Болезни Военный билет Призыв

Две звезды видны в одном направлении. Астрометрические двойные звёзды. Явления и феномены, связанные с двойными звездами

Здесь слева даны границы звездных величин компонентов, справа - соответствующие предельные угловые расстояния между компонентами в единицах секунды дуги, до которых данная пара считается двойной звездой.

Среди двойных звезд различают физические и оптические пары. Физические пары представляют собой системы близко расположенных в пространстве звезд, связанных силами тяготения и обращающихся около общего центра тяжести по . Оптические пары, наоборот, состоят из весьма далеко расположенных друг от друга в пространстве звезд, случайным образом проектирующихся на небесную сферу вблизи одного направления. Для астрономии такие пары не представляют интереса.

Физические двойные звезды имеют для астрономии как науки в целом фундаментальное значение. Астрономы многих стран изучают эти звезды уже более двух веков, и интерес к ним не ослабевает. Именно изучение двойных звезд позволило однозначно установить единство закона всемирного тяготения Ньютона во Вселенной и получить, опираясь на наблюдения, фундаментальные знания о звезд, их светимости и .

2. Типы двойных звезд

Двойные звезды подразделяют в зависимости от способа их наблюдений на визуально-двойные, фотометрические двойные, спектрально-двойные и спекл-интерферометрические двойные звезды.

Визуально-двойные звезды . представляют собой довольно широкие пары, уже хорошо различимые при наблюдениях с телескопом умеренных размеров. Эти звезды в основном удовлетворяют условиям (1). Наблюдения визуально-двойных звезд производятся либо визуально с помощью телескопов, снабженных микрометром, либо фотографически с помощью телескопов- . В результате наблюдений определяют взаимное угловое расстояние r компонентов двойной звезды AB , а также позиционный угол s направления на небесной сфере дуги AB относительно круга склонения, проходящего через компоненту A (см. рис. 1). Эти данные по мере их накопления используют для построения дуги видимой орбиты звезды-спутника B относительно более яркой главной звезды A . Если наблюдения продолжаются достаточно долго (несколько десятков лет и более), можно проследить полное обращение звезды B относительно A . Типичными представителями визуально-двойных звезд могут служить звезды γ Девы (r =1″-6″, период обращения P =140 лет) или хорошо известная любителям астрономии близкая к Солнцу звезда 61 Лебедя (r =10″-35″, P P=350 лет). К настоящему времени известно около 100000 визуально-двойных звезд.

Фотометрические двойные звезды . Фотометрические двойные звезды представляют собой очень тесные пары, обращающиеся с периодом от нескольких часов до нескольких дней по орбитам, радиус которых сравним с размерами самих звезд. Плоскости орбит этих звезд и луч зрения наблюдателя практически совмещаются. Эти звезды обнаруживают по явлениям затмений, когда одна из компонент проходит впереди или сзади другой относительно наблюдателя. Астроном замечает это явление как падение яркости наблюдаемой звезды, которое происходит регулярно с поразительной точностью. Таким образом, фотометрические двойные звезды являются . Астрономы интенсивно наблюдают их наряду с другими . В результате наблюдений определяют кривую блеска переменной звезды, отражающую изменение яркости звезды со временем, то есть зависимость вида m (t ) . Типичным представителем затменно-переменных звезд является звезда второй величины β Персея (Алголь), которая регулярно затмевается на 9 часов с периодом 2,86731 суток; падение блеска в минимуме у этой звезды составляет 2,3 звездной величины. К настоящему времени известно более 500 фотометрических двойных звезд.

Спектрально-двойные звезды . Спектрально-двойные звезды, так же как и фотометрические двойные, представляют собой очень тесные пары, обращающиеся в плоскости, образующей с направлением луча зрения наблюдателя малый угол. Спектрально-двойные звезды, как правило, не удается разделить на компоненты даже при использовании телескопов с самыми большими диаметрами, однако принадлежность системы к этому типу двойных звезд легко обнаруживается при спектроскопических наблюдениях . Оказалось, что линии в спектрах таких звезд регулярно смещаются или раздваиваются. Это свидетельствует о том, что наблюдаемая звезда состоит по меньшей мере из двух компонентов, обращающихся вокруг общего центра масс с большой скоростью. В результате наблюдений определяют кривые лучевых скоростей компонентов (иногда одной компоненты, более яркой), характеризующие периодические колебания их лучевых скоростей, а также период этих колебаний и амплитуды. Типичным представителем спектрально-двойных звезд может служить звезда ζ Большой Медведицы , у которой наблюдаются спектры обеих компонент, период колебаний 10 дней, амплитуда около 50 км/с. Это первая исследованная спектрально-двойная звезда, открытая Э. Пиккерингом в 1888 году. В настоящее время известно около 1500 спектрально-двойных звезд.

