, точка А находится во ΙΙ октанте.

Точка В (70; 50; –10):

Строим фронтальную проекцию b′ (Х = 70; Y = –10) точки А . Расстояние 10 мм нужно отложить на отрицательном направлении оси Z . Уточните: фронтальная b′ и горизонтальная b проекции точки В будут расположены на линии связи ниже оси Х. Профильная проекция b′′ точки В располагается справа от оси Z и ниже оси Х . Анализируя знаки координат (+ + –) и расположение проекций точки, делаем вывод – точка В находится в ΙV октанте.

Точка С (20; 15; 0):

При построении этой точки очевидно, что фронтальная проекция с′ точки С лежит на оси Х , а ее профильная проекция а′′ лежит на оси Y , совпадающей с отрицательным направлением оси Х . Удаление точки С от плоскости проекций Н равно нулю (y = 0), следовательно, точка С лежит в плоскости Н , на границе Ι и ΙV октантов.

Точка D (60; 35; 40):

Все значения координат положительные, следовательно, точка D находится в Ι октанте.

Точка Е (50; –10; –25):

При отрицательных значениях Y и Z точка располагается в ΙΙΙ октанте. Проекции такой точки располагаются:

Фронтальная проекция е′ точки Е располагается ниже оси Х , слева от оси Y ;

Горизонтальная проекция е точки Е располагается выше оси Х , слева от оси Z ;

Профильная проекция е′′ точки Е располагается слева от оси Z , ниже оси Х .

Вывод. Положение точки в пространстве вполне определено, если известны три ее координаты или две любые ортогональные проекции. Как следствие из этого – по двум любым заданным ортогональным проекциям точки можно всегда построить недостающую ее третью ортогональную проекцию.

Рис. 11. Построение точек по координатам с указанием октантов

Рассмотри построение точки по двум заданным ортогональным проекциям.

Задача. По двум заданным ортогональным проекциям построить недостающую проекцию точки В (рис. 12).


Рис. 12. Графическое условие задачи

Решение. Анализируем графическое условие задачи: заданы фронтальная и профильная проекции точки В. Это значит, заданы все три координаты точки В. Следовательно, необходимо построить ее горизонтальную проекцию.

1. Для построения горизонтальной проекции точки В необходимо знать Х В и У В . Эти координаты находим на чертеже.

2. Замеряем У В = b Z b′′ и откладываем эту координату вдоль линии связи от оси ОХ от точки b Х.

3. Строим горизонтальную проекцию точки В (рис. 13).

Рис. 13. Построение недостающей проекции точки В


ПРЯМАЯ ЛИНИЯ

При ортогональном проецировании на плоскости проекций прямая линия проецируется в виде прямой. Чтобы построить проекции этой прямой линии, проходящей через заданные точки А и В , нужно построить проекции этих точек и провести прямые линии через их одноименные проекции (рис. 14). Получим:

аb – горизонтальную проекцию отрезка прямой;

а′b′ – фронтальную проекцию отрезка прямой.

Рис. 14. Проекции отрезка прямой, проходящего через две точки

Следы прямой

Прямая пересекает плоскости проекций в точках, которые называются следами прямой.

Точка пересечения прямой N с горизонтальной плоскостью проекций Н (П 1) называется горизонтальным следом N H .

Точка пересечения прямой с фронтальной плоскостью проекций V (П 2) – фронтальным следом N V .

Точка пересечения прямой N с профильной плоскостью проекций W (П 3) – профильным следом N W прямой.

Вывод:

· горизонтальный след прямой – это точка, принадлежащая одновременно данной прямой и лежащая в горизонтальной плоскости проекций H (П 1);

· фронтальный след прямой – это точка, принадлежащая одновременно данной прямой и лежащая во фронтальной плоскости проекций V (П 2);

· профильный след прямой – это точка, принадлежащая одновременно данной прямой и лежащая в профильной плоскости проекций W (П 3).

Задача. Построить точки пересечения прямой N с горизонтальной Н (П 1) и фронтальной V (П 2) плоскостями проекций (рис. 15аб ).

Анализируя задачу, приходим к выводу, что необходимо построить горизонтальный и фронтальный следы прямой.

1. Построение фронтального следа N V .

N и фронтальной плоскости проекций. Согласно изложенному ранее материалу, горизонтальная проекция искомой точки должна:

– лежать на оси Х ;

– принадлежать горизонтальной проекции прямой N .

Порядок выполнения графической части задачи:

1.1. Отмечаем точку пересечения горизонтальной проекции n прямой N с осью Х , получаем точку n V – горизонтальную проекцию фронтального следа.

1.2. Через точку n V Х .

1.3. Находим точку пересечения линии связи с фронтальной проекцией n′ прямой N , получаем точку N V – фронтальную проекцию фронтального следа. Через эту точку прямая уходит во вторую четверть (рис. 15а ) и в третью четверть (рис. 15б ).

2. Построение горизонтального следа N H .

Необходимо построить точку, принадлежащую прямой N и горизонтальной плоскости проекций Н . Согласно изложенному ранее материалу, фронтальная проекция искомой точки должна:

– лежать на оси Х ;

– принадлежать фронтальной проекции прямой N .

Порядок выполнения графической части задачи:

2.1. Отмечаем точку пересечения фронтальной проекции n ′ прямой N с осью Х , получаем точку n H – фронтальную проекцию горизонтального следа.

2.2. Через точку n H проводим линию связи перпендикулярно оси Х .

2.3. Находим точку пересечения линии связи с горизонтальной проекцией n прямой N , получаем фронтальную проекцию фронтального следа. В этой точке прямая пересекает горизонтальную плоскость и уходит в четвертую четверть (рис. 15а ,б ).

а
б

Рис. 15. Построение следов прямой линии N :

а – прямая уходит во вторую четверть; б – прямая уходит в третью четверть

Математика - наука довольно сложная. Изучая ее, приходится не только решать примеры и задачи, но и работать с различными фигурами, и даже плоскостями. Одной из наиболее используемых в математике является система координат на плоскости. Правильной работе с ней детей учат не один год. Поэтому важно знать, что это такое и как правильно с ней работать.

Давайте же разберемся, что представляет собой данная система, какие действия можно выполнять с ее помощью, а также узнаем ее основные характеристики и особенности.

Определение понятия

Координатная плоскость - это плоскость, на которой задана определенная система координат. Такая плоскость задается двумя прямыми, пересекающимися под прямым углом. В точке пересечения этих прямых находится начало координат. Каждая точка на координатной плоскости задается парой чисел, которые называют координатами.

В школьном курсе математики школьникам приходится довольно тесно работать с системой координат - строить на ней фигуры и точки, определять, какой плоскости принадлежит та или иная координата, а также определять координаты точки и записывать или называть их. Поэтому поговорим подробнее обо всех особенностях координат. Но прежде коснемся истории создания, а затем уже поговорим о том, как работать на координатной плоскости.

Историческая справка

Идеи о создании системы координат были еще во времена Птоломея. Уже тогда астрономы и математики думали о том, как научиться задавать положение точки на плоскости. К сожалению, в то время еще не было известной нам системы координат, и ученым приходилось пользоваться другими системами.

Изначально они задавали точки с помощью указания широты и долготы. Долгое время это был один из наиболее используемых способов нанесения на карту той или иной информации. Но в 1637 году Рене Декарт создал собственную систему координат, названную впоследствии в честь "декартовой".

Уже в конце XVII в. понятие «координатная плоскость» стало широко использоваться в мире математики. Несмотря на то что с момента создания данной системы прошло уже несколько веков, она до сих пор широко используется в математике и даже в жизни.

Примеры координатной плоскости

Прежде чем говорить о теории, приведем несколько наглядных примеров координатной плоскости, чтобы вы смогли представить ее себе. В первую очередь координатная система используется в шахматах. На доске каждый квадрат имеет свои координаты - одну координату буквенную, вторую - цифровую. С ее помощью можно определить положение той или иной фигуры на доске.

Вторым наиболее ярким примером может служить любимая многими игра «Морской бой». Вспомните, как, играя, вы называете координату, например, В3, таким образом указывая, куда именно целитесь. При этом, расставляя корабли, вы задаете точки на координатной плоскости.

Данная система координат широко применяется не только в математике, логических играх, но и в военном деле, астрономии, физике и многих других науках.

Оси координат

Как уже говорилось, в системе координат выделяют две оси. Поговорим немного о них, так как они имеют немалое значение.

Первая ось - абсцисс - горизонтальная. Она обозначается как (Ox ). Вторая ось - ординат, которая проходит вертикально через точку отсчета и обозначается как (Oy ). Именно эти две оси образуют систему координат, разбивая плоскость на четыре четверти. Начало отсчета находится в точке пересечения этих двух осей и принимает значение 0 . Только в случае если плоскость образована двумя пересекающимися перпендикулярно осями, имеющими точку отсчета, это координатная плоскость.

Также отметим, что каждая из осей имеет свое направление. Обычно при построении системы координат принято указывать направление оси в виде стрелочки. Кроме того, при построении координатной плоскости каждая из осей подписывается.

Четверти

Теперь скажем пару слов о таком понятии, как четверти координатной плоскости. Плоскость разбивается двумя осями на четыре четверти. Каждая из них имеет свой номер, при этом нумерация плоскостей ведется против часовой стрелки.

Каждая из четвертей имеет свои особенности. Так, в первой четверти абсцисса и ордината положительная, во второй четверти абсцисса отрицательная, ордината - положительная, в третьей и абсцисса, и ордината отрицательные, в четвертой же положительной является абсцисса, а отрицательной - ордината.

Запомнив эти особенности, можно с легкостью определить, к какой четверти относится та или иная точка. Кроме того, эта информация может пригодиться вам и в том случае, если придется делать вычисления, используя декартову систему.

Работа с координатной плоскостью

Когда мы разобрались с понятием плоскости и поговорили о ее четвертях, можно перейти к такой проблеме, как работа с данной системой, а также поговорить о том, как наносить на нее точки, координаты фигур. На координатной плоскости сделать это не так тяжело, как может показаться на первый взгляд.

В первую очередь строится сама система, на нее наносятся все важные обозначения. Затем уже идет работа непосредственно с точками или фигурами. При этом даже при построении фигур сначала на плоскость наносятся точки, а затем уже прорисовываются фигуры.

Правила построения плоскости

Если вы решили начать отмечать на бумаге фигуры и точки, вам понадобится координатная плоскость. Координаты точек наносятся именно на нее. Для того чтобы построить координатную плоскость, понадобится только линейка и ручка или карандаш. Сначала рисуется горизонтальная ось абсцисс, затем вертикальная - ординат. При этом важно помнить, что оси пересекаются под прямым углом.

Следующим обязательным пунктом является нанесение разметки. На каждой из осей в обоих направлениях отмечаются и подписываются единицы-отрезки. Это делается для того, чтобы затем можно было работать с плоскостью с максимальным удобством.

Отмечаем точку

Теперь поговорим о том, как нанести координаты точек на координатной плоскости. Это основа, которую следует знать, чтобы успешно размещать на плоскости разнообразные фигуры, и даже отмечать уравнения.

При построении точек следует помнить, как правильно записываются их координаты. Так, обычно задавая точку, в скобках пишут две цифры. Первая цифра обозначает координату точки по оси абсцисс, вторая - по оси ординат.

Строить точку следует таким образом. Сначала отметить на оси Ox заданную точку, затем отметить точку на оси Oy . Далее провести воображаемые линии от данных обозначений и найти место их пересечения - это и будет заданная точка.

Вам останется только отметить ее и подписать. Как видите, все довольно просто и не требует особых навыков.

Размещаем фигуру

Теперь перейдем к такому вопросу, как построение фигур на координатной плоскости. Для того чтобы построить на координатной плоскости любую фигуру, следует знать, как размещать на ней точки. Если вы умеете это делать, то разместить фигуру на плоскости не так уж и сложно.

В первую очередь вам понадобятся координаты точек фигуры. Именно по ним мы и будем наносить на нашу систему координат выбранные вами Рассмотрим нанесение прямоугольника, треугольника и окружности.

Начнем с прямоугольника. Наносить его довольно просто. Сначала на плоскость наносятся четыре точки, обозначающие углы прямоугольника. Затем все точки последовательно соединяются между собой.

Нанесение треугольника ничем не отличается. Единственное - углов у него три, а значит, на плоскость наносятся три точки, обозначающие его вершины.

Касательно окружности тут следует знать координаты двух точек. Первая точка - центр окружности, вторая - точка, обозначающая ее радиус. Эти две точки наносятся на плоскость. Затем берется циркуль, измеряется расстояние между двумя точками. Острие циркуля ставится в точку, обозначающую центр, и описывается круг.

Как видите, тут также нет ничего сложного, главное, чтобы под рукой всегда были линейка и циркуль.

Теперь вы знаете, как наносить координаты фигур. На координатной плоскости это делать не так уж и сложно, как может показаться на первый взгляд.

Выводы

Итак, мы рассмотрели с вами одно из наиболее интересных и базовых для математики понятий, с которым приходится сталкиваться каждому школьнику.

Мы с вами выяснили, что координатная плоскость - это плоскость, образованная пересечением двух осей. С ее помощью можно задавать координаты точек, наносить на нее фигуры. Плоскость разделена на четверти, каждая из которых имеет свои особенности.

Основной навык, который следует выработать при работе с координатной плоскостью, - умение правильно наносить на нее заданные точки. Для этого следует знать правильное расположение осей, особенности четвертей, а также правила, по которым задаются координаты точек.

Надеемся, что изложенная нами информация была доступна и понятна, а также была полезна для вас и помогла лучше разобраться в данной теме.

Цели: - Обобщить представления учащихся о координатной плоскости; развивать умение определять координаты точек на плоскости, находить точки по заданным координатам;

Совершенствовать умение решать текстовые задачи на движение; уравнения, примеры на порядок действий;

Развивать мышление, память, творческие способности;

Расширять кругозор учащихся.

Скачать:


Предварительный просмотр:

МБОУ СОШ № 60 города Брянска

Урок математики в 4 классе

(учебник Петерсон Л.Г.)

Тема:

«Координаты на плоскости.

Построение точек по их координатам».

Подготовила: Гирлина Н.А.

Учитель начальных классов

Высшей квалификационной категории

МБОУ СОШ № 60

Города Брянска

2016 – 2017 учебный год

Тема: Координаты на плоскости. Построение точек по их координатам.

Цели: - Обобщить представления учащихся о координатной

Плоскости; развивать умение определять координаты

Точек на плоскости, находить точки по заданным

Координатам;

Совершенствовать умение решать текстовые задачи на

Движение; уравнения, примеры на порядок действий;

Развивать мышление, память, творческие способности;

Расширять кругозор учащихся.

Оборудование: персональный компьютер, мультимедийный проектор, экран, мультимедийная презентация, раздаточный материал: лист с координатной плоскостью (каждому ученику), лист с заданиями для викторины «Хочу всё знать» (один на парту).

Ход урока:

Организационное начало.

Устные вычисления:

1) - Наш урок начнём с небольшой разминки Я задумала слово, которое вы должны отгадать, решив задания.

Слайды № 1-20

  1. (4 · 12 +12) · 3: 9 = Д.30 К.20 О15

2) 480: 3: 40 + 78 – 36 = И.36 А.44 О.46

3) 60: Х = 4 О.15 А.240 Б.12

4) Периметр квадрата равен 16см. Найди длину его стороны.

Е.4дм Р.4см Д.8см

5)Длина огорода прямоугольной формы равна 280м, ширина 100м. Найдите длину забора вокруг огорода.

Д.760м Р.380м Т.7600см

6)Длина прямоугольника равна 18см, ширина 2см. Найдите площадь этого прямоугольника.

Д.9см 2 И.36см 2 Е.36см

7)Ширина параллепипеда равна 5дм, длина 6дм, а высота равна 2дм. Найдите его объём.

К.60дм 2 И.60см 2 Н.60дм 3

8)С какой скоростью ехал мотоциклист, если за 2 часа он проехал 62км?

О.31км А.31км/ч Б.124км/ч

9)Автомобиль двигался со скоростью 60км/ч и был в пути 6 часов. Какой путь он преодолел за это время?

Т.360км Д.360км/ч Г.10км

10) За какое время поезд проедет 720км, если его скорость равна 6окм/ч?

Е.12км ы.12ч Г.12км/ч

Какое слово получилось? (координаты)

Что такое координаты? (упорядоченная пара чисел для определения положения точки на плоскости относительно оси ОХ и оси ОY)

Сообщение темы:

Слайд № 21

Учитель: «Определите тему нашего урока.»

Тема нашего урока: «Координаты на плоскости».

Как вы думаете, каковы цели нашего урока? (предположения детей)

Зачитываются цели, записанные на слайде.

Слайд № 22

Зачем надо уметь определять координаты точек?

Где нам это может пригодиться?

Работа по теме:

- А когда впервые задумались о важности координатной плоскости и координатах точек на плоскости?

а)Странички истории

Слайд № 23

Лента времени.

Сведения об учёных

Более чем за 100 лет до нашей эры греческий учёный Гиппарх предложил опоясать на карте земной шар параллелями и меридианами ввести теперь хорошо известные географические координаты: широту и долготу и обозначить их числами.

Во 2 веке нашей эры знаменитый древнегреческий астроном Клавдий Птолемей уже пользовался долготой и широтой в качестве географических координат.

Рене Декарт (1596 – 1650 г.) - французский философ, испытатель,

математик. Целью Декарта было описание природы при помощи математических законов. Автор координатной плоскости, поэтому её часто называют декартовой плоскостью.

Слайд №24

Как называются оси координатной прямой?

Как определить координаты точки на плоскости

в)Работа с учебником:

Стр.57 № 1

- Кто из ребят правильно построил точку А (3,4)?

Какой из способов наиболее удобный?

Чтение правила.

стр.58 № 2

Построить треугольник АВС, если А(1,5); В(3,9); С(9,2)

Построить четырёхугольник, если D (4.2) ; E (1.7) ; F (7.8);

K (10.5)

Раскрась цветным карандашом пересечение треугольника и четырёхугольника. Какая фигура получилась ?

Физкультминутка

г)Викторина «Хочу всё знать»

1) Я приготовила для вас много интересных заданий, которые расширят ваш кругозор. Итак, начнём!

Слайд № 25

Что вы видите на слайде? (координатную плоскость с точками)

Вспомним, как найти точку по её координатам. (первый элемент ищем на

Оси х, второй - на оси у)

Давайте потренируемся. Назвать точку по координатам: (1,5), (0,2), (3,5)

2) - Тренировка закончена. Приступаем к заданию. На листке с координатной плоскостью (раздаточный материал) внизу в пустых клетках написать название точек, координаты которых будут указаны на слайде. Если будете внимательны, сможете прочитать слова.

Самостоятельная работа учащихся

Прочитайте, что у вас получилось. (синий кит)

Слайд № 26

Синий кит - без сомнения крупнейшее животное, когда-либо существовавшее на нашей планете. Он действительно огромен! Синий кит имеет размеры, сравнимые с космическим кораблём, а вес взрослого кита может более чем в тридцать раз больше веса самца современного африканского слона.

Синий кит, как огромный космический корабль, бороздит бескрайние просторы мирового океана, мигрируя из ледяных полярных вод в субтропики Индийского, Тихого и Атлантического океанов.

3) – Попробуем нарисовать синего кита на координатной плоскости.

Слайд № 27

Учитель называет координаты, учащиеся отмечают на плоскости. На слайде дублируется.

Координаты: (0,1), (3,2), (8,2), (8,4), (9,3), (9,2), (10,1), (10,0), (8,1), (6,0), (2,0)

Полученные точки соединяются. Кита можно раскрасить.

Вычислить периметр, нарисованной фигуры.

Что для этого нужно сделать? (измерить стороны) Вычисление периметра.

4) - Вспомните девиз нашего урока. (хочу всё знать)

О ком мы сегодня говорили, кого рисовали?

Пришло время получить ценные сведения об этом удивительном животном.

«Хочу всё знать»

(14 . Х – 20) : 5 = 80(1 ученик с комментированием у доски)

Х = 30

Дополнительно 360: (С· 3 + 12) = 10 (вес новорождённого китёнка)

(разобрать условие, сделать схему на доски, проанализировать и самостоятельно записать по действиям. 1 ученик у доски с обратной стороны. Самопроверка)

Ответ: 57км

55) . 5 Ответ: 380 тонн

Итог урока

Слайд № 7

Чему учились?

Что вызвало затруднения?

Что узнали о «главном герое» нашего урока?

Домашнее задание: №9 с.59, №11(г)с.60.

«Хочу всё знать»

1)Реши уравнения и узнаешь длину в метрах взрослого синего кита:

(14 . Х – 20) : 5 = 80

  1. Реши задачу и ты узнаешь, с какой скоростью бороздит кит водные просторы:

Синий кит проплыл расстояние равное 39 километрам за 3 часа. Следующие 2 часа он плыл со скоростью на 4 км/ч меньше. Какое расстояние проплыл кит за всё это время?

3) Найди значение выражения и узнаешь массу синего кита в тоннах

270 + (4478 - 1598) : 144 – (2438 – 44 . 55) . 5

«Хочу всё знать»

1)Реши уравнения и узнаешь длину в метрах взрослого синего кита:

(14 . Х – 20) : 5 = 80

  1. Реши задачу и ты узнаешь, с какой скоростью бороздит кит водные просторы:

Синий кит проплыл расстояние равное 39 километрам за 3 часа. Следующие 2 часа он плыл со скоростью на 4 км/ч меньше. Какое расстояние проплыл кит за всё это время?

3) Найди значение выражения и узнаешь массу синего кита в тоннах

270 + (4478 - 1598) : 144 – (2438 – 44 . 55) . 5

«Хочу всё знать»

1)Реши уравнения и узнаешь длину в метрах взрослого синего кита:

(14 . Х – 20) : 5 = 80

  1. Реши задачу и ты узнаешь, с какой скоростью бороздит кит водные просторы:

Синий кит проплыл расстояние равное 39 километрам за 3 часа. Следующие 2 часа он плыл со скоростью на 4 км/ч меньше. Какое расстояние проплыл кит за всё это время?

3) Найди значение выражения и узнаешь массу синего кита в тоннах

270 + (4478 - 1598) : 144 – (2438 – 44 . 55) . 5


Построить комплексные чертежи точек: А (15,30,0), В (30,25,15), С (30,10,15), D (15,30,20)

Решение задачи разделим на четыре этапа.

1. А (15,30,0); x A = 15 мм; y A = 30мм; z A = 0.

Как Вы думаете, если у точки А координата z A =0, то какое положение она занимает в пространстве?

Так выглядит комплексный чертеж точки А построенный по заданным координатам

Если у точки одна координата равна нулю, то точка принадлежит одной из плоскостей проекции. В данном случае у точки нет высоты: z = 0, следовательно точка А лежит в плоскости П 1 .

На комплексном чертеже оригинал (т.е. сама точка А ) не изображается, есть только ее проекции.

2. В (30,25,15) и С (30,10,15).

На втором этапе объединим построение двух точек.

x B = 30мм; x C = 30мм

y B = 35мм; y C = 10мм

z B = 15мм; z C = 15мм

У точек В и С : x B = x C = 30мм, z B = z C = 15мм

а) Координаты х точек одинаковы, следовательно, в системе П 1 – П 2 проекции точек лежат на одной линии связи (рис. 1.2),

б) Координаты z точек совпадают, (обе точки одинаково удалены от П 1 на 15мм,) т.е. они расположены на одной высоте, следовательно на П 2 проекции точек совпадают: В 2 = (С 2).

в) Для определения видимости относительно П 2 смотрим на рис. 1.3. Наблюдатель видит точку В , которая закрывает собой точку С , т.е. точка В расположена ближе к наблюдателю, поэтому на П 2 она видима. (См. М1 - 13 и 16).

В системе П 2 П 3 проекции точек также лежат на одной линии связи и видимость определяется по стрелке (рис. 1.2).

Точки В и С - называются фронтально конкурирующими.

3. D (15,30,20); x D = 15мм; y D = 30мм; z D = 20мм.

а) На этом комплексном чертеже (рис. 1.4) построены три проекции точки D (D 1 , D 2 , D 3).

Все три координаты имеют числовые значения, отличные от нуля, поэтому точка не принадлежит ни одной плоскости проекций.

б) Совместим пространственное изображение А и D (рис. 1.5). В системе П 1 -П 2 проекции точек А и D лежат на одной линии связи, только точка D выше точки А , следовательно D - видима, а А - невидима (видима на П 1 та точка, которая расположена выше)

На четвертом, завершающем этапе, соединим все три фрагмента комплексных чертежей точек А,В,С, D в один общий.

Точки А и D - называются горизонтально конкурирующими.