Болезни Военный билет Призыв

Электрическая проводимость полупроводников. Примеры полупроводников. Типы, свойства, практическое применение

Если полупроводник помещается в электрическое поле, то в упорядоченное движение вовлекаются не только свободные электроны, но и дырки, которые ведут себя как положительно заряженные частицы. Поэтому ток I в полупроводнике складывается из электронного I n и дырочного I p токов: I = I n + I p .

Электронно-дырочный механизм проводимости проявляется только у чистых (т.е. без примесей) полупроводников. Он называется собственной электрической проводимостью полупроводников.

Механизм электрического тока в полупроводниках нельзя объяснить в рамках модели газа свободных электронов. Рассмотрим качественно этот механизм на примере германия (Ge). В кристалле кремния (Si) механизм аналогичен.

Атомы германия на внешней оболочке имеют четыре слабо связанных электрона. Их называют валентными электронами. В кристаллической решетке каждый атом окружен четырьмя ближайшими соседями. Связь между атомами в кристалле германия является ковалентной, т. е. осуществляется парами валентных электронов. Каждый валентный электрон принадлежит двум атомам (рис. 1.13.2). Валентные электроны в кристалле германия связаны с атомами гораздо сильнее, чем в металлах; поэтому концентрация электронов проводимости при комнатной температуре в полупроводниках на много порядков меньше, чем у металлов. Вблизи абсолютного нуля температуры в кристалле германия все электроны заняты в образовании связей. Такой кристалл электрического тока не проводит.

При повышении температуры некоторая часть валентных электронов может получить энергию, достаточную для разрыва ковалентных связей. Тогда в кристалле возникнут свободные электроны (электроны проводимости). Одновременно в местах разрыва связей образуются вакансии, которые не заняты электронами. Эти вакансии получили название дырок. Вакантное место может быть занято валентным электроном из соседней пары, тогда дырка переместится на новое место в кристалле. При заданной температуре полупроводника в единицу времени образуется определенное количество электронно-дырочных пар. В то же время идет обратный процесс – при встрече свободного электрона с дыркой, восстанавливается электронная связь между атомами германия. Этот процесс называется рекомбинацией. Электронно-дырочные пары могут рождаться также при освещении полупроводника за счет энергии электромагнитного излучения. В отсутствие электрического поля электроны проводимости и дырки участвуют в хаотическом тепловом движении.

При наличии примесей электрическая проводимость полупроводников сильно изменяется. Например, добавка в кристалл кремния примесей фосфора в количестве 0,001 атомного процента уменьшает удельное сопротивление более чем на пять порядков. Такое сильное влияние примесей может быть объяснено на основе изложенных выше представлений о строении полупроводников.


Необходимым условием резкого уменьшения удельного сопротивления полупроводника при введении примесей является отличие валентности атомов примеси от валентности основных атомов кристалла.

Проводимость полупроводников при наличии примесей называется примесной проводимостью. Различают два типа примесной проводимости – электронную и дырочную.

Электронная проводимость возникает, когда в кристалл германия с четырехвалентными атомами введены пятивалентные атомы (например, атомы мышьяка, As).

На рис. 1.13.3 показан пятивалентный атом мышьяка, оказавшийся в узле кристаллической решетки германия. Четыре валентных электрона атома мышьяка включены в образование ковалентных связей с четырьмя соседними атомами германия. Пятый валентный электрон оказался излишним; он легко отрывается от атома мышьяка и становится свободным. Атом, потерявший электрон, превращается в положительный ион, расположенный в узле кристаллической решетки. Примесь из атомов с валентностью, превышающей валентность основных атомов полупроводникового кристалла, называется донорной примесью. В результате ее введения в кристалле появляется значительное число свободных электронов. Это приводит к резкому уменьшению удельного сопротивления полупроводника – в тысячи и даже миллионы раз. Удельное сопротивление проводника с большим содержанием примесей может приближаться к удельному сопротивлению металлического проводника.

В кристалле германия с примесью мышьяка есть электроны и дырки, ответственные за собственную проводимость кристалла. Но основным типом носителей свободного заряда являются электроны, оторвавшиеся от атомов мышьяка. В таком кристалле n n >> n p . Такая проводимость называется электронной, а полупроводник, обладающий электронной проводимостью, называется полупроводником n-типа.

Дырочная проводимость возникает, когда в кристалл германия введены трехвалентные атомы (например, атомы индия, In). На рис. 1.13.4 показан атом индия, который с помощью своих валентных электронов создал ковалентные связи лишь с тремя соседними атомами германия. На образование связи с четвертым атомом германия у атома индия нет электрона. Этот недостающий электрон может быть захвачен атомом индия из ковалентной связи соседних атомов германия. В этом случае атом индия превращается в отрицательный ион, расположенный в узле кристаллической решетки, а в ковалентной связи соседних атомов образуется вакансия. Примесь атомов, способных захватывать электроны, называется акцепторной примесью. В результате введения акцепторной примеси в кристалле разрывается множество ковалентных связей и образуются вакантные места (дырки). На эти места могут перескакивать электроны из соседних ковалентных связей, что приводит к хаотическому блужданию дырок по кристаллу.

Наличие акцепторной примеси резко снижает удельное сопротивление полупроводника за счет появления большого числа свободных дырок. Концентрация дырок в полупроводнике с акцепторной примесью значительно превышает концентрацию электронов, которые возникли из-за механизма собственной электропроводности полупроводника: n p >> n n . Проводимость такого типа называется дырочной проводимостью. Примесный полупроводник с дырочной проводимостью называется полупроводником p-типа. Основными носителями свободного заряда в полупроводниках p-типа являются дырки.

Следует подчеркнуть, что дырочная проводимость в действительности обусловлена эстафетным перемещением по вакансиям от одного атома германия к другому электронов, которые осуществляют ковалентную связь.

Для полупроводников n- и p-типов закон Ома выполняется в определенных интервалах сил тока и напряжений при условии постоянства концентраций свободных носителей.

4 Электрические свойства "p-n" перехода "p-n" переход (или электронно-дырочный переход) - область контакта двух полупроводников, где происходит смена проводимости с электронной на дырочную (или наоборот). В кристалле полупроводника введением примесей можно создать такие области. В зоне контакта двух полупроводников с различными проводимостями будет проходить взаимная диффузия. электронов и дырок и образуется запирающий электрический слой. Электрическое поле запирающего слоя препятствует дальнейшему переходу электронов и дырок через границу. Запирающий слой имеет повышенное сопротивление по сравнению с другими областями полупроводника. Внешнее электрическое поле влияет на сопротивление запирающего слоя. При прямом (пропускном) направлении внешнего эл.поля эл.ток проходит через границу двух полупроводников. Т.к. электроны и дырки движутся навстречу друг другу к границе раздела, то электроны, переходя границу, заполняют дырки. Толщина запирающего слоя и его сопротивление непрерывно уменьшаются. При запирающем (обратном) направлении внешнего электрического поля электрический ток через область контакта двух полупроводников проходить не будет. Т.к. электроны и дырки перемещаются от границы в противоположные стороны, то запирающий слой утолщается, его сопротивление увеличивается. Таким образом, электронно-дырочный переход обладает односторонней проводимостью. 5 Полупроводниковые приборы. Яркая зависимость электропроводимости полупроводников от температуры используется в приборах называемых термосопротивлениями или термисторами. Они используются для измерения температуры в различных машинах и агрегатах, для измерения температуры почвы на различной глубине, всюду, где необходимо поддерживать постоянную температуру. Чувствительные термисторы можно вводить непосредственно в кровеносный сосуд. Полупроводник с одним "p-n" переходом называется полупроводниковым диодом. При наложении эл.поля в одном направлении сопротивление полупроводника велико,в обратном - сопротивление мало.
Полупроводниковые диоды - основные элементы выпрямителей переменного тока В полупроводниковых транзисторах также используются свойства "р-n "переходов. - транзисторы используются в схемотехнике радиоэлектронных приборов. 6 Вопросы на закрепление изученной темы. - Какие вещества называются полупроводниками? Приведите примеры полупроводников. - Какова зависимость сопротивления полупроводника от температуры? - Как зонная теория объясняет различие в проводимости проводников, полупроводников и диэлектриков? - Объясните механизм собственной и примесной проводимости полупроводников. - Что такое термистор? фоторезистор? - Что такое р-n-переход? Каково его основное свойство? - Как устроен и где применяется полупроводниковый диод? .

Под кристаллической структурой понимают твердую фазу вещества, расположение атомов и молекул которой проявляет определенную закономерность, хотя бы на микроскопических участках. При этом атомы образуют кристаллическую решетку, а определенное сочетание атомов или элементарных ячеек повторяется в любом направлении. Кристалл полупроводника образуется в результате группировки большого количества атомов в определенных узлах кристаллической решетке, которую можно считать крупной молекулой. Свойства кристаллической решетки определяют все свойства полупроводников.


Монокристалл
- единичный кристалл, его выращивают искусственно из расплавов, растворов.

Поликристалл - твердое тело, состоящее из множества кристаллов (зерен), кристаллические решетки соседних зерен обычно разориентированы на углы, измеряемые в градусах и десятках градусов. Большинство свойств полупроводников, связано с возможностью изменять свою электрическую проводимость под воздействием различных факторов. Проводимостью полупроводников можно управлять путем контролирования введения небольшого количества примесных атомов.

Факторами, оказывающими влияние на электрофизические свойства проводников является воздействие термической обработки в атмосфере различных газов, структуры материала, а также состояния поверхности полупроводника, изменение его свойств под воздействием электрических и магнитных полей. Для Германия и Кремния характерны решетки типа алмаза. Элементарная кристаллическая решетка алмазного типа обладает кубической симметрией, таким образом за основу можно выбрать прямоугольную систему координат (x y z). В технологии изготовления ИМС обычно пользуются индексами Миллера, определяющими положение кристаллических плоскостей или кристаллографических направлений, перпендикулярных соответствующим плоскостям. Для кубических кристаллов индексы Миллера представляют собой 3 цифры, относящиеся к прямоугольной системе координат. Как видно, цифра "1" означает, что рассматриваемая плоскость проходит через точку, соответствующую оси с координатой = "1". Цифра "0" означает, что кристаллографическая плоскость параллельна оси. Соответственно кристаллографическая плоскость (1 0 0) проходит через точку х=1 и параллельна осям y и z. Ведение коэффициента Миллера необходимо для оценки важного свойства кристаллической решетки, а именно анизотропии, то есть необходимость механических и электрофизических свойств в различных направлениях.

Основные определения технических процессов:

Эпитаксия - процесс осаждения атомарного кремния на монокристаллические кремниевые пластины, при котором получают пленку, которая является продолжением структуры. Эпитаксия позволяет создать монокристаллическую пленку полупроводника с заданной кристаллографической ориентацией плотности поверхности.

Для создания в полупроводнике слоев с различным типом проводимости и p-n переходов используют 2 метода введения примесей - термическая диффузия и ионная имплантация (легирования).

Диффузия - это направленное движение атомов, возникающее под действием градиента концентрации или температуры.

Ионная имплантация - метод легирования пластины или эпитаксиального слоя путем бомбардировки ионами примеси, ускоренными до энергии, достаточной для их внедрения в глубь твердого тела.

Термическое окисление диэлектрика - получение при этом пленки SiO2 , выполняет несколько важных функций:

защиты (как диэлектрик)

Функция маски (через которую вводятся необходимые примеси)

Литография - процесс создания защитной маски, необходимой для локальной обработки при формировании структуры ИМС. Маска содержит совокупность заранее спроектированных отверстий - окон.

Травление - немеханический способ изменения рельефа поверхности твердого тела. При травлении используют растворы для общего и локального удаления поверхностного слоя твердого тела на определенную глубину.

Заготовительный процесс: монокристаллические слитки кремния получают зонной плавкой и путем кристаллизации из расплава метода Чохральского.

В методе стержни с затравкой виде монокристаллического кремния после соприкасания с расплавом полупроводника медленно поднимают с одновременным вращением. При этом вслед за затравкой вытягивается нарастающий и застывающий слиток. Кристаллографическая ориентация слитка (поперечное сечение) определяет кристаллографическую ориентацию затравки. Типовой диаметр слитка 10-15см, длина слитка до метра. Слитки кремния разрезают на множество тонких пластин - 400-500 микрон, на которых потом изготовляют ИМС и приборы.

Зонная плавка - в изложении слиток поликристаллического кремния и нагревания в конце зоны. Расплавленная зона перемещается и преобразует поликристаллический кремний в монокристаллический. При этом также происходит процесс очистки.

Здравствуйте уважаемые читатели сайта . На сайте есть раздел посвященный начинающим радиолюбителям, но пока что для начинающих, делающих первые шаги в мир электроники, я толком ничего и не написал. Восполняю этот пробел, и с этой статьи мы начинаем знакомиться с устройством и работой радиокомпонентов (радиодеталей).

Начнем с полупроводниковых приборов. Но чтобы понять, как работает диод, тиристор или транзистор, надо представлять, что такое полупроводник . Поэтому мы, сначала изучим структуру и свойства полупроводников на молекулярном уровне, а затем уже будем разбираться с работой и устройством полупроводниковых радиокомпонентов.

Общие понятия.

Почему именно полупроводниковый диод, транзистор или тиристор? Потому, что основу этих радиокомпонентов составляют полупроводники – вещества, способные, как проводить электрический ток, так и препятствовать его прохождению.

Это большая группа веществ, применяемых в радиотехнике (германий, кремний, селен, окись меди), но для изготовления полупроводниковых приборов используют в основном только Кремний (Si) и Германий (Ge).

По своим электрическим свойствам полупроводники занимают среднее место между проводниками и непроводниками электрического тока.

Свойства полупроводников.

Электропроводность проводников сильно зависит от окружающей температуры.
При очень низкой температуре, близкой к абсолютному нулю (-273°С), полупроводники не проводят электрический ток, а с повышением температуры, их сопротивляемость току уменьшается .

Если на полупроводник навести свет , то его электропроводность начинает увеличиваться. Используя это свойство полупроводников, были созданы фотоэлектрические приборы. Также полупроводники способны преобразовывать энергию света в электрический ток, например, солнечные батареи. А при введении в полупроводники примесей определенных веществ, их электропроводность резко увеличивается.

Строение атомов полупроводников.

Германий и кремний являются основными материалами многих полупроводниковых приборов и имеют во внешних слоях своих оболочек по четыре валентных электрона .

Атом германия состоит из 32 электронов, а атом кремния из 14. Но только 28 электронов атома германия и 10 электронов атома кремния, находящиеся во внутренних слоях своих оболочек, прочно удерживаются ядрами и никогда не отрываются от них. Лишь только четыре валентных электрона атомов этих проводников могут стать свободными, да и то не всегда. А если атом полупроводника потеряет хотя бы один электрон, то он становится положительным ионом .

В полупроводнике атомы расположены в строгом порядке: каждый атом окружен четырьмя такими же атомами. Причем они расположены так близко друг к другу, что их валентные электроны образуют единые орбиты, проходящие вокруг соседних атомов, тем самым связывая атомы в единое целое вещество.

Представим взаимосвязь атомов в кристалле полупроводника в виде плоской схемы.
На схеме красные шарики с плюсом, условно, обозначают ядра атомов (положительные ионы), а синие шарики – это валентные электроны .

Здесь видно, что вокруг каждого атома расположены четыре точно таких же атома, а каждый из этих четырех имеет связь еще с четырьмя другими атомами и т.д. Любой из атомов связан с каждым соседним двумя валентными электронами, причем один электрон свой, а другой заимствован у соседнего атома. Такая связь называется двухэлектронной или ковалентной .

В свою очередь, внешний слой электронной оболочки каждого атома содержит восемь электронов: четыре своих, и по одному , заимствованных от четырех соседних атомов. Здесь уже не различишь, какой из валентных электронов в атоме «свой», а какой «чужой», так как они сделались общими. При такой связи атомов во всей массе кристалла германия или кремния можно считать, что кристалл полупроводника представляет собой одну большую молекулу . На рисунке розовым и желтым кругами показана связь между внешними слоями оболочек двух соседних атомов.

Электропроводность полупроводника.

Рассмотрим упрощенный рисунок кристалла полупроводника, где атомы обозначаются красным шариком с плюсом, а межатомные связи показаны двумя линиями, символизирующими валентные электроны.

При температуре, близкой к абсолютному нулю полупроводник не проводит ток, так как в нем нет свободных электронов . Но с повышением температуры связь валентных электронов с ядрами атомов ослабевает и некоторые из электронов, вследствие теплового движения, могут покидать свои атомы. Вырвавшийся из межатомной связи электрон становится «свободным », а там где он находился до этого, образуется пустое место, которое условно называют дыркой .

Чем выше температура полупроводника, тем больше в нем становится свободных электронов и дырок. В итоге получается, что образование «дырки» связано с уходом из оболочки атома валентного электрона, а сама дырка становится положительным электрическим зарядом равным отрицательному заряду электрона.

А теперь давайте рассмотрим рисунок, где схематично показано явление возникновения тока в полупроводнике .

Если приложить некоторое напряжение к полупроводнику, контакты «+» и «-», то в нем возникнет ток.
Вследствие тепловых явлений , в кристалле полупроводника из межатомных связей начнет освобождаться некоторое количество электронов (синие шарики со стрелками). Электроны, притягиваясь положительным полюсом источника напряжения, будут перемещаться в его сторону, оставляя после себя дырки , которые будут заполняться другими освободившимися электронами . То есть, под действием внешнего электрического поля носители заряда приобретают некоторую скорость направленного движения и тем самым создают электрический ток .

Например: освободившийся электрон, находящийся ближе всего к положительному полюсу источника напряжения притягивается этим полюсом. Разрывая межатомную связь и уходя из нее, электрон оставляет после себя дырку . Другой освободившийся электрон, который находится на некотором удалении от положительного полюса, также притягивается полюсом и движется в его сторону, но встретив на своем пути дырку, притягивается в нее ядром атома, восстанавливая межатомную связь.

Образовавшуюся новую дырку после второго электрона, заполняет третий освободившийся электрон, находящийся рядом с этой дыркой (рисунок №1). В свою очередь дырки , находящиеся ближе всего к отрицательному полюсу, заполняются другими освободившимися электронами (рисунок №2). Таким образом, в полупроводнике возникает электрический ток.

Пока в полупроводнике действует электрическое поле , этот процесс непрерывен : нарушаются межатомные связи — возникают свободные электроны — образуются дырки. Дырки заполняются освободившимися электронами – восстанавливаются межатомные связи, при этом нарушаются другие межатомные связи, из которых уходят электроны и заполняют следующие дырки (рисунок №2-4).

Из этого делаем вывод: электроны движутся от отрицательного полюса источника напряжения к положительному, а дырки перемещаются от положительного полюса к отрицательному .

Электронно-дырочная проводимость.

В «чистом» кристалле полупроводника число высвободившихся в данный момент электронов равно числу образующихся при этом дырок, поэтому электропроводность такого полупроводника мала , так как он оказывает электрическому току большое сопротивление, и такую электропроводность называют собственной .

Но если в полупроводник добавить в виде примеси некоторое количество атомов других элементов, то электропроводность его повысится в разы, и в зависимости от структуры атомов примесных элементов электропроводность полупроводника будет электронной или дырочной .

Электронная проводимость.

Допустим, в кристалле полупроводника, в котором атомы имеют по четыре валентных электрона, мы заменили один атом атомом, у которого пять валентных электронов. Этот атом своими четырьмя электронами свяжется с четырьмя соседними атомами полупроводника, а пятый валентный электрон останется «лишним » – то есть свободным. И чем больше больше окажется свободных электронов, а значит, такой полупроводник по своим свойствам приблизится к металлу, и чтобы через него проходил электрический ток, в нем не обязательно должны разрушаться межатомные связи .

Полупроводники, обладающие такими свойствами, называют полупроводниками с проводимостью типа «n », или полупроводники n -типа. Здесь латинская буква n происходит от слова «negative» (негатив) — то есть «отрицательный». Отсюда следует, что в полупроводнике n -типа основными носителями заряда являются – электроны , а не основными – дырки.

Дырочная проводимость.

Возьмем все тот же кристалл, но теперь заменим его атом атомом, в котором только три свободных электрона. Своими тремя электронами он свяжется только с тремя соседними атомами, а для связи с четвертым атомом у него не будет хватать одного электрона. В итоге образуется дырка . Естественно, она заполнится любым другим свободным электроном, находящимся поблизости, но, в любом случае, в кристалле такого полупроводника не будет хватать электронов для заполнения дырок. И чем больше будет таких атомов в кристалле, тем больше будет дырок.

Чтобы в таком полупроводнике могли высвобождаться и передвигаться свободные электроны, обязательно должны разрушаться валентные связи между атомами . Но электронов все равно не будет хватать, так как число дырок всегда будет больше числа электронов в любой момент времени.

Такие полупроводники называют полупроводниками с дырочной проводимостью или проводниками p -типа, что в переводе от латинского «positive» означает «положительный». Таким образом, явление электрического тока в кристалле полупроводника p-типа сопровождается непрерывным возникновением и исчезновением положительных зарядов – дырок. А это значит, что в полупроводнике p -типа основными носителями заряда являются дырки , а не основными — электроны.

Теперь, когда Вы имеете некоторое представление о явлениях, происходящих в полупроводниках, Вам не составит труда понять принцип действия полупроводниковых радиокомпонентов.

На этом давайте остановимся, а в рассмотрим устройство, принцип работы диода, разберем его вольт-амперную характеристику и схемы включения.
Удачи!

Источник:

1 . Борисов В.Г. — Юный радиолюбитель. 1985г.
2 . Сайт academic.ru: http://dic.academic.ru/dic.nsf/es/45172.

Понравилась статья - поделитесь с друзьями:

10 комментариев

), и веществами, [фактически не проводящими электрического тока (изоляторы или диэлектрики).

Для полупроводников характерна сильная зависимость их свойств и характеристик от микроскопических количеств содержащихся в них примесей. Изменяя количество примеси в полупроводнике от десятимиллионных долей процента до 0,1-1%, можно изменить их проводимость в миллионы раз. Другое важнейшее свойство полупроводников состоит в том, что электрический ток переносится в них не только отрицательными зарядами - электронами, но и равными им по величине положительными зарядами - дырками.

Если рассматривать идеализированный полупроводниковый кристалл, абсолютно свободный от каких-нибудь примесей, то его способность проводить электрический ток будет определяться так называемой собственной электропроводностью.

Атомы в кристалле полупроводника связаны между собой с помощью электронов внешней электронной оболочки. При тепловых колебаниях атомов тепловая энергия распределяется между электронами, образующими связи, неравномерно. Отдельные электроны могут получать количество тепловой энергии, достаточное для того, чтобы «оторваться» от своего атома и получить возможность свободно перемещаться в кристалле, т. е. стать потенциальными носителями тока (по-другому можно сказать, что они переходят в зону проводимости). Такой уход электрона нарушает электрическую нейтральность атома, у него возникает положительный заряд , равный по величине заряду ушедшего электрона. Это вакантное место называют дыркой.

Так как вакантное место может быть занято электроном соседней связи, дырка также может перемещаться внутри кристалла и являться уже положительным носителем тока. Естественно, что электроны и дырки при этих условиях возникают в равных количествах, и электропроводность такого идеального кристалла будет в равной степени определяться как положительными, так и отрицательными зарядами.

Если на место атома основного полупроводника поместить атом примеси, во внешней электронной оболочке которого содержится на один электрон больше, чем у атома основного полупроводника, то такой электрон окажется как бы лишним, ненужным для образования межатомных связей в кристалле и слабо связанным со своим атомом. Достаточно в десятки раз меньше энергии, чтобы оторвать его от своего атома и превратить в свободный электрон. Такие примеси называют донорными, т. е. отдающими «лишний» электрон. Атом примеси заряжается, разумеется, положительно, но дырки при этом не появляется, так как дыркой может быть только вакансия электрона в незаполненной межатомной связи, а в данном случае все связи заполнены. Этот положительный заряд остается связанным со своим атомом, неподвижным и, следовательно, в процессе электропроводности участия принимать не может.

Введение в полупроводник примесей, внешняя электронная оболочка которых содержит меньшее количество электронов, чем в атомах основного вещества, приводит к появлению незаполненных связей, т. е. дырок. Как было сказано выше, эта вакансия может быть занята электроном из соседней связи, и дырка получает возможность свободного перемещения по кристаллу. Иными словами, движение дырки - это последовательный переход электронов из одной соседней связи в другую. Такие примеси, «принимающие» электрон, называют акцепторными.

С увеличением количества примесей того или иного типа электропроводность кристалла начинает приобретать все более ярко выраженный электронный или дырочный характер. В соответствии с первыми буквами латинских слов negativus и positivus электронную электропроводность называют электропроводностью я-типа, а дырочную - р-типа, отмечая этим, какой тип подвижных носителей заряда для данного полупроводника является основным, а какой - неосновным.

При электропроводности, обусловленной наличием примесей (т. е. примесной), в кристалле по-прежнему остается 2 типа носителей: основные, появляющиеся главным образом за счет введения в полупроводник примесей, и неосновные, обязанные своим появлением тепловому возбуждению. Содержание в 1 см3 (концентрация) электронов п и дырок р для данного полупроводника при данной температуре есть величина постоянная: n- p=const. Это значит, что, увеличивая за счет введения

Если приложить к структуре металл - диэлектрик полупроводник n-типа напряжения (указанной на рисунке полярности), то в приповерхностном слое полупроводника возникает электрическое поле, отталкивающее электроны. Этот слой оказывается обедненным электронами и будет обладать более высоким сопротивлением. При изменении полярности напряжения электроны будут притягиваться электрическим полем и у поверхности создастся обогащенный слой с пониженным сопротивлением.

В полупроводнике р-типа, где основными носителями являются положительные заряды - дырки, та полярность напряжения, которая отталкивала электроны, будет притягивать дырки и создавать обогащенный слой с пониженным сопротивлением. Схема полярности в этом случае приведет к отталкиванию дырок и образованию приповерхностного слоя с повышенным сопротивлением.

Следующее важное свойство полупроводников - их сильная чувствительность к температуре и облучению. С ростом температуры повышается средняя энергия колебания атомов в кристалле, и все большее количество связей будет подвергаться разрыву. Будут появляться все новые и новые пары электронов и дырок. При достаточно высоких температурах собственная (тепловая) проводимость может сравняться с примесной или даже значительно превзойти ее. Чем выше концентрация примесей, тем при более высоких температурах будет наступать этот эффект.

Разрыв связей может осуществляться также за счет облучения полупроводника, например, светом, если энергия световых квантов достаточна для разрыва связей. Энергия разрыва связей у разных полупроводников различна, поэтому они по-разному реагируют на те или иные участки спектра облучения.

В качестве основных полупроводниковых материалов используют кристаллы кремния и германия, а в роли примесей - бор, фосфор, индий, мышьяк, сурьму и многие другие элементы, сообщающие полупроводникам необходимые свойства. Получение полупроводниковых кристаллов с заданным содержанием примесей - сложнейший технологический процесс, проводимый в особо чистых условиях с использованием оборудования высокой точности и сложности.блоках электронной вычислительной машины. Инженеры не могут сегодня обходиться без полупроводниковых выпрямителей, переключателей и усилителей. Замена ламповой аппаратуры полупроводниковой позволила в десятки раз уменьшить габариты и массу электронных устройств, снизить потребляемую ими мощность и резко увеличить

4.2.Полупроводниковые химические соединения

Полупроводники типа А III B V

Это химические соединения, образующиеся при взаимодействии элементов А III и B V подгрупп периодической системы Менделеева. Эти соединения характеризуются наличием у А III на внешних оболочках по 3 валентных электрона – s 2 р 1 , а у В V – 5 валентных электронов в состоянии s 2 р 3 . На каждый атом приходится – 4 электрона, как в элементах IV группы, а отсюда и одинаковые кристаллические структуры и электронные свойства этих соединений с алмазом, кремнием, германием и другими элементами IV группы. Но отличаются типом связи – наряду с ковалентной есть и ионные, т.к. в узлах решетки располагаются положительные и отрицательные ионы.

Кристаллическая решетка соединений типа А III В V менее симметрична, чем решетка алмаза, германия, кремния. Примерами соединений этого типа могут быть: InSb – антимонид индия, InАs – арсенид индия, InР – фосфид индия, GаSb – антимонид галлия, GаАs – арсенид галлия, GаР – фосфид галлия, АlSb – антимонид алюминия.

Эти соединения имеют большую, чем у германия и кремния подвижность электронов. Электропроводность полупроводниковых соединений зависит от примесей, входящих в междоузлия или в узлы атомной решетки в виде атомов замещения (это элементы II, IV, VI групп).

Арсениды, антимониды и фосфиды индия и галлия получают сплавлением компонентов в вакууме в кварцевых ампулах. Выращивание кристаллов этих соединений – например, GаАs методом Чохральского , такое же как и Si , но с магнитным управлением, с направленной кристаллизацией. Можно использовать зонную плавку.

Карбид кремния SiC ( A IV B IV )

Получается восстановлением из SiО 2 углем при высокой температуре в электрических печах:

SiO 2 + 3 C = SiC + 2 CO .

Примеси удаляют добавлением NаСl , образующиеся хлориды улетучиваются при высокой температуре. Чистый карбид кремния бесцветен. Величина проводимости и тип зависит от примесей. Удельное сопротивление чистого карбида кремния 10 11 Ом·м, с примесями - 0,001 Ом·м.

Химическая структура и тип связи у карбида кремния такой же как у элементов IVВ подгруппы. Имеется ряд модификаций карбида кремния. Ширина запрещенной зоны карбида кремния – 2,86 эВ.

Примесь элементов V группы (P , As , Sb , Bi ) и железа в карбиде кремния дает зеленую окраску и проводимость n – типа (электронную).

Примесь элементов II группы (Са , Мg ) и III группы (В , Аl , , I n ) дает голубую окраску и проводимость р – типа. Избыток кремния в карбиде кремния дает проводимость n – типа, а избыток С – р –проводимость.

Карбид кремния применяют для нелинейных резисторов, термокомпенсаторов , силовых выпрямителей с р - n - переходом, работающих при высоких температурах (до 650 °С).

Оксиды

Из оксидов наибольшее применение получила закись меди Сu 2 О , обладающая ширной запрещенной зоны W = 0,22÷0,39 эВ. Является основой медно – закисных (купроксных ) выпрямителей. Медные пластины нагревают при 1020÷1040 °С в окислительной среде 5 мин, затем переносят в печь с температурой 600°С, где выдерживают 10 мин. Получается в итоге двойное покрытие: первое Сu 2 О (закись), второе СuО – окись. Закись меди Сu 2 О – полупроводник, а СuО – диэлектрик. Окись меди в требуемых местах вытравливают. Сu 2 О является примесным полупроводником n – типа, с интервалом рабочих температур от –40 до +60°С. Медное основание в прилегающей к пленке Сu 2 О имеет электронную проводимость, что обусловливает в слое закиси меди электронно – дырочный переход.

Меднозакисные выпрямители широко применялись в технике (в измерительных приборах, в схемах автоматических устройств и др.).

Мn 3 О 4 – закись – окись марганца – поликристаллический полупроводник с W = 1,25 эВ. Этот окисный полупроводник применяется в термисторах (термометрах сопротивления).

К оксидным полупроводникам с электронной электропроводностью относятся широко используемые радиоэлектронике ферриты и сегнетоэлектрики (сегнетова соль).

Полупроводниковые свойства проявляют те оксиды, у которых один или более ионов металла относится к элементу переходного ряда (Ti , Cu , Zn , Ni , Co , Fe , Mn , Cr , V ).

Сульфиды (люминофоры)

В полупроводниковой технике применяют: сульфид свинца РbS ; сульфид цинка ZnS ; сульфид кадмия СdS ; сульфид висмута Вi 2 S 3 .

Сульфид свинца имеет кристаллическую структуру с кубической решеткой. Плотность – 7,5 · 10 3 кг/м 3 , молекулярная масса – 239, температура плавления 1114 °С, W = 0,4 эВ. В зависимости от соотношения S и Рb получается проводимость: дырочная – если больше серы, электронная – если больше свинца, подвижность электронов 80 см 2 /(В·с). Сульфид свинца применяется для термоэлементов и фоторезисторов с высокой чувствительностью в ИК области спектра.

Сульфид цинка кристаллическая структура с кубической или гексагональной решеткой природного или синтетического происхождения.

Сульфид кадмия полупроводниковый кристаллический материал гексагональной структуры, молекулярная масса – 144,5; плотность – 4,82 · 10 3 кг/м 3 , ∆ W = 2,1 эВ. Применяют для фоторезисторов.

Сульфид висмута кристаллическое вещество ромбической структуры, получают сплавлением висмута с серой в нейтральной среде или в вакууме. Плотность – 7,4 · 10 3 кг/м 3 ; молекулярная масса – 514,2; W = 1,25 эВ.

C оединения типа А II В VI

Селениды

Наибольшее применение получили CdSe , PbSe , HgSe .

Селенид ртути НgSе кристаллическое вещество, получают сплавлением компонентов в вакууме при 960 °С; имеет электронную проводимость с подвижностью электронов 5000 см 2 /(В·с), W = 0,3 эВ. Применяется в датчиках э.д.с . Холла, фоторезисторах, лазерах.

Физические свойства соединений типа А II В VI

CdS

CdSe

CdTe

PbS

PbSe

PbTe

Молекулярная масса

72,0

95,0

120,5

120,0

143,0

168,0

Температура плавления,°С

1475

1250

1040

1110

1065

Ширина запрещенной зоны ∆ W , эВ

0,55

Подвижность, см 2 /(В·с)

электронов

дырок

Теллуриды

Из полупроводниковых соединений теллура в ИК – технике используют теллурид свинца РbТе , теллурид кадмия СdТе , теллурид висмута Вi 2 Те 3 .

РbТе , обладающий высокой чувствительностью к ИК – излучению, в виде теллуристо – свинцового фоторезистора используется как приемник ИК – излучения.

Органические полупроводники

Органические полупроводники – это органические соединения с сопряженными связями:

то есть, есть электроны общего пользования, значит, молекула обладает свойствами металла и к ней можно применить зонную теорию в одномерном приближении. Дискретные уровни p электронов представляют собой валентную зону. Энергия активации электронов – запрещенную зону. Проводимость внутри молекулы очень велика, т. к. p электроны обладают высокой подвижностью и небольшой энергией возбуждения.

Так жидкий бензол – диэлектрик, так как электронам трудно преодолеть энергетический барьер, связанный с межмолекулярными взаимодействиями. Если соединить молекулы бензола определенным образом, то энергетический барьер можно понизить, и соединение может быть полупроводником.

Аморфные полупроводники

К аморфным (стеклообразным) полупроводникам относятся селениды, теллуриды , сульфиды элементов V группы периодической системы, образующие соединения с аморфной структурой:

Sb 2 Te 3 , As 2 S 3 , As 2 Se 3 , As 2 Se 5 .

Для них характерен ближний порядок и зонная теория не применима. Свойства можно объяснить на основе теории валентной связи. Их проводимость мало зависит от примесей, а зависит от размеров атомов, образующих соединения. С уменьшением радиуса атома полупроводниковые свойства переходят в диэлектрические.