Повторные наблюдения этих звезд через 20 лет показали наличие относительных смещений компонентов, похожие на орбитальное движение. К 1803 году Гершель опубликовал списки нескольких сотен двойных звезд и отметил среди них 50, у которых обнаружилось смещение компонентов. В дальнейшем наблюдения двойных звезд продолжил сын Вильяма - Джон Гершель, перенесший свой телескоп в Южную Африку. В Европе планомерные наблюдения двойных звезд организовал В. Струве на обсерватории в Тарту. В 1824 году Струве применил для своих наблюдений телескоп-рефрактор с объективом Фраунгофера диаметром D =24 см и фокусным расстоянием F =410 см (D /F =24/410) на экваториальной установке с часовым механизмом, который можно считать прототипом современных телескопов-рефракторов. Телескопы Гершелей были смонтированы на азимутальной установке, что делало их очень неудобными в обращении. С новым инструментом В. Струве открыл 3134 звездные пары. Результаты его наблюдений опубликованы в трех каталогах, из которых наибольшей известностью пользуется каталог "Двойные и кратные звезды, измеренные микрометрически", опубликованный в 1837 году. Этот каталог сохраняет свое значение и в наше время как первая эпоха взаимных положений компонентов нескольких тысяч двойных звезд. Точность измерений В. Струве - на уровне лучших современных визуально-микрометрических наблюдений.

В конце XIX века инициативу в исследованиях двойных звезд перехватили американские астрономы, использовавшие в своих наблюдениях новейшие рефракторы высшего класса с объективами Кларка: рефрактор обсерватории Дирборн с диаметром объектива D =47 см, рефрактор Вашингтонской морской обсерватории (D =65 см) и рефрактор Ликской обсерватории (D =91 см). Заслугой американских астрономов было то, что они не только наблюдали двойные звезды, но собрали и систематизировали громадный наблюдательный материал по этим звездам. Эта работа воплощена в "Общем каталоге 13665 звезд" Ш.У. Бернхема (1906 год), охватывающем все известные к тому времени наблюдения двойных звезд в зоне склонений от -30° до Северного полюса. В новое время эта традиция продолжена американским астрономом Р.Дж. Айткеном, создавшим "Новый общий каталог 17180 двойных звезд" (1934 год) и астрономами Ликской обсерватории Г.М. Джефферсом и В.Х. ван ден Босом, составившими "Индекс каталог 64247 двойных звезд" (1961 год). В новое время наблюдения визуально-двойных звезд продолжались во многих странах мира как прежними, визуальными, так и новыми, фотографическими и фотоэлектрическими методами. После пионерских работ Э. Герцшпрунга (1914 год) широкое распространение получили фотографические наблюдения двойных звезд с применением старых - визуальных рефракторов и фотографических пластинок, сенсибилизированных (то есть сделанных особенно чувствительными) к визуальным лучам (орто- и панхром). Особенно интенсивно фотографические наблюдения двойных звезд производились на обсерваториях США Дирборн и Вашингтон, в России в Пулкове на 26-дюймовом рефракторе Цейсса после второй мировой войны. Возрастающий интерес к наблюдениям двойных звезд непосредственно связан с теми новыми знаниями, которые стало возможным получать по мере накопления наблюдательных данных о двойных звездах.

4. Главные результаты наблюдений двойных звезд

Результаты продолжительных систематических наблюдений визуально-двойных звезд выражаются таблицами данных (t , r , s ), характеризующих для каждой звезды видимое орбитальное движение ее компонентов. Анализируя эти данные, астрономы уже в XIX веке убедились, что видимое относительное движение компонентов совершается по эллипсу и удовлетворяет закону площадей, то есть происходит в согласии с законами Кеплера. Отсюда следует, что обращение в системах двойных звезд подчиняется закону всемирного тяготения Ньютона, так как законы Кеплера , как доказал еще сам Ньютон, являются следствием единого закона тяготения. Этот вывод не был неожиданным для астрономов ХIХ века, которые уже убедились в правильности закона тяготения в процессе создания стройной теории движений планет Солнечной системы. Однако подтверждение действенности закона тяготения в звездном околосолнечном пространстве безусловно имело громадное научное и философское значение. Перед астрономами открылась реальная возможность "взвешивать" звезды, то есть определять их массы, опираясь только на закон Ньютона и наблюдения. Для решения поставленной задачи достаточно было определить из наблюдений период обращения двойной звезды P и большую полуось ее орбитального эллипса a . Далее следовало воспользоваться третьим законом Кеплера в ньютоновском обобщении:

a 3 /P 2 = M 1 +M 2 . (2)

Здесь a - большая полуось истинной орбиты звезды B относительно звезды A , выраженная в астрономических единицах (а.е.), P - период обращения, выраженный в годах; M 1 и M 2 - массы компонентов A и B , выраженные в единицах массы Солнца M ʘ . Главная трудность на этом пути состоит, во-первых, в определении орбитальных элементов a и P и, во-вторых, в определении расстояния до исследуемой звезды d , то есть ее параллакса p (параллакс по определению есть p ″=206265(а.е./r )=1/R . Здесь a.e. и r задаются в километрах, а R - в парсеках). Первую трудность можно было преодолеть только после накопления рядов наблюдений, охватывающих минимум половину периода обращения звезды, то есть 50-100 лет для самых близких визуально-двойных звезд. Кроме того, необходимо было разработать эффективные методы определения истинной орбиты двойной звезды по ее проекции на небесной сфере. Подходящие методы - графические и аналитические - позволяли довольно надежно определить элементы истинной орбиты визуально-двойной звезды, включая период обращения и большую полуось орбиты a (в единицах секунды дуги), однако только для тех двойных звезд, период обращения которых не превышал 100-150 лет. Таких звезд оказалось немного. К 1850 году удалось определить только 20 орбит наиболее тесных двойных звезд с периодом обращения до 100 лет.

Темпы накопления орбит визуально-двойных звезд не возрастали до 70-х годов нашего века несмотря на прогресс техники наблюдений и их массовость. Это не удивительно, так как большинство наблюдаемых визуально или фотографически двойных звезд (r >0″,5) имеют периоды обращений от сотни до нескольких тысяч лет.

Вторая трудность на пути к определению масс звезд по формуле (2) преодолевается посредством измерений тригонометрических параллаксов исследуемых двойных звезд, ибо между a (в астрономических единицах) в формуле (1) и a (в угловых секундах) существует простое соотношение

a [а.е.]=a ″/p ″, (3)

где a ″ и p ″ - большая полуось истинной орбиты двойной звезды и ее параллакс, также выраженный в единицах секунды дуги.

Однако до конца ХIХ века астрономы не научились определять тригонометрические параллаксы звезд с достаточной точностью (то есть с ошибкой, меньшей 0″,010) и это существенно повлияло на развитие звездной астрономии. Только развитие астрофотографии, точнее ее специализации - фотографической астрометрии, обеспечило приемлемую точность определения параллаксов из наблюдений. В середине нашего века тригонометрические параллаксы звезд стали определять со средней квадратической ошибкой ±(0″,005-0″,008), а позднее (1960 год), в связи с вводом в строй специального астрометрического рефлектора во Флагстафе (США) - (D =150 см, F =18 м) - с точностью до ±(0″,003-0″,004). Таким образом, к настоящему времени параллаксы звезд, находящихся на расстояниях до 20 пк от Солнца (p >0″,040), могут определяться с относительной ошибкой порядка 10 %, соответствующие ошибки определения суммы масс компонентов возрастают в 3 раза, то есть до 30 %, как это следует из формул (2) и (3). Для ближайших звезд, находящихся на расстоянии до 10 пк (p >0″,100), ошибка в определении суммы масс составит не более 15 %. От суммы масс компонентов двойной звезды естественно было перейти к оценкам масс компонентов. В отдельных случаях и эту задачу удалось решить, исходя только из законов механики и используя наблюдения лучевых скоростей .

Успехи, достигнутые астрономами в области определения орбит и параллаксов близких двойных звезд, позволили получить надежные оценки масс для нескольких десятков звезд и даже вывести некоторые статистические зависимости. Важнейшие результаты в этой области заключаются в следующем.

> Двойные звезды

– особенности наблюдения: что это такое с фото и видео, обнаружение, классификация, кратные и переменные, как и где искать в Большой Медведице.

Звезды на небосклоне зачастую формируют скопления, которые могут быть густыми или, напротив, рассеянными. Но иногда между звездами возникают и более прочные связи. И тогда принято говорить о двойных системах или двойных звездах . Также их называют кратными. В таких системах звезды оказывают друг на друга непосредственное влияние и эволюционируют всегда вместе. Примеры таких звезд (даже с наличием переменных) можно найти буквально в самых известных созвездиях, например, Большой Медведице.

Открытие двойных звезд

Открытие двойных звезд стало одним из первых достижений, сделанных с помощью астрономического бинокля. Первой системой данного типа была пара Мицар в созвездии Большой Медведицы, которая была открыта астрономом из Италии Ричолли. Поскольку во Вселенной находится невероятное количество звезд, ученые решили, что Мицар не может быть единственной двойной системой. И их предположение оказалось полностью оправданным будущими наблюдениями.

В 1804 году Вильям Гершель, знаменитый астроном, который вел научные наблюдения в течение 24 лет, издал каталог с подробным описанием 700 двойных звезд. Но и тогда не было сведений о том, есть ли физическая связь между звездами в такой системе.

Маленький компонент "высасывает" газ из большой звезды

Некоторые ученые придерживались точки зрения о том, что двойные звезды зависят от общей звездной ассоциации. Их аргументом был неоднородный блеск составляющих пары. Поэтому складывалось впечатление, что их разделяет значительно расстояние. Для подтверждения или опровержения этой гипотезы потребовалось измерения параллактического смещения звезд. Эту миссию взял на себя Гершель и к своему удивлению выяснил следующее: траектория каждой звезды имеет сложную эллипсоидную форму, а не вид симметричных колебаний с периодом в полгода. На видео можно наблюдать эволюцию двойных звезд.

В данном видеоматериале представлена эволюция тесной двойной пары звезд:

Вы можете поменять субтитры, нажав на кнопку "cc".

Согласно физическим законам небесной механики два связанных гравитацией тела передвигаются по орбите эллиптической формы. Результаты исследования Гершеля стали доказательством предположения о том, что в двойных системах есть связь силы тяготения.

Классификация двойных звезд

Двойные звезды принято группировать на следующие виды: спектрально-двойственные, двойные фотометричные, визуально-двойные. Данная классификация позволяет составить представление о звездной классификации, однако не отражает внутреннюю структуру.

С помощью телескопа можно с легкостью определить двойственность визуально-двойных звезд. Сегодня существуют данные о 70 000 визуально-двойных звезд. При этом только 1% из них точно обладают собственной орбитой. Один орбитальный период может иметь продолжительность от нескольких десятилетий до нескольких веков. В свою очередь, выстраивание орбитального пути требует немалых усилий, терпения, точнейших расчетов и длительных наблюдений в условиях обсерватории.

Зачастую научное сообщество обладает информацией лишь о некоторых фрагментах передвижения по орбите, а недостающие участки пути они реконструируют дедуктивным методом. Не стоит забывать, что плоскость орбиты, возможно, наклонена относительно луча зрения. В данном случае видимая орбита серьезно отличается от реальной. Конечно, при высокой точности расчетов можно рассчитать и истинную орбиту двойных систем. Для этого применяются первый и второй законы Кеплера.

Мицар и Алькор. Мицар - двойная звезда. Справа - спутник Алькор. Между ними всего один световой год

Как только определяется истинная орбита, ученые могут вычислить угловое расстояние между двойными звездами, массу и их период вращения. Нередко для этого используется третий закон Кеплера, который помогает найти и сумму масс компонентов пары. Но для этого нужно знать расстояние между Землей и двойной звездой.

Двойные фотометрические звезды

О двойственной природе таких звезд можно узнать только по периодическим колебаниям из блеска. Во время своего движения звезды такого типа по очереди загораживают друг друга, поэтому их нередко называют затменно-двойными. Орбитальные плоскости данных звезд приближены к направлению луча зрения. Чем меньше площадь затмения, тем ниже блеск звезды. Изучив кривую блеска, исследователь может рассчитать угол наклона плоскости орбиты. При фиксации двух затмений на кривой блеска будут два минимума (снижения). Период, когда отмечаются 3 последовательных минимума на кривой блеска, называют орбитальным периодом.

Период двойных звезд продолжается от пары часов до нескольких суток, что делает его более коротким по отношению к периоду визуально-двойных звезд (оптические двойные звезды).

Спектрально-двойственные звезды

Через метод спектроскопии исследователи фиксируют процесс расщепления спектральных линий, которое происходит в результате эффекта Доплера. Если один компонент является слабой звездой, то в небе можно наблюдать лишь периодическое колебание позиций одиночных линий. Данный метод применяет только тогда, когда компоненты двойной системы находятся на минимальном расстоянии и их идентификация с помощью телескопа осложнена.

Двойные звезды, которые можно исследовать через эффект Доплера и спектроскоп, именуют спектрально-двойственными. Однако далеко не каждая двойная звезда носит спектральный характер. Оба компонента системы могут сближаться и отдаляться друг от друга в радиальном направлении.

Согласно результатам астрономических исследований, большая часть двойных звезд располагаются в галактике Млечный Путь. Соотношение одинарных и двойных звезд в процентах рассчитать крайне сложно. Действуя через вычитание, можно вычесть количество известных двойных звезд из общего числа звездного населения. В этом случае становится очевидным, что двойные звезды составляют меньшинство. Однако данный метод нельзя назвать очень точным. Астрономам известен термин «эффект отбора». Чтобы зафиксировать двойственность звезд, следует определить их главные характеристики. В этом пригодится специальное оборудование. В ряде случаев, зафиксировать двойные звезды крайне сложно. Так, визуально двойные звезды нередко не визуализируются при значительном расстоянии от астронома. Иногда невозможно определить угловое расстояние между звездами в паре. Для фиксации спектрально-двойственных или фотометрических звезд требуется тщательно измерить длины волн в спектральных линиях и собрать модуляции световых потоков. В этом случае блеск звезд должен быть достаточно сильным.

Всё это резко уменьшает количество звезд, пригодных для изучения.

Согласно теоретическим разработкам, доля двойных звезд в звездном населении варьируется от 30% до 70%.

Двойные системы также классифицируются по способу наблюдения, можно выделить визуальные , спектральные , затменные , астрометрические двойные системы.

Визуально-двойные звёзды

Двойные звезды, которые возможно увидеть раздельно (или, как говорят, которые могут быть разрешены ), называются видимыми двойными , или визуально-двойными .

Возможность наблюдать звезду как визуально-двойную определяется разрешающей способностью телескопа, расстоянием до звёзд и расстоянием между ними. Таким образом, визуально-двойные звезды - это в основном звезды окрестностей Солнца с очень большим периодом обращения (следствие большого расстояния между компонентами). Из-за большого периода проследить орбиту двойной можно только по многочисленным наблюдениям на протяжении десятков лет. На сегодняшний день в каталогах WDS и CCDM свыше 78 000 и 110 000 объектов соответственно, и только у нескольких сотен из них можно вычислить орбиту. У менее чем сотни объектов орбита известна с достаточной точностью, чтобы получить массу компонентов.

При наблюдениях визуально-двойной звезды измеряют расстояние между компонентами и позиционный угол линии центров, иначе говоря, угол между направлением на северный полюс мира и направлением линии, соединяющей главную звезду с её спутником.

Спекл-интерферометрические двойные звезды

Спекл-интерферометрия эффективна для двойных с периодом в несколько десятков лет.

Астрометрические двойные звёзды

В случае визуально-двойных звёзд мы видим перемещение по небу сразу двух объектов. Однако, если представить себе, что один из двух компонентов нам не виден по тем или иным причинам, то двойственность все равно можно обнаружить по изменению положения на небе второго. В таком случае говорят об астрометрически-двойных звёздах.

Если наличествуют высокоточные астрометрические наблюдения, то двойственность можно предположить, зафиксировав нелийность движения: первую производную собственного движения и вторую [прояснить ] . Астрометрические двойные звезды используются для измерения массы коричневых карликов разных спектральных классов .

Спектрально-двойные звёзды

Спектрально-двойной называют звезду, двойственность которой обнаруживается при помощи спектральных наблюдений. Для этого её наблюдают в течение нескольких ночей. Если оказывается, что линии её спектра периодически смещаются со временем, то это означает, что скорость источника меняется. Этому может быть множество причин: переменность самой звезды, наличие у неё плотной расширяющейся оболочки, образовавшейся после вспышки сверхновой , и т. п.

Если получен спектр второй компоненты, который показывает аналогичные смещения, но в противофазе, то можно с уверенностью говорить, что перед нами двойная система. Если первая звезда к нам приближается и её линии сдвинуты в фиолетовую сторону спектра, то вторая - удаляется, и её линии сдвинуты в красную сторону, и наоборот.

Но если вторая звезда сильно уступает по яркости первой, то мы имеем шанс её не увидеть, и тогда нужно рассмотреть другие возможные варианты. Главный признак двойной звезды - периодичность изменения лучевых скоростей и большая разница между максимальной и минимальной скоростью. Но, строго говоря, не исключено, что обнаружена экзопланета . Чтобы это выяснить, надо вычислить функцию масс , по которой можно судить о минимальной массе невидимого второго компонента и, соответственно, о том, чем он является - планетой, звездой или даже чёрной дырой .

Также по спектроскопическим данным, помимо масс компонентов, можно вычислить расстояние между ними, период обращения и эксцентриситет орбиты. Угол наклона орбиты к лучу зрения выяснить по этим данным невозможно. Поэтому о массе и расстоянии между компонентами можно говорить только как о вычисленных с точностью до угла наклона.

Как и для любого типа объектов, изучаемых астрономами, существуют каталоги спектрально-двойных звёзд. Самый известный и самый обширный из них - «SB9» (от англ. Spectral Binaries). На данный момент [когда? ] в нём 2839 объектов.

Затменно-двойные звёзды

Бывает, что орбитальная плоскость наклонена к лучу зрения под очень маленьким углом: орбиты звёзд такой системы расположены как бы ребром к нам. В такой системе звёзды будут периодически затмевать друг друга, то есть блеск пары будет меняться. Двойные звёзды, у которых наблюдаются такие затмения, называются затменно-двойными или затменно-переменными. Самой известной и первой открытой звездой такого типа является Алголь (Глаз Дьявола) в созвездии Персея .

Микролинзированные двойные

Если на луче зрения между звездой и наблюдателем находится тело с сильным гравитационным полем, то объект будет линзирован . Если бы поле было сильным, то наблюдались бы несколько изображений звезды, но в случае галактических объектов их поле не настолько сильное, чтобы наблюдатель смог различить несколько изображений, и в таком случае говорят о микролинзировании . В случае, если гравирующее тело - двойная звезда, кривая блеска, получаемая при прохождении её вдоль луча зрения, сильно отличается от случая одиночной звезды .

С помощью микролинзирования ищутся двойные звезды, где оба компонента - маломассивные коричневые карлики .

Явления и феномены, связанные с двойными звёздами

Парадокс Алголя

Этот парадокс сформулирован в середине 20 века советскими астрономами А. Г. Масевич и П. П. Паренаго , обратившими внимание на несоответствие масс компонентов Алголя и их эволюционной стадии. Согласно теории эволюции звёзд, скорость эволюции массивной звезды гораздо больше, чем у звезды с массой, сравнимой с солнечной, или немногим более. Очевидно, что компоненты двойной звезды образовались в одно и то же время, следовательно, массивный компонент должен проэволюционировать раньше, чем маломассивный. Однако в системе Алголя более массивный компонент был моложе.

Объяснение этого парадокса связано с феноменом перетекания масс в тесных двойных системах и впервые предложено американским астрофизиком Д. Кроуфордом. Если предположить, что в ходе эволюции у одного из компонентов появляется возможность переброса массы на соседа, то парадокс снимается .

Обмен массами между звёздами

Рассмотрим приближение тесной двойной системы (носящие имя приближения Роша ):

  1. Звезды считаются точечными массами и их собственным моментом осевого вращения можно пренебречь по сравнению с орбитальным
  2. Компоненты вращаются синхронно.
  3. Орбита круговая

Тогда для компонентов M 1 и M 2 с суммой больших полуосей a=a 1 +a 2 введем систему координат, синхронную с орбитальным вращением ТДС. Центр отсчета находится в центре звезды M 1 , ось X направлена от M 1 к M 2 , а ось Z - вдоль вектора вращения. Тогда запишем потенциал, связанный с гравитационными полями компонентов и центробежной силой :

Φ = − G M 1 r 1 − G M 2 r 2 − 1 2 ω 2 [ (x − μ a) 2 + y 2 ] {\displaystyle \Phi =-{\frac {GM_{1}}{r_{1}}}-{\frac {GM_{2}}{r_{2}}}-{\frac {1}{2}}\omega ^{2}\left[(x-\mu a)^{2}+y^{2}\right]} ,

где r 1 = √ x 2 +y 2 +z 2 , r 2 = √ (x-a) 2 +y 2 +z 2 , μ= M 2 /(M 1 +M 2) , а ω - частота вращения по орбите компонентов. Используя третий закон Кеплера , потенциал Роша можно переписать следующим образом:

Φ = − 1 2 ω 2 a 2 Ω R {\displaystyle \Phi =-{\frac {1}{2}}\omega ^{2}a^{2}\Omega _{R}} ,

где безразмерный потенциал:

Ω R = 2 (1 + q) (r 1 / a) + 2 (1 + q) (r 2 / a) + (x − μ a) 2 + y 2 a 2 {\displaystyle \Omega _{R}={\frac {2}{(1+q)(r_{1}/a)}}+{\frac {2}{(1+q)(r_{2}/a)}}+{\frac {(x-\mu a)^{2}+y^{2}}{a^{2}}}} ,

где q = M 2 /M 1

Эквипотенциали находятся из уравнения Φ(x,y,z)=const . Вблизи центров звёзд они мало отличаются от сферических, но по мере удаления отклонения от сферической симметрии становятся сильнее. В итоге обе поверхности смыкаются в точке Лагранжа L 1 . Это означает, что потенциальный барьер в этой точке равен 0, и частицы с поверхности звезды, находящие вблизи этой точки, способны перейти внутрь полости Роша соседней звезды, вследствие теплового хаотического движения .

Новые

Рентгеновские двойные

Симбиотические звезды

Взаимодействующие двойные системы, состоящие из красного гиганта и белого карлика, окруженных общей туманностью. Для них характерны сложные спектры , где наряду с полосами поглощения (например, TiO) присутствуют эмиссионные линии, характерные для туманностей (ОIII, NeIII и т. п. Симбиотические звёзды являются переменными с периодами в несколько сотен дней, для них характерны новоподобные вспышки , во время которых их блеск увеличивается на две-три звёздных величины.

Симбиотические звёзды представляют собой относительно кратковременный, но чрезвычайно важный и богатый своими астрофизическими проявлениями этап в эволюции двойных звёздных систем умеренных масс с начальными периодами обращения 1-100 лет.

Барстеры

Сверхновые типа Ia

Происхождение и эволюция

Механизм формирования одиночной звезды изучен довольно хорошо - это сжатие молекулярного облака из-за гравитационной неустойчивости . Также удалось установить функцию распределения начальных масс . Очевидно, что сценарий формирования двойной звезды должен быть таким же, но с дополнительными модификациями. Также он должен объяснять следующие известные факты :

  1. Частота двойных. В среднем она составляет 50 %, но различна для звёзд разных спектральных классов. Для О-звёзд это порядка 70 %, для звёзд типа Солнца (спектральный класс G) это близко к 50 %, а для спектрального класса M около 30 %.
  2. Распределение периода.
  3. Эксцентриситет у двойных звёзд может принимать любое значение 0
  4. Соотношение масс. Распределение соотношения масс q= M 1 / M 2 является самым сложным для измерения, так как влияние эффектов селекции велико, но на данный момент считается, что распределение однородно и лежит в пределах 0.2

На данный момент нет окончательного понимания, какие именно надо вносить модификации, и какие факторы и механизмы играют здесь решающую роль. Все предложенные на данный момент теории можно поделить по тому, какой механизм формирования в них используется :

  1. Теории с промежуточным ядром
  2. Теории с промежуточным диском
  3. Динамические теории

Теории с промежуточным ядром

Самый многочисленный класс теорий. В них формирование идет за счёт быстрого или раннего разделение протооблака.

Самая ранняя из них считает, что в ходе коллапсирования из-за различного рода нестабильностей облