Болезни Военный билет Призыв

Движение солнечной системы во вселенной. Законы движения планет солнечной системы

Местоположение орбиты, орбитальное движение, а также период вращения вокруг оси и её наклон − важные характеристики, которые в некоторых случаях могут полностью определять условия на поверхности планеты. В данной статье я проведу обзор указанных выше характеристик применимо к планетам Солнечной системы и опишу отличительные особенности планет, обусловленные их движением и расположением.

Меркурий

Ближайшая к Солнцу планета является, пожалуй, самой особенной в рамках темы, рассматриваемой в этой статье. А обусловлена эта исключительность Меркурия сразу несколькими причинами. Во-первых – орбита Меркурия самая вытянутая среди всех планет Солнечной системы (эксцентриситет составляет 0,205). Во-вторых − у планеты самый маленький наклон оси к плоскости своей орбиты (всего несколько сотых градуса). В-третьих – соотношение между периодами осевого вращения и орбитального обращения составляет 2/3.

Из-за сильной вытянутости орбиты, разница в расстоянии от Меркурия до Солнца в разных точках орбиты может составлять более чем до полутора раз – от 46 млн. км в перигелии, до 70 млн в афелии. Во столько же раз меняется орбитальная скорость планеты – от 39 км/с в афелии и до 59 км/с в перигелии. В результате такого движения, всего за 88 земных суток (один меркурианский год) угловой размер Солнца при наблюдении с поверхности Меркурия меняется от 104-х угловых минут (что в 3 раза больше, чем на Земле) в перигелии, до 68-ми угловых минут (в 2 раза больше, чем на Земле) в афелии. После чего начинается сближение с Солнцем, и оно снова увеличивается в диаметре до 104-х минут при приближении к перигелию. А разница в орбитальной скорости сказывается на скорости видимого перемещения Солнца на фоне звёзд. Значительно быстрее в перигелии, чем в афелии.

Особенности планеты

Существует и ещё одна особенность видимого движения Солнца на небе Меркурия. В ней, помимо его орбитального движения, замешано ещё и очень медленное осевое вращение (один оборот вокруг оси относительно звёзд занимает почти 59 земных суток). Суть в том, что на небольшом участке орбиты вблизи перигелия угловая скорость орбитального движения планеты больше, чем угловая скорость осевого вращения. В результате этого Солнце, перемещаясь с востока на запад за счёт осевого вращения, начинает замедлять свой ход, останавливается и некоторое время двигается с запада на восток. Поскольку в это время направление и скорость орбитального движения являются преобладающими факторами. При удалении от перигелия видимое движение Солнца относительно горизонта снова становится зависимым от осевого вращения планеты и продолжается с востока на запад.

Соотношение 2/3 периодов обращения вокруг оси и вокруг Солнца приводит к тому, что солнечные сутки на Меркурии длятся 176 земных суток (по 88 суток день и ночь). Т.е. в течение одного меркурианского года, Солнце находится над горизонтом и столько же под ним. Вследствие чего, на 2-х долготах в течение солнечных суток можно наблюдать тройной восход Солнца.

Как это происходит

Солнце сначала медленно выползает из-за горизонта, двигаясь с востока на запад. Затем Меркурий проходит перигелий, и Солнце начинает двигаться на восток, опускаясь обратно за горизонт. После прохождения перигелия Солнце снова двигается с востока на запад относительно горизонта, теперь уже взойдя окончательно, и при этом будет быстро уменьшаться в размерах. Когда Солнце будет близко к точке зенита, Меркурий пройдёт афелий и Солнце начнёт склоняться к западу, увеличиваясь в размерах. Затем, в момент когда Солнце уже практически зайдёт за западный горизонт, Меркурий по орбите снова подойдёт к перигелию, и Солнце взойдёт обратно из-за западного горизонта. По прохождении перигелия Солнце сядет за горизонт окончательно. После чего взойдёт на востоке только через меркурианский год (88 суток) и весь цикл движений повторится. На остальных долготах Меркурий будет проходить перигелий в тот момент, когда Солнце будет уже не у горизонта. И, следовательно, тройного восхода за счёт обратного движения в этих местах происходить не будет.

Разница температур

Из-за медленного вращения и в крайней степени разреженной атмосферы, поверхность Меркурия с солнечной стороны очень сильно нагревается. Особенно это касается так называемых «горячих долгот» (меридианы, на которых Солнце находится в зените при прохождении планетой перигелия). В таких местах температура поверхности может достичь 430 °C. При этом вблизи полярных регионов, из-за незначительно наклона оси планеты, есть места, куда вообще не попадают солнечные лучи. Там температура держится в районе -200 °C.

Подводя итог по Меркурию, видим, что результатом сочетания его отличительного орбитального движения, медленного вращения, уникального соотношения периодов вращения вокруг оси и обращения вокруг Солнца, а также малого наклона оси − является весьма необычное движение Солнца по небу, причём с заметным изменением размеров и самые большие температурные перепады в Солнечной системе.

Венера

В противоположность орбите Меркурия, орбита Венеры наоборот наиболее круглая среди орбит всех остальных планет. В её случае разница в расстоянии до Солнца в перигелии и афелии различается всего на 1,5 млн. км (107,5 млн. км и 109 млн. км соответственно). Но ещё интересней тот факт, что планета обладает ретроградным вращением вокруг оси, так что если бы можно было увидеть Солнце с поверхности Венеры, то в течение дня оно бы всё время двигалось с запада на восток. Причём двигалось бы очень медленно, поскольку скорость осевого вращения Венеры ещё меньше, чем у Меркурия и относительно звёзд, планета завершает оборот за 243 земных суток, что больше, чем длительность года (оборот вокруг Солнца занимает 225 земных суток).

Сочетание периодов орбитального движения и осевого вращения делает продолжительность солнечных суток равной приблизительно 117 земным суткам. Сам по себе наклон оси к плоскости орбиты невелик и составляет 2,7 градуса. Однако с учётом того, что планета вращается ретроградно, она оказывается фактически полностью перевёрнута. В этом случае величина наклона оси к плоскости орбиты составляет 177,3 градуса. Впрочем, на условия на поверхности планеты все указанные выше параметры практически не влияют. Плотная атмосфера очень хорошо удерживает тепло, за счёт чего температура почти не меняется. И неважно в какое время суток, и на какой широте при этом находиться.

Земля

Земная орбита весьма близка по форме к круговой, хотя её эксцентриситет чуть больше, чем у орбиты Венеры. Но разница в расстоянии до Солнца, которая составляет 5 млн. км в перигелии и афелии (147,1 млн. км и 152,1 млн. км до Солнца соответственно), не оказывает существенного влияния на климат. Наклон оси к плоскости орбиты в 23 градуса благоприятен, поскольку обеспечивает привычную для нас смену времён года. Это не допускает столь суровых условий в полярных регионах, которые могли бы быть при нулевом наклоне как у Меркурия. Ведь атмосфера Земли не столь хорошо задерживает тепло, как атмосфера Венеры. Относительно высокая скорость осевого вращения тоже благоприятна. Это не позволяет поверхности сильно нагреться в течение дня и остыть в течение ночи. В противном случае при периодах вращения как у Меркурия и тем более Венеры, температурные перепады на Земле были бы схожими с теми, что на Луне.

Марс

Марс обладает почти такими же периодом обращения вокруг оси и её наклоном к плоскости орбиты, как и Земля. Так что смена времён года происходит по схожему принципу, вот только сезоны длятся почти вдвое дольше, чем на Земле. Ведь на оборот вокруг Солнца требуется опять же почти вдвое большее время. Но есть тут и существенное отличие − орбита Марса имеет довольно заметный эксцентриситет. За счёт чего расстояние до Солнца меняется от 206,5 млн. км до 249,2 млн. км, а этого уже достаточно, чтобы заметно повлиять на климат планеты. Вследствие этого, лето в южном полушарии жарче, чем в северном, однако при этом и зима холоднее, чем в северном.

Планеты–гиганты

У планет-гигантов довольно небольшие эксцентриситеты орбит (от 0,011 у Нептуна, до 0,057 у Сатурна), однако расположены гиганты очень далеко. Следовательно, орбиты длинные, а планеты оборачиваются по ним весьма неторопливо. Юпитеру для полного оборота необходимо 12 земных лет; Сатурну – 29,5; Урану − 84, а Нептуну − 165. Для всех гигантов характерна высокая, по сравнению с планетами земной группы, скорость осевого вращения − 10 часов у Юпитера; 10,5 у Сатурна; 16 у Нептуна и 17 у Урана, за счёт этого планеты заметно сплюснуты у полюсов.

Сильнее всего сплюснут Сатурн, его экваториальный и полярный радиус различаются на 6 тыс. км. Наклоны осей у гигантов различны: совсем небольшой наклон у Юпитера (3 градуса); у Сатурна и Нептуна наклоны составляют 27 и 28 градусов соответственно, что близко к земному и марсианскому, соответственно там есть смена времён года, только в зависимости от удаления от Солнца, различается и длительность сезонов; выбивается в этом плане Уран – его ось, кольца и орбиты всех спутников наклонены на 98 градусов к плоскости орбиты планеты, так что в процессе оборота вокруг Солнца Уран поочерёдно обращён к Солнцу то одним полюсом, то другим.

Несмотря на разнообразие приведённых выше орбитальных и физических характеристик планет-гигантов, условия в их атмосферах в большей степени определяются процессами в недрах, которые в настоящий момент ещё толком не изучены.

В. Грибков

13 марта 1781 года английский астроном Уильям Гершель открыл седьмую планету Солнечной системы - Уран. А 13 марта 1930 года американский астроном Клайд Томбо открыл девятую планету Солнечной системы - Плутон. К началу XXI века считалось, что в Солнечную систему входят девять планет. Однако в 2006 году Международный астрономический союз решил лишить Плутон этого статуса.

Известно уже 60 естественных спутников Сатурна, большая часть из которых обнаружены при помощи космических аппаратов. Большая часть спутников состоит из горных пород и льда. Крупнейший спутник - Титан, открытый в 1655 году Христианом Гюйгенсом, - по своей величине превосходит планету Меркурий. Диаметр Титана около 5200 км. Титан облетает вокруг Сатурна каждые 16 дней. Титан - единственный спутник, обладающий очень плотной атмосферой , в 1,5 раза больше Земной, и состоящей в основном из 90% азота, с умеренным содержанием метана.

Международный астрономический союз официально признал Плутон планетой в мае 1930 года. В тот момент предполагали, что его масса сравнима с массой Земли, но позже было установлено, что масса Плутона почти в 500 раз меньше земной, даже меньше массы Луны. Масса Плутона 1,2 на 10 в22 степени кг (0,22 массы Земли). Среднее расстояние Плутона от Солнца 39,44 а.е. (5,9 на 10 в12 степени км), радиус около 1,65 тысяч км. Период обращения вокруг Солнца 248,6 года, период вращения вокруг своей оси 6,4 суток. Состав Плутона предположительно включает в себя камень и лед; планета имеет тонкую атмосферу, состоящую из азота, метана и углеродной одноокиси. У Плутона есть три спутника: Харон, Гидра и Никта.

В конце XX и начале XXI веков во внешней части Солнечной системы было открыто множество объектов. Стало очевидным, что Плутон - лишь один из наиболее крупных известных до настоящего времени объектов пояса Койпера. Более того, по крайней мере один из объектов пояса - Эрида - является более крупным телом, чем Плутон и на 27% тяжелее его. В связи с этим возникла идея не рассматривать более Плутон как планету . 24 августа 2006 года на XXVI Генеральной ассамблее Международного астрономического союза (МАС) было принято решение впредь называть Плутон не "планетой", а "карликовой планетой".

На конференции было выработано новое определение планеты, согласно которому планетами считаются тела, вращающиеся вокруг звезды (и сами не являющиеся звездой), имеющие гидростатически равновесную форму и "расчистившие" область в районе своей орбиты от других, более мелких, объектов. Карликовыми планетами будут считаться объекты, вращающиеся вокруг звезды, имеющие гидростатически равновесную форму, но не "расчистившие" близлежащее пространство и не являющиеся спутниками. Планеты и карликовые планеты - это два разных класса объектов Солнечной системы. Все прочие объекты, вращающиеся вокруг Солнца и не являющиеся спутниками, будут называться малыми телами Солнечной системы.

Таким образом, с 2006 года в Солнечной системе стало восемь планет : Меркурий, Венера, Земля, Марс, Юпитер, Сатурн, Уран, Нептун. Международным астрономическим союзом официально признаны пять карликовых планет: Церера, Плутон, Хаумеа, Макемаке, Эрида.

11 июня 2008 года МАС объявил о введении понятия "плутоид" . Плутоидами решено называть небесные тела, обращающиеся вокруг Солнца по орбите, радиус которой больше радиуса орбиты Нептуна, масса которых достаточна, чтобы гравитационные силы придавали им почти сферическую форму, и которые не расчищают пространство вокруг своей орбиты (то есть, вокруг них обращается множество мелких объектов).

Поскольку для таких далеких объектов, как плутоиды, определить форму и тем самым отношение к классу карликовых планет пока затруднительно, ученые рекомендовали временно относить к плутоидам все объекты, абсолютная астероидная величина которых (блеск с расстояния в одну астрономическую единицу) ярче +1. Если позднее выяснится, что отнесенный к плутоидам объект карликовой планетой не является, его этого статуса лишат, хотя присвоенное имя оставят. К плутоидам были отнесены карликовые планеты Плутон и Эрида . В июле 2008 года в эту категорию был включен Макемаке. 17 сентября 2008 в список добавили Хаумеа.

Материал подготовлен на основе информации открытых источников

Важную роль в формировании представлений о строении Солнечной системы сыграли также законы движения планет, которые были открыты Иоганном Кеплером (1571-1630) и стали первыми естественнонаучными законами в их современном понимании. Работы Кеплера создали возможность для обобщения знаний по механике той эпохи в виде законов динамики и закона всемирного тяготения, сформулированных позднее Исааком Ньютоном. Многие ученые вплоть до начала XVII в. считали, что движение небесных тел должно быть равномерным и происходить по «самой совершенной» кривой- окружности. Лишь Кеплеру удалось преодолеть этот предрассудок и установить действительную форму планетных орбит, а также закономерность изменения скорости движения планет при их обращении вокруг Солнца. В своих поисках Кеплер исходил из убеждения, что «в мире правит число», высказанного еще Пифагором. Он искал соотношения между различными величинами, характеризующими движение планет, - размеры орбит, период обращения, скорость. Кеплер действовал фактически вслепую, чисто эмпирически. Он пытался сопоставить характеристики движения планет с закономерностями музыкальной гаммы, длиной сторон описанных и вписанных в орбиты планет многоугольников и т.д. Кеплеру необходимо было построить орбиты планет, перейти от экваториальной системы координат, указывающих положение планеты на небесной сфере, к системе координат, указывающих ее положение в плоскости орбиты. Он воспользовался при этом собственными наблюдениями планеты Марс, а также многолетними определениями координат и конфигураций этой планеты, проведенными его учителем Тихо Браге. Орбиту Земли Кеплер считал (в первом приближении) окружностью, что не противоречило наблюдениям. Для того чтобы построить орбиту Марса, он применил способ, который показан на рисунке ниже.

Пусть нам известно угловое расстояние Марса от точки весеннего равноденствия во время одного из противостояний планеты - его прямое восхождение «15 которое выражается углом g(гамма)Т1М1, где T1 - положение Земли на орбите в этот момент, а M1 - положение Марса. Очевидно, что спустя 687 суток (таков звездный период обращения Марса) планета придет в ту же точку своей орбиты.

Если определить прямое восхождение Марса на эту дату, то, как видно из рисунка, можно указать положение планеты в пространстве, точнее, в плоскости ее орбиты. Земля в этот момент находится в точке Т2, и, следовательно, угол gT2M1 есть не что иное, как прямое восхождение Марса - a2. Повторив подобные операции для нескольких других противостояний Марса, Кеплер получил еще целый ряд точек и, проведя по ним плавную кривую, построил орбиту этой планеты. Изучив расположение полученных точек, он обнаружил, что скорость движения планеты по орбите меняется, но при этом радиус-вектор планеты за равные промежутки времени описывает равные площади. Впоследствии эта закономерность получила название второго закона Кеплера.

Радиусом-вектором называют в данном случае переменный по своей величине отрезок, соединяющий Солнце и ту точку орбиты, в которой находится планета. АА1, ВВ1 и CC1 - дуги, которые проходит планета за равные промежутки времени. Площади заштрихованных фигур равны между собой. Согласно закону сохранения энергии, полная механическая энергия замкнутой системы тел, между которыми действуют силы тяготения, остается неизменной при любых движениях тел этой системы. Поэтому сумма кинетической и потенциальной энергий планеты, которая движется вокруг Солнца, неизменна во всех точках орбиты и равна полной энергии. По мере приближения планеты к Солнцу возрастает ее скорость, увеличивается кинетическая энергия, но вследствие уменьшения расстояния до Солнца уменьшается энергия потенциальная. Установив закономерность изменения скорости движения планет, Кеплер задался целью определить, по какой кривой происходит их обращение вокруг Солнца. Он был поставлен перед необходимостью сделать выбор одного из двух возможных решений: 1) считать, что орбита Марса представляет собой окружность, и допустить, что на некоторых участках орбиты вычисленные координаты планеты расходятся с наблюдениями (из-за ошибок наблюдений) на 8"; 2) считать, что наблюдения таких ошибок не содержат, а орбита не является окружностью. Будучи уверенным в точности наблюдений Тихо Браге, Кеплер выбрал второе решение и установил, что наилучшим образом положения Марса на орбите совпадают с кривой, которая называется эллипсом, при этом Солнце не располагается в центре эллипса. В результате был сформулирован закон, который называется первым законом Кеплера. Каждая планета обращается вокруг Солнца по эллипсу, в одном из фокусов которого находится Солнце.

Как известно, эллипсом называется кривая, у которой сумма расстояний от любой точки Р до его фокусов есть величина постоянная. На рисунке обозначены: О - центр эллипса; S и S1 - фокусы эллипса; АВ - его большая ось. Половина этой величины (а), которую обычно называют большой полуосью, характеризует размер орбиты планеты. Ближайшая к Солнцу точка А называется перигелий, а наиболее удаленная от него точка В - афелий. Отличие эллипса от окружности характеризуется величиной его эксцентриситета: е = OS/OA. В том случае, когда эксцентриситет равен О, фокусы и центр сливаются в одну точку - эллипс превращается в окружность.

Примечательно, что книга, в которой в 1609 г. Кеплер опубликовал первые два открытых им закона, называлась «Новая астрономия, или Физика небес, изложенная в исследованиях движения планеты Марс...». Оба этих закона, опубликованные в 1609 г., раскрывают характер движения каждой планеты в отдельности, что не удовлетворило Кеплера. Он продолжил поиски «гармонии» в движении всех планет, и спустя 10 лет ему удалось сформулировать третий закон Кеплера:

Т1^2 / T2^2 = a1^3 / a2^3

Квадраты звездных периодов обращения планет относятся между собой, как кубы больших полуосей их орбит. Вот что писал Кеплер после открытия этого закона: «То, что 16 лет тому назад я решил искать, <... > наконец найдено, и это открытие превзошло все мои самые смелые ожидания... » Действительно, третий закон заслуживает самой высокой оценки. Ведь он позволяет вычислить относительные расстояния планет от Солнца, используя при этом уже известные периоды их обращения вокруг Солнца. Не нужно определять расстояние от Солнца каждой из них, достаточно измерить расстояние от Солнца хотя бы одной планеты. Величина большой полуоси земной орбиты - астрономическая единица (а. е.) - стала основой для вычисления всех остальных расстояний в Солнечной системе. Вскоре был открыт закон всемирного тяготения. Все тела во Вселенной притягиваются друг к другу с силой, прямо пропорциональной произведению их масс и обратно пропорциональной квадрату расстояния между ними:

F = G m1m2/r2

Где m1 и m2 - массы тел; r - расстояние между ними; G - гравитационная постоянная

Открытию закона всемирного тяготения во многом способствовали законы движения планет, сформулированные Кеплером, и другие достижения астрономии XVII в. Так, знание расстояния до Луны позволило Исааку Ньютону (1643 - 1727) доказать тождественность силы, удерживающей Луну при ее движении вокруг Земли, и силы, вызывающей падение тел на Землю. Ведь если сила тяжести меняется обратно пропорционально квадрату расстояния, как это следует из закона всемирного тяготения, то Луна, находящаяся от Земли на расстоянии примерно 60 ее радиусов, должна испытывать ускорение в 3600 раз меньшее, чем ускорение силы тяжести на поверхности Земли, равное 9,8 м/с. Следовательно, ускорение Луны должно составлять 0,0027 м/с2.

Сила, удерживающая Луну на орбите, есть сила земного притяжения, ослабленная в 3600 раз по сравнению с действующей на поверхности Земли. Можно убедиться и в том, что при движении планет, в соответствии с третьим законом Кеплера, их ускорение и действующая на них сила притяжения Солнца обратно пропорциональны квадрату расстояния, как это следует из закона всемирного тяготения. Действительно, согласно третьему закону Кеплера отношение кубов больших полуосей орбит d и квадратов периодов обращения T есть величина постоянная: Ускорение планеты равно:

A= u2/d =(2pid/T)2/d=4pi2d/T2

Из третьего закона Кеплера следует:

Поэтому ускорение планеты равно:

A = 4pi2 const/d2

Итак, сила взаимодействия планет и Солнца удовлетворяет закону всемирного тяготения и имеются возмущения в движении тел Солнечной системы. Законы Кеплера строго выполняются, если рассматривается движение двух изолированных тел (Солнце и планета) под действием их взаимного притяжения. Однако в Солнечной системе планет много, все они взаимодействуют не только с Солнцем, но и между собой. Поэтому движение планет и других тел не в точности подчиняется законам Кеплера. Отклонения тел от движения по эллипсам называют возмущениями. Возмущения эти невелики, так как масса Солнца гораздо больше массы не только отдельной планеты, но и всех планет в целом. Наибольшие возмущения в движении тел Солнечной системы вызывает Юпитер, масса которого в 300 раз превышает массу Земли.

Особенно заметны отклонения астероидов и комет при их прохождении вблизи Юпитера. В настоящее время возмущения учитываются при вычислении положения планет, их спутников и других тел Солнечной системы, а также траекторий космических аппаратов, запускаемых для их исследования. Но еще в XIX в. расчет возмущений позволил сделать одно из самых известных в науке открытий «на кончике пера» - открытие планеты Нептун. Проводя очередной обзор неба в поиске неизвестных объектов, Вильям Гершель в 1781 г. открыл планету, названную впоследствии Ураном. Спустя примерно полвека стало очевидно, что наблюдаемое движение Урана не согласуется с расчетным даже при учете возмущений со стороны всех известных планет. На основе предположения о наличии еще одной «заурановой» планеты были сделаны вычисления ее орбиты и положения на небе. Независимо друг от друга эту задачу решили Джон Адамс в Англии и Урбен Леверье во Франции. На основе расчетов Леверье немецкий астроном Иоганн Галле 23 сентября 1846 г. обнаружил в созвездии Водолея неизвестную ранее планету - Нептун. Это открытие стало триумфом гелиоцентрической системы, важнейшим подтверждением справедливости закона всемирного тяготения. В дальнейшем в движении Урана и Нептуна были замечены возмущения, которые стали основанием для предположения о существовании в Солнечной системе еще одной планеты. Ее поиски увенчались успехом лишь в 1930 г., когда после просмотра большого количества фотографий звездного неба был открыт Плутон.

Земля вместе с планетами крутится вокруг солнца и это знают почти все люди на Земле. Про то, что Солнце при этом вертится вокруг центра нашей галактики "Млечный путь", знает уже гораздо меньшее число жителей планеты. Но и это не все. Наша галактика при этом вертится вокруг центра вселенной. Давайте узнаем про это и посмотрим интересные видео-кадры.

Оказывается, Солнечная система движется вся целиком вместе с Солнцем через местное межзвёздное облако (неизменяемая плоскость остается параллельной самой себе) со скоростью 25 км/с. Движение это направлено почти перпендикулярно к неизменяемой плоскости.

Быть может, здесь нужно искать объяснения подмеченных различий в строении северного и южного полушарий Солнца, полос и пятен обоих полушарий Юпитера. Во всяком случае, это движение определяет возможные встречи Солнечной системы с веществом, рассеянным в том или другом виде в межзвёздном пространстве. Действительное движение планет в пространстве происходит по вытянутым винтовым линиям (так, «ход» винта орбиты Юпитера в 12 раз больше её диаметра).

За 226 млн лет (галактический год) Солнечная система делает полный оборот вокруг центра галактики, двигаясь по почти круговой траектории со скоростью 220 км/с.

Наше Солнце входит в состав огромной звездной системы, которая называется Галактикой (еще ее называют Млечный Путь). Наша Галактика имеет форму диска, похожего на две сложенные краями тарелки. В центре его находится округлое ядро Галактики.




Наша Галактика - вид сбоку

Если посмотреть на нашу Галактику сверху, то она выглядит, как спираль, в которой звездное вещество сосредоточено, в основном, в ее ветвях, называемых галактическими рукавами. Рукава находятся в плоскости диска Галактики.




Наша Галактика - вид сверху

Наша Галактика содержит более 100 миллиардов звезд. Диаметр диска Галактики - около 30 тысяч парсек (100 000 световых лет), а толщина - около 1000 световых лет.

Звезды внутри диска движутся по круговым траекториям вокруг центра Галактики, подобно тому, как планеты в Солнечной системе обращаются вокруг Солнца. Вращение Галактики происходит по часовой стрелке, если смотреть на Галактику со стороны ее северного полюса (находящегося в созвездии Волосы Вероники). Скорость вращения диска не одинакова на различных расстояниях от центра: она убывает по мере удаления от него.

Чем ближе к центру Галактики - тем выше плотность звезд. Если бы мы жили на планете около звезды, находящейся вблизи ядра Галактики, то на небе были бы видны десятки звезд, по яркости сопоставимых с Луной.

Однако Солнце находится очень далеко от центра Галактики, можно сказать - на ее окраине, на расстоянии около 26 тыс. световых лет (8,5 тысяч парсек), вблизи плоскости галактики. Оно расположено в рукаве Ориона, соединенном с двумя более крупными рукавами - внутренним рукавом Стрельца и внешним Рукавом Персея.

Солнце движется со скоростью около 220-250 километров в секунду вокруг центра Галактики и делает полный оборот вокруг ее центра, по разным оценкам, за 220-250 миллионов лет. За время своего существования Период обращения Солнца вместе с окрестными звездами около центра нашей звездной системы называют галактическим годом. Но нужно понимать, что общего периода для Галактики нет, так как она вращается не как твердое тело. Солнце за время своего существования облетело Галактику примерно 30 раз.

Обращение Солнца вокруг центра Галактики носит колебательный характер: каждые 33 миллиона лет оно пересекает галактический экватор, затем поднимается над его плоскостью на высоту в 230 световых лет и снова опускается вниз, к экватору.

Интересно, что Солнце делает полный оборот вокруг центра Галактики в точности за то же время, что и спиральные рукава. В результате Солнце не пересекает области активного звездообразования, в которых часто вспыхивают сверхновые - источники губительного для жизни излучения. То есть оно находится в секторе Галактики, максимально благоприятном для зарождения и поддержания жизни.

Солнечная система движется сквозь межзвездную среду нашей Галактики значительно медленнее, чем считалось ранее, и на ее передней границе не формируется ударная волна. Это установили астрономы, анализировавшие данные, собранные зондом IBEX, передаетРИА «Новости» .

«Можно сказать почти определенно, что перед гелиосферой (пузырем, ограничивающим Солнечную систему от межзвездной среды) нет ударной волны, и что ее взаимодействие с межзвездной средой значительно слабее и больше зависит от магнитных полей, чем считалось раньше», - пишут ученые в статье, опубликованной в журнале Science.
Исследовательский космический аппарат NASA IBEX (Interstellar Boundary Explorer), запущенный в июне 2008 года, предназначен для исследования границы Солнечной системы и межзвездного пространства - гелиосферы, расположенной на расстоянии примерно 16 миллиардов километров от Солнца.

На этом расстоянии поток заряженных частиц солнечного ветра и сила магнитного поля Солнца ослабевают настолько, что больше не могут преодолеть давление разряженного межзвездного вещества и ионизованного газа. В результате образуется «пузырь» гелиосферы, внутри заполненный солнечным ветром, а снаружи окруженный межзвездным газом.

Магнитное поле Солнца отклоняет траекторию заряженных межзвездных частиц, но никак не влияет на нейтральные атомы водорода, кислорода и гелия, которые свободно проникают в центральные области Солнечной системы. Детекторы спутника IBEX «ловят» такие нейтральные атомы. Их изучение позволяет астрономам делать выводы об особенностях пограничной зоны Солнечной системы.

Группа ученых из США, Германии, Польши и России представила новый анализ данных спутника IBEX, согласно которым скорость движения Солнечной системы оказалась ниже, чем считалось ранее. При этом, как свидетельствуют новые данные, в передней части гелиосферы не возникает ударная волна.

«Звуковой удар, который возникает, когда реактивный самолет преодолевает звуковой барьер, может служить земным примером для ударной волны. Когда самолет достигает сверхзвуковой скорости, воздух перед ним не может уйти с его пути достаточно быстро, в результате возникает ударная волна», - поясняет ведущий автор исследования Дэвид Маккомас (David McComas), слова которого приводятся в пресс-релизе Юго-Западного исследовательского института (США).

Около четверти века ученые считали, что гелиосфера двигается сквозь межзвездное пространство со скоростью достаточно высокой, чтобы перед ней формировалась такая ударная волна. Однако новые данные IBEX показали, что на самом деле Солнечная система движется сквозь местное облако межзвездного газа с скоростью 23,25 километра в секунду, что на 3,13 километра в секунду меньше, чем считалось ранее. И эта скорость ниже того предела, при котором возникает ударная волна.

«Хотя ударная волна существует перед пузырями, окружающими многие другие звезды, мы выяснили, что взаимодействие нашего Солнца с окружающей средой не достигает того порога, при котором образуется ударная волна», - сказал Маккомас.

Ранее зонд IBEX занимался картографированием границы гелиосферы и обнаружил на гелиосфере загадочную полосу с повышенными потоками энергичных частиц, которая опоясывал «пузырь» гелиосферы. Также с помощью IBEX установили, что скорость движения Солнечной системы за последние 15 лет по необъяснимым причинам снизилась более чем на 10%.

Вселенная крутится, как юла. Астрономы обнаружили следы вращения мироздания.

До сих пор большинство исследователей склонялось к мнению, что наше мироздание статично. Или если и движется, то чуть-чуть. Каково же было удивление команды ученых из Мичиганского университета (США) во главе с профессором Майклом Лонго, когда они обнаружили в космосе явные следы вращения нашего мироздания. Выходит, с самого начала, еще при Большом взрыве, когда только рождалась Вселенная, она уже вращалась. Как будто кто-то запустил ее, как юлу. И она до сих пор крутится-вертится.

Исследования велись в рамках международного проекта «Цифровой обзор неба Слоана» (Sloan Digital Sky Survey). И этот феномен ученые обнаружили, каталогизировав направление вращения около 16 000 спиральных галактик со стороны северного полюса Млечного Пути. Вначале ученые пытались найти доказательства того, что Вселенная обладает свойствами зеркальной симметрии. В таком случае, рассуждали они, количество галактик, которые вращаются по часовой стрелке, и тех, что «закручены» в противоположном направлении, было бы одинаковым, сообщает pravda.ru.

Но оказалось, что по направлению к северному полюсу Млечного пути среди спиральных галактик преобладает вращение против часовой стрелки, то есть они ориентированы в правую сторону. Эта тенденция просматривается даже на расстоянии более 600 миллионов световых лет.

Нарушение симметрии небольшое, всего около семи процентов, но вероятность того, что это такая космическая случайность - где-то около одной миллионной, - прокомментировал профессор Лонго. - Полученные нами результаты очень важны, поскольку они, похоже, противоречат практически всеобщему представлению о том, что если взять достаточно большой масштаб, то Вселенная будет изотропной, то есть не будет иметь выраженного направления.

По словам специалистов, симметричная и изотропная Вселенная должна была возникнуть из сферически симметричного взрыва, который по форме должен был напоминать баскетбольный мяч. Однако, если бы при рождении Вселенная вращалась вокруг своей оси в определенном направлении, то галактики сохранили бы это направление вращения. Но, раз они вращаются в разных направлениях, следовательно, и Большой взрыв имел разностороннюю направленность. Тем не менее, скорее всего, Вселенная до сих пор продолжает вращаться.

В общем-то, астрофизики и раньше догадывались о нарушении симметрии и изотропности. Их догадки были основаны на наблюдениях других гигантских аномалий. К ним относятся следы космических струн - невероятно протяженные дефекты пространства-времени нулевой толщины, гипотетически родившиеся в первые мгновения после Большого взрыва. Появлении «синяков» на теле Вселенной - так называемых отпечатков от прошлых ее столкновений с другими вселенными. А также движение «Темного потока» - огромных размеров поток галактических кластеров, несущихся на огромной скорости в одном направлении.

Нет такой вещи в жизни, как вечное спокойствие разума. Жизнь – сама по себе есть движение, и не может существовать без желаний, страха, и чувств.
Томас Хоббс

Читатель спрашивает:
Я нашла на YouTube видео с теорией о спиральном движении Солнечной системы через нашу галактику. Оно не показалось мне убедительным, но я хотела бы услышать это от тебя. Является ли оно правильным с научной точки зрения?

Сначала давайте посмотрим само видео:

Некоторые утверждения в этом видео верны. Например:

  • планеты вращаются вокруг Солнца примерно в одной плоскости
  • Солнечная система двигается по галактике с углом в 60° между галактической плоскостью и плоскостью вращения планет
  • Солнце во время своего вращение вокруг Млечного пути, двигается вверх-вниз и внутрь-наружу по отношению к остальной галактике

Всё это так, но при этом в видео все эти факты показаны неправильно.

Известно, что планеты двигаются вокруг Солнца по эллипсам, согласно законам Кеплера, Ньютона и Эйнштейна. Но картинка слева неправильная с точки зрения масштаба. Она неправильная в смысле форм, размеров и эксцентриситетов. И хотя на диаграмме справа орбиты меньше похожи на эллипсы, орбиты планет выглядят примерно так с точки зрения масштабов.

Возьмём ещё один пример – орбиту Луны.

Известно, что Луна вращается вокруг Земли с периодом чуть менее месяца, а Земля вращается вокруг Солнца с периодом в 12 месяцев. Какая из представленных картинок лучше демонстрирует движение Луны вокруг Солнца? Если сравнить расстояния от Солнца до Земли и от Земли до Луны, а также скорость вращения Луны вокруг Земли, и системы Земля/Луна – вокруг Солнца, то окажется, что наилучшим образом ситуацию демонстрирует вариант D. Можно их преувеличить для достижения каких-то эффектов, но количественно варианты A, B и C некорректны.

Теперь перейдём к движению Солнечной системы через галактику.

Сколько в нём содержится неточностей. Во-первых, все планеты в любой момент времени находятся в одной плоскости. Нет никакого отставания, которое бы более удалённые от Солнца планеты демонстрировали по отношению к менее удалённым.

Во-вторых, вспомним реальные скорости планет. Меркурий двигается в нашей системе быстрее всех остальных, вращаясь вокруг Солнца со скоростью 47 км/с. Это на 60% быстрее орбитальной скорости Земли, примерно в 4 раза быстрее Юпитера, и в 9 раз быстрее Нептуна, который двигается по орбите со скоростью 5,4 км/с. А Солнце летит сквозь галактику со скоростью 220 км/с.

За время, требуемое Меркурию на один оборот, вся Солнечная система пролетает 1,7 миллиардов километров по своей внутригалактической эллиптической орбите. При этом радиус орбиты Меркурия составляет всего 58 миллионов километров, или всего 3,4% от того расстояния, на которое продвигается вся Солнечная система.

Если бы мы построили движение Солнечной системы по галактике в масштабе, и посмотрели бы, как двигаются планеты – мы бы увидели следующее:

Представьте, что вся система – Солнце, луна, все планеты, астероиды, кометы, двигаются с большой скоростью под углом около 60° относительно плоскости Солнечной системы. Как-то так:

Если соединить всё это вместе, мы получим более точную картинку:

А что насчёт прецессии? И также насчёт колебаний вниз-вверх и внутрь-наружу? Всё это так, но на видео это показано в чрезмерно преувеличенном и неправильно интерпретированном виде.

Действительно, прецессия Солнечной системы происходит с периодом в 26000 лет. Но не существует никакого спиралевидного движения, ни у Солнца, ни у планет. Прецессию осуществляют не орбиты планет, а ось вращения Земли.

Полярная звезда не расположена постоянно непосредственно над Северным полюсом. Большую часть времени у нас нет полярной звезды. 3000 лет назад Кохаб был ближе к полюсу, чем Полярная звезда. Через 5500 лет полярной звездой станет Альдерамин. А через 12000 лет Вега, вторая по яркости звезда в Северном полушарии, будет отстоять всего на 2 градуса от полюса. Но именно это меняется с частотой раз в 26000 лет, а не движение Солнца или планет.

Как насчёт солнечного ветра?

Это излучение, идущее от Солнца (и всех звёзд), а не то, во что мы врезаемся, двигаясь по галактике. Горячие звёзды испускают быстро двигающиеся заряженные частицы. Граница Солнечной системы проходит там, где солнечный ветер уже не имеет возможности отталкивать межзвёздную среду. Там проходит граница гелиосферы.

Теперь насчёт движений вверх и вниз и внутрь и наружу по отношению к галактике.

Поскольку Солнце и Солнечная система подчиняются гравитации, именно она доминирует над их движением. Сейчас Солнце расположено на расстоянии 25-27 тысяч световых лет от центра галактики, и двигается вокруг него по эллипсу. При этом все остальные звёзды, газ, пыль, двигаются по галактике также по эллипсам. И эллипс Солнца отличается от всех остальных.

С периодом в 220 миллионов лет Солнце совершает полный оборот вокруг галактики, проходя немного выше и ниже центра галактической плоскости. Но поскольку вся остальная материя галактики двигается так же, ориентация галактической плоскости со временем меняется. Мы можем двигаться по эллипсу, но галактика представляет собою вращающуюся тарелку, поэтому мы и двигаемся вверх-вниз по ней с периодом в 63 миллиона лет, хотя наше движение внутрь и наружу происходит с периодом в 220 миллионов лет.

Но никакого «штопора» планеты не делают, их движение искажено до неузнаваемости, видео неправильно рассказывает о прецессии и солнечном ветре, а текст полон ошибок. Симуляция сделана очень красиво, но она была бы гораздо красивее, если бы была правильной.