Болезни Военный билет Призыв

Двухатомный спирт этиленгликоль. Спирты — номенклатура, получение, химические свойства

Определение и номенклатура двухатомных спиртов

Органические соединения, содержащие две гидроксильные группы ($-OH-$) называются двухатомными спиртами или диолами.

Общая формула двухатомных спиртов $CnH_{2n}(OH)_2$.

При обозначении двухатомных спиртов, согласно номенклатуре ИЮПАК, к окончанию -ол добавляют приставку ди-, то есть двухатомный спирт имеет окончание «диол». Цифры указывают, к каким углеродным атомам присоединены гидроксильные группы, например:

Рисунок 1.

1,2-пропандиол транс-1,2-циклогександиол 1-циклогексил-1,4-пентадиол

В систематической номенклатуре существует дифференциация между 1,2-, 1,3-, 1,4- и т.д. диолами.

Если соединение содержит гидроксильные группы у соседних (вициеальных) атомов углерода, то двухатомные спирты называют гликолями.

В названиях гликолей отображается способ их получения путем гидроксилирования алкенов, например:

Рисунок 2.

Существование стойких двухатомных спиртов возможно, начиная с этана, которому соответствует один диол - этиленгликоль. Для пропана возможно существование двух спиртов: 1,2- и 1,3- пропандиолов.

Из спиртов, соответствующих нормальному бутану, возможно существование следующих соединений:

  • обе гидроксогруппы находятся рядом - одна в группе $CH_3$, другая в группе $CH_2$;
  • оба гидроксила расположены в соседних $CH_2$ группах;
  • гидроксогруппы примыкают к несоседним атомам углерода, в группах $CH_3$ и $CH_2$;
  • оба гидроксила расположены в группах $CH_3$.

Изобутану соответствуют следующие диолы:

  • гидроксогруппы находятся рядом - в группах $CH_3$ и $CH$;
  • оба гидроксила расположены в группах $CH_3$:

Рисунок 3.

Двухатомные спирты можно классифицировать на основании того, какие спиртовые группы входят с состав их частицы:

  1. Двупервичные гликоли. Этиленгликоль содержит две первичные спиртовые группы.
  2. Двувторичные гликоли. Содержат две вторичные спиртовые группы.
  3. Двутретичные гликоли. Содержат три вторичные спиртовые группы.
  4. Смешанные гликоли: первично - вторичные, первично - третичные, вторично - третичные.

Например: изопентану соответствует вторично-третичный гликоль

Рисунок 4.

Гексану (тетраметил-этану) соответствует двутретичный гликоль:

Рисунок 5.

Если в двухатомном спирте оба гидроксила расположены у соседних атомов углерода, то это $\alpha$-гликоли. $\beta$-гликоли появляются, когда гидроксогруппы разъединены одним углеродным атомом. У диолов $\gamma$-ряда гидроксилы расположены через два углеродных атома. При большем отдалении друг от друга гидроксилов появляются диолы $\delta$- и $\varepsilon$-ряда.

Геминальные диолы

В свободном состоянии могут существовать только такие диолы, которые произошли из углеводородов в результате замены гидроксильными группами двух атомов водорода, находящихся при двух разных углеродных атомах. Когда гидроксогруппы замещают два атома водорода при одном и том же атоме углерода, возникают нестойкие соединения - геминальные диолы или гем-диолы.

Геминальные диолы - двухатомные спирты, содержащие обе гидроксильные группы у одного атома углерода. Это нестабильные соединения, легко разлагаются с отщеплением воды и образованием карбонильного соединения:

Рисунок 6.

Равновесие смещено в сторону образования кетона, поэтому геминальные диолы также называют гидратами альдегидов или кетонов.

Простейшим представителем геминальных диолов является метиленгликоль. Это соединение сравнительно устойчивое в водных растворах. Однако попытки его выделения приводят к появлению продукта дегидратации - формальдегиду:

$HO-CH_2-OH \leftrightarrow H_2C=O + H_2O$

Например: Не может существовать в свободном состоянии двухатомный спирт, соответствующий этану, если обе гидроксильные группы находятся при одном атоме углерода. Сразу выделяется вода и образуется уксусный альдегид:

Рисунок 7.

Два двухатомных спирта, отвечающих пропану, также не способны к самостоятельному существованию, так как будут выделять воду за счет гидроксилов, расположенных при одном углеродном атоме. При этом будут образовываться, в одном случае - пропионовый альдегид, в другом - ацетон:

Рисунок 8.

Незначительное количество гем-диолов могут существовать не в растворенном состоянии. Это соединения, которые содержат сильные электроноакцепторные заместители, например хлоральгидрат и гидрат гексафотрацетон

Рисунок 9.

Физические свойства гликолей

Для гликолей характерны следующие физические свойства:

  • низшие гликоли - бесцветные прозрачные жидкости, имеющие сладковатый вкус;
  • высокая температура кипения и плавления (tкип этиленгликоля 197$^\circ$С);
  • высокие плотность и вязкость;
  • хорошая растворимость в воде, этиловом спирте;
  • плохая растворимость в неполярных растворителях (например, в эфирах и углеводородах).

Общая закономерность: с увеличением молекулярной массы двухатомных спиртов растет температура кипения. При этом растворимость в воде уменьшается. Низшие спирты смешиваются с водой в любых соотношениях. У высших диолов растворимость в эфире больше, а в воде - меньше.

Для многих веществ двухатомные спирты выступают в роли хороших растворителей (исключение - ароматические и высшие предельные углеводороды).

Самые известные и применяемые в жизни человека и в промышленности вещества, принадлежащие к категории многоатомных спиртов - это этиленгликоль и глицерин. Их исследование и использование началось несколько веков назад, но свойства этих во многом неповторимы и уникальны, что делает их незаменимыми и по сей день. Многоатомные спирты используют во многих химических синтезах, отраслях промышленности и сферах человеческой жизнедеятельности.

Первое «знакомство» с этиленгликолем и глицерином: история получения

В 1859 году, посредством двухстадийного процесса взаимодействия дибромэтана с ацетатом серебра и последующей обработки едким кали полученного в первой реакции этиленгликольдиацетата, Шарль Вюрц впервые синтезировал этиленгликоль. Некоторое время спустя был разработан метод прямого гидролиза дибромэтана, но в промышленных масштабах в начале двадцатого века двухатомный спирт 1,2-диоксиэтан, он же - моноэтиленгликоль, или просто гликоль, в США получали посредством гидролиза этиленхлоргидрина.

На сегодняшний день и в промышленности, и в лаборатории применяют ряд других методов, новых, более экономичных с сырьевой и энергетической точек зрения, и экологичных, так как применение реагентов, содержащих или выделяющих хлор, токсины, канцерогены и другие опасные для окружающей среды и человека вещества, сокращается по мере развития «зелёной» химии.

Аптекарем Карлом Вильгельмом Шееле в 1779 году был открыт глицерин, а особенности состава соединения изучил в 1836 году Теофиль Жуль Пелуз. Двумя десятилетиями позже было установлено и обосновано строение молекулы данного трёхатомного спирта в трудах Пьера Эжена Марселея Вертело и Шарля Вюрца. Наконец, ещё двадцать лет спустя Шарль Фридель провёл полный синтез глицерина. В настоящее время промышленность использует два метода его получения: через хлористый аллил из пропилена, а также через акролеин. Химические свойства этиленгиликоля, как и глицерина, широко используют в различных сферах химического производства.

Строение и структура соединения

В основе молекулы лежит непредельный углеводородный скелет этилена, состоящий из двух атомов карбона, в котором произошёл разрыв двойной связи. На освободившиеся валентные места у атомов углерода присоединились две гидроксильные группы. Формула этилена - С 2 Н 4 , после разрыва кранной связи и присоединения гидроксильных групп (через несколько стадий) она выглядит как С 2 Н 4 (ОН) 2 . Это и есть этиленгликоль.

Молекуле этилена присуща линейная структура, в то время как двухатомный спирт имеет некое подобие транс-конфигурции в размещении гидроксильных групп по отношению к углеродному остову и друг к другу (в полной мере этот термин применим к положению относительно кратной связи). Такая дислокация соответствует самому удаленному расположению водородов из функциональных групп, меньшей энергии, а значит - максимальной устойчивости системы. Попросту говоря, одна ОН-группа «смотрит» вверх, а другая - вниз. В то же время неустойчивыми являются соединения с двумя гидроксилами: при одном атоме карбона, образуясь в реакционной смеси, они тут же дегидратируются, переходя в альдегиды.

Классификационная принадлежность

Химические свойства этиленгликоля определяются его происхождением из группы многоатомных спиртов, а именно подгруппы диолов, то есть соединений с двумя гидроксильными фрагментами у соседних атомов карбона. Веществом, также содержащим несколько ОН-заместителей, является и глицерин. Он имеет три спиртовых функциональных группы и является самым распространённым представителем своего подкласса.

Многие соединения этого класса также получают и используют в химическом производстве для различных синтезов и прочих целей, но применение этиленгликоля имеет более серьёзные масштабы и задействовано практически во всех отраслях промышленности. Этот вопрос будет рассмотрен ниже более подробно.

Физические характеристики

Применение этиленгликоля объясняется наличием ряда свойств, которые присущи многоатомным спиртам. Это отличительные черты, характерные только для данного класса органических соединений.

Самое важно из свойств - это неограниченная способность смешиваться с Н 2 О. Вода + этиленгликоль даёт раствор, обладающий уникальной характеристикой: температура его замерзания, в зависимости от концентрации диола, ниже на 70 градусов, чем у чистого дистиллята. Важно отметить, что зависимость эта нелинейная, и по достижении определённого количественного содержания гликоля начинается обратный эффект - температура замерзания повышается при увеличении процентного содержания растворяемого вещества. Эта особенность нашла применение в области производства различных антифризов, жидкостей «незамерзаек», которые кристаллизуются при крайне низких термических характеристиках окружающей среды.

Кроме как в воде, процесс растворения отлично протекает в спирте и ацетоне, но не наблюдается в парафинах, бензолах, эфирах и тетрахлорметане. В отличие от своего алифатического родоначальника - такого газообразного вещества, как этилен, этиленгликоль - это сиропоподобная,прозрачная, с незначительным желтым оттенком жидкость, сладковатая по вкусу, с нехарактерным запахом, практически нелетучая. Замерзание стопроцентного этиленгликоля происходит при - 12,6 градусах Цельсия, а кипение - при +197,8. В нормальных условиях плотность составляет 1,11 г/см 3 .

Методы получения

Этиленгликоль можно получить несколькими способами, некоторые из них сегодня имеют лишь историческое или препаративное значение, а другие активно используются человеком в промышленных масштабах и не только. Следуя в хронологическом порядке, рассмотрим самые важные.

Выше уже был описан первый метод получения этиленгликоля из дибромэтана. Формула этилена, двойная связь которого разорвана, а свободные валентности заняты галогенами, - главного исходного вещества в данной реакции - помимо углерода и водорода имеет в своём составе два атома брома. Образование промежуточного соединения на первой ступени процесса возможно как раз благодаря их отщеплению, т. е. замещению ацетатными группами, которые при дальнейшем гидролизе превращаются в спиртовые.

В процессе дальнейшего развития науки стало возможным получение этиленгликоля прямым гидролизом любых этанов, замещенных двумя галогенами у соседних атомов карбона, с помощью водных растворов карбонатов металлов из щелочной группы или (менее экологичный реагент) Н 2 О и диоксида свинца. Реакция довольно «трудоёмкая» и протекает лишь при значительно повышенных температурах и давлении, но это не помешало немцам в периоды мировых войн использовать этот метод для производства этиленгликоля в промышленных масштабах.

Свою роль в становлении органической химии сыграл и способ получения этиленгликоля из этиленхлоргидрина путём его гидролиза угольными солями металлов щелочной группы. При повышении температуры реакции до 170 градусов выход целевого продукта достигал 90 %. Но был значительный недостаток - гликоль нужно было как-то извлекать из раствора соли, что непосредственно сопряжено с рядом трудностей. Учёные решили этот вопрос, разработав метод с тем же исходным веществом, но разбив процесс на две стадии.

Гидролиз этиленгликольацетатов, являясь ранее завершающей стадией метода Вюрца, стал отдельным способом, когда сумели получить исходный реагент окислением этилена в уксусной кислоте кислородом, то есть без применения дорогих и совсем неэкологичных соединений галогенов.

Известно также много способов производства этиленгликоля путём окисления этилена гидроперекисями, перекисями, органическими надкислотами в присутствии катализаторов (соединений осмия), и др. Также существуют электрохимические и радиационно-химические методы.

Характеристика общих химических свойств

Химические свойства этиленгликоля определяются его функциональными группами. В реакциях может принимать участие один гидроксильный заместитель или оба, в зависимости от условий процесса. Главное отличие в реакционной способности заключается в том, что за счёт наличия у многоатомного спирта нескольких гидроксилов и их взаимного влияния проявляются более сильные чем у одноатомных "собратьев". Поэтому в реакциях со щелочами продуктами являются соли (для гликоля - гликоляты, для глицерина - глицераты).

В химические свойства этиленгликоля, равно как и глицерина, входят все реакции спиртов из категории одноатомных. Гликоль даёт полные и неполные эфиры в реакциях с одноосновными кислотами, гликоляты, соответственно, образуются с щелочными металлами, а при химическом процессе с сильными кислотами или их солями выделяется альдегид уксусной кислоты - за счёт отщепления от молекулы атома водорода.

Реакции с активными металлами

Взаимодействие этиленгликоля с активными металлами (стоящими после водорода в химическом ряде напряженности) при повышенных температурах даёт этиленгликолят соответствующего металла, плюс выделяется водород.

С 2 Н 4 (ОН) 2 + Х → С 2 Н 4 О 2 Х, где Х - активный двухвалентный металл.

на этиленгликоль

Отличить многоатомный спирт от любой другой жидкости можно с помощью наглядной реакции, характерной только для данного класса соединений. Для этого к бесцветному раствору спирта вливают свежеосажденный (2), имеющий характерный голубой оттенок. При взаимодействии смешанных компонентов наблюдается растворение осадка и окрашивание раствора в насыщенно синий цвет - в результате образования гликолята меди (2).

Полимеризация

Химические свойства этиленгликоля имеют большое значение для производства растворителей. Межмолекулярная дегидратация упомянутого вещества, то есть отщепление воды от каждой из двух молекул гликоля и их последующее объединение (одна гидроксильная группа отщепляется полностью, а от другой отходит только водород), даёт возможность получения уникального органического растворителя - диоксана, который часто используется в органической химии, несмотря на его высокую токсичность.

Обмен гидроксила на галоген

При взаимодействии этиленгликоля с галогеноводородными кислотами наблюдается замена гидроксильных групп соответствующим галогеном. Степень замещения зависит от мольной концентрации галогенводорода в реакционной смеси:

НО-СН 2 -СН 2 -ОН + 2НХ → Х-СН 2 -СН 2 -Х, где Х - хлор или бром.

Получение эфиров

В реакциях этиленгликоля с азотной кислотой (определённой концентрации) и одноосновными органическими кислотами (муравьиной, уксусной, пропионовой, масленой, валерьяновой и т. д.) происходит образование сложных и, соответственно, простых моноэфиров. При других концентрация азотной кислоты - ди- и тринитроэфиров гликоля. В качестве катализатора используется серная кислота заданной концентрации.

Важнейшие производные этиленгликоля

Ценными веществами, которые можно получить из многоатомных спиртов с помощью несложных (описанных выше), являются эфиры этиленгликоля. А именно: монометиловый и моноэтиловый, формулы которых - НО-СН 2 -СН 2 -О-СН 3 и НО-СН 2 -СН 2 -О-С 2 Н 5 соответственно. По химические свойства они во многом похожи на гликоли, но, так же, как и любой другой класс соединений, имеют уникальные реакционные особенности, присущие только им:

  • Монометилэтиленгликоль представляет собой жидкость без цвета, но с характерным отвратным запахом, закипающую при 124,6 градусах Цельсия, отлично растворяющуюся в этаноле, других органических растворителях и воде, значительно более летучую, чем гликоль, и с плотностью, меньшей, чем у воды (порядка 0,965 г/см 3).
  • Диметилэтиленгликоль - также жидкость, но с менее характерным запахом, плотностью 0,935 г/см 3 , температурой закипания 134 градуса выше ноля и растворимостью, сравнительной с предыдущим гомологом.

Применение целлозольвов - так в общем называют моноэфиры этиленгликоля - довольно распространено. Они используются в качестве реагентов и растворителей в органическом синтезе. Также применяются и их для антикоррозийных и антикристаллизационных добавок в антифризы и моторные масла.

Области применения и ценовая политика продукционного ряда

Стоимость на заводах и предприятиях, занимающихся производством и продажей подобных реактивов, колеблется в среднем около 100 рублей за килограмм такого химического соединения, как этиленгликоль. Цена зависит от чистоты вещества и максимального процентного содержания целевого продукта.

Применение этиленгликоля не ограничивается какой-то одной областью. Так, в качестве сырья его используют в производстве органических растворителей, искусственных смол и волокон, жидкостей, замерзающих при отрицательных температурах. Он задействован во многих промышленных отраслях, таких как автомобильная, авиационная, фармацевтическая, электротехническая, кожевенная, табачная. Неоспоримо весомо его значение для органического синтеза.

Важно помнить, что гликоль - это токсичное соединение, которое может нанести непоправимый вред здоровью человека. Поэтому его хранят в герметичных сосудах из алюминия или стали с обязательным внутренним слоем, защищающим ёмкость от коррозии, только в вертикальных положениях и помещениях, не снабженных отопительными системами, но с хорошей вентиляцией. Срок - не более пяти лет.

Имеют общую формулу C n H 2n (OH) 2 . Простейшим гликолем является этиленгликоль НО-СН 2 -СН 2 -ОН.

Номенклатура

Названия гликолей образованы от названий соответствующих углеводородов с суффиксами -диол или -гликоль:

H O - C H 2 - C H 2 - O H {\displaystyle {\mathsf {HO{\text{-}}CH_{2}{\text{-}}CH_{2}{\text{-}}OH}}} - 1,2-этандиол, этиленгликоль

H O - C H 2 - C H 2 - C H 2 - O H {\displaystyle {\mathsf {HO{\text{-}}CH_{2}{\text{-}}CH_{2}{\text{-}}CH_{2}{\text{-}}OH}}} - 1,3-пропандиол, 1,3-пропиленгликоль

Физические и химические свойства

Низшие гликоли представляют собой бесцветные прозрачные жидкости со сладковатым вкусом. Безводные гликоли гигроскопичны. Из-за наличия двух полярных OH-групп в молекулах гликолей у них высокие вязкость, плотность, температуры плавления и кипения.

Низшие гликоли хорошо растворяются в воде и органических растворителях (спиртах, кетонах, кислотах и аминах). В то же время гликоли сами являются хорошими растворителями для многих веществ, за исключением ароматических и высших предельных углеводородов

Гликоли обладают всеми свойствами спиртов (образуют алкоголяты , простые и сложные эфиры), при этом гидроксильные группы реагируют независимо друг от друга, образовывая смесь продуктов.

С альдегидами и кетонами гликоли образуют 1,3-диоксоланы и 1,3-диоксаны.

Получение и применение

Гликоли синтезируют несколькими основными способами:

  • гидролиз соответствующих дихлоралканов
C l - C H 2 - C H 2 - C l → 200 o C 10 M P a N a 2 C O 3 H O - C H 2 - C H 2 - O H {\displaystyle {\mathsf {Cl{\text{-}}CH_{2}{\text{-}}CH_{2}{\text{-}}Cl{\xrightarrow[{200^{o}C\ 10MPa}]{Na_{2}CO_{3}}}HO{\text{-}}CH_{2}{\text{-}}CH_{2}{\text{-}}OH}}}
  • окисление алкенов перманганатом калия:
  • гидратация оксиранов (эпоксидов)

Гликоли служат в качестве растворителей и пластификаторов. Этиленгликоль и пропиленгликоль используются в качестве антифриза и гидравлических жидкостей. Благодаря высокой температуре кипения (например, 285°C у триэтиленгликоля), гликоли нашли применение в качестве тормозной жидкости . Гликоли применяются для получения различных эфиров, полиуретанов и др.

Отдельные представители

Метанол (метиловый, древесный спирт) – бесцветная жидкость со слабым спиртовым запахом. Большое количество его используют в производстве формальдегида, муравьиной кислоты, метил- и диметиланилина, метиламинов и многих красителей, фармацевтических препаратов, душистых веществ. Метанол - хороший растворитель, поэтому он широко применяется в лакокрасочной промышленности, а также в нефтяной промышленности при очистке бензинов от меркаптанов, при выделении толуола азеотропной ректификацией.

Этанол (этиловый, винный спирт) – бесцветная жидкость с характерным спиртовым запахом. Этиловый спирт в больших количествах используется в производстве дивинила (перерабатывается в синтетические каучуки), диэтилового эфира, хлороформа, хлораля, этилена высокой чистоты, этилацетата и других сложных эфиров, применяемых в качестве растворителей лаков и душистых веществ (фруктовые эссенции). В качестве растворителя этиловый спирт широко применяется в производстве фармацевтических, душистых, красящих и других веществ. Этанол – хорошее антисептическое средство.

Пропиловый и изопропиловый спирты. Эти спирты, а также их сложные эфиры применяются как растворители. В ряде случаев они заменяют этиловый спирт. Изопропиловый спирт используют для получения ацетона.

Бутиловый спирт и его сложные эфиры применяют в больших количествах как растворители лаков и смол

Изобутиловый спирт применяется для получения изобутилена, изомасляного альдегида, изомасляной кислоты, а также в качестве растворителя.

Первичные амиловые и изоамиловые спирты составляют основную часть сивушного масла (побочные продукты при получении этилового спирта из картофеля или злаков). Амиловые спирты и их эфиры – хорошие растворители. Изоамилацетат (грушевая эссенция) применяется при изготовлении прохладительных напитков и некоторых кондитерских изделий.

Лекция №15. Многоатомные спирты

Многоатомные спирты. Классификация. Изомерия. Номенклатура. Двухатомные спирты (гликоли). Трехатомные спирты. Глицерин. Синтез из жиров и пропилена. Применение гликоля и глицерина в промышленности.

Две гидроксильные группы не могут находиться у одного атома углерода, такие соединения легко теряют воду, превращаясь в альдегиды или кетоны:

Это свойство типично для всех гем -диолов. Устойчивость гем -диолов повышается при наличии электроноакцепторных заместителей. Примером устойчивого гем -диола является хлоральгидрат.

Производные углеводородов, в молекулах которых есть одна или несколько гидроксильных групп OH .

Все спирты делятся на одноатомные и многоатомные

Одноатомные спирты

Одноатомные спирты - спирты, у которых имеется одна гидроксильная группа .
Бывают первичные, вторичные и третичные спирты:

У первичных спиртов гидроксильная группа находится у первого атома углерода, у вторичных - у второго, и т.д.

Свойства спиртов , которые являются изомерными, во многом похожи, но в некоторых реакциях они ведут себя по-разному.

Сравнивая относительную молекулярную массу спиртов (Mr) c относительными атомными массами углеводородов, можно заметить, что спирты имеют более высокую температуру кипения. Это объясняется наличием водородной связи между атомом H в группе ОН одной молекулы и атомом O в группе -ОН другой молекулы.

При растворении спирта в воде образуются водородные связи между молекулами спирта и воды. Этим объясняется уменьшение объёма раствора (он всегда будет меньше, чем сумма объёмов воды и спирта по отдельности).

Наиболее ярким представителем химических соединений этого класса является этиловый спирт . Его химическая формула C 2 H 5 -OH. Концентрированный этиловый спирт (он же - винный спирт или этанол ) получают из разбавленных его растворов путём перегонки; действует опьяняюще, а в больших доза - это сильный яд, который разрушает живые ткани печени и клетки мозга.

Муравьиный спирт (метиловый)

При этом нужно отметить, что этиловый спирт полезен в качестве растворителя, консерванта, средства понижающего температуру замерзания какого-либо препарата. Ещё один не менее известный представитель этого класса - метиловый спирт (его ещё называют - древесный или метанол ). В отличии от этанола метанол смертельно опасен даже в самых малых дозах! Сначала он вызывает слепоту, затем просто "убивает"!

Многоатомные спирты

Многоатомные спирты - спирты, имеющие несколько гидроксильных групп OH.
Двухатомными спиртами называются спирты ,содержащие две гидроксильные группы (группа ОН); спирты содержащие три гидроксильные группы - трёхатомные спирты . В их молекулах две или три гидроксильные группы никогда не оказываются присоединёнными к одному и тому же атому углерода.

Многоатомный спирт - глицерин

Двухатомные спирты ещё называют гликолями , так как они обладают сладким вкусом, - это характерно для всех многоатомных спиртов

Многоатомные спирты с небольшим числом атомов углерода - это вязкие жидкости, высшие спирты - твёрдые вещества. Многоатомные спирты можно получать теми же синтетическими методами, что и предельные многоатомные спирты .

Получение спиртов

1. Получение этилового спирта (или винный спирт) путём брожения углеводов:

C 2 H 12 O 6 => C 2 H 5 -OH + CO 2

Суть брожения заключается в том, что один из простейших сахаров - глюкоза , получаемый в технике из крахмала, под влиянием дрожжевых грибков распадается на этиловый спирт и углекислый газ. Установлено, что процесс брожения вызывают не сами микроорганизмы, а выделяемые ими вещества - зимазы . Для получения этилового спирта обычно используют растительное сырьё, богатое крахмалом: клубни картофеля, хлебные зёрна, зёрна риса и т.д.

2. Гидратация этилена в присутствии серной или фосфорной кислоты

CH 2 =CH 2 + KOH => C 2 H 5 -OH

3. При реакции галогеналканов со щёлочью:

4. При реакции окисления алкенов

5. Гидролиз жиров: в этой реакции получается всем известный спирт - глицерин

Кстати, глицерин входит в состав многих косметических средств как консервант и как средство, предотвращающее замерзание и высыхание!

Свойства спиртов

1) Горение : Как и большинство органических веществ спирты горят с образованием углекислого газа и воды:

C 2 H 5 -OH + 3O 2 -->2CO 2 + 3H 2 O

При их горении выделяется много теплоты, которую часто используют в лабораториях (лабораторные горелки). Низшие спирты горят почти бесцветным пламенем, а у высших спиртов пламя имеет желтоватый цвет из-за неполного сгорания углерода.

2) Реакция со щелочными металлами

C 2 H 5 -OH + 2Na --> 2C 2 H 5 -ONa + H 2

При этой реакции выделяется водород и образуется алкоголят натрия. Алкоголяты похожи на соли очень слабой кислоты, а также они легко гидролизуются. Алкоголяты крайне неустойчивы и при действии воды - разлагаются на спирт и щелочь. Отсюда следует вывод, что одноатомные спирты не реагируют со щелочами!

3) Реакция с галогеноводородом
C 2 H 5 -OH + HBr --> CH 3 -CH 2 -Br + H 2 O
В этой реакции образуется галогеноалкан (бромэтан и вода). Такая химическая реакция спиртов обусловлена не только атомом водорода в гидроксильной группе, но и всей гидроксильной группой! Но эта реакция обратима: для её протекания нужно использовать водоотнимающее средство, например серную кислоту.

4) Внутримолекулярная дегидратация (в присутствии катализатора H 2 SO 4)

В этой реакции при действии концентрированной серной кислоты и при нагревании происходит . В процессе реакции образуется непредельный углеводород и вода.
Отщепление атома водорода от спирта может происходить в его же молекуле (то есть происходит перераспределение атомов в молекуле). Эта реакция является межмолекулярной реакцией дегидратации . Например, так:

В процессе реакции происходит образование простого эфира и воды.

Если добавить к спирту карбоновую кислоту, например уксусную, то произойдёт образование простого эфира. Но сложные эфиры менее устойчивы, чем простые эфиры. Если реакция образования простого эфира почти необратима, то образование сложного эфира - обратимый процесс. Сложные эфиры легко подвергаются гидролизу, распадаясь на спирт и карбоновую кислоту.

6) Окисление спиртов.

Кислородом воздуха при обычной температуре спирты не окисляются, но при нагревании в присутствии катализаторов идёт окисление. Примером может служить оксид меди (CuO), марганцовка (KMnO 4), хромовая смесь. При действии окислителей получаются различные продукты и зависят от строения исходного спирта. Так, первичные спирты превращаются в альдегиды (реакция А), вторичные - в кетоны (реакция Б), а третичные спирты устойчивы к действию окислителей.

Что касается многоатомных спиртов , то они имеют сладковатый вкус, но некоторые из них ядовиты. Свойства многоатомных спиртов похожи на одноатомные спирты , при этом различие в том, что реакция идёт не по одной к гидроксильной группе, а по нескольким сразу.
Одно из основных отличий - многоатомные спирты легко вступают в реакцию гидроксидом меди. При этом получается прозрачный раствор ярко сине-фиолетового цвета. Именно этой реакцией можно выявлять наличие многоатомного спирта в каком-либо растворе.

Взаимодействуют с азотной кислотой:

С точки зрения практического применения наибольший интерес представляет реакция с азотной кислотой. Образующийся нитроглицерин и динитроэтиленгликоль используют в качестве взрывчатых веществ, а тринитроглицерин - ещё и в медицине, как сосудорасширяющее средство.

Этиленгликоль

Этиленгликоль - типичный представитель многоатомных спиртов . Его химическая формула CH 2 OH - CH 2 OH. - двухатомный спирт. Это сладкая жидкость, которая способно отлично растворяться в воде в любых пропорциях. В химических реакциях может участвовать как одна гидроксильная группа (-OH), так и две одновременно.


Этиленгликоль - его растворы - широко применяются как антиобледенительное средство (антифризы ). Раствор этиленгликоля замерзает при температуре -34 0 C, что в холодное время года может заменить воду, например для охлаждения автомобилей.

При всей пользе этиленгликоля нужно учитывать, это это очень сильный яд!

Все мы видели глицерин . Он продаётся в аптеках в тёмных пузырьках и представляет собой вязкую бесцветную жидкость, сладковатую на вкус. - это трёхатомный спирт . Он очень хорошо растворим в воде, кипит при температуре 220 0 C.

Химические свойства глицерина во многом сходны со свойствами одноатомных спиртов, но глицерин может реагировать с гидроксидами металлов (например, гидроксидом меди Cu(OH) 2), при этом образуются глицераты металлов - химические соединения, подобные солям.

Реакция с гидроксидом меди - типовая для глицерина. В процессе химической реакции образуетс ярко-синий раствор глицерата меди

Эмульгаторы

Эмульгаторы - это высшие спирты , эфиры и другие сложные химические вещества, которые при смешивании с другими веществами, например жирами , образуют стойкие эмульсии. Кстати, все косметические средства также являются эмульсиями! В качестве эмульгаторов часто используют вещества, представляющие собой искусственный воск (пентол, сорбитанолеат), а также триэтаноламин, лицетин.

Растворители

Растворители - это вещества, используемые в основном для приготовления лаков для волос и ногтей. Они представлены в небольшой номенклатуре, так как большинство таких веществ легко воспламенимо и вредно для организма человека. Наиболее распространённым представителем растворителей является ацетон , а также амилацетат, бутилацетат, изобутилат.

Есть также вещества, называемые разбавители . Они, в основном применяются вместе с растворителями для приготовления различных лаков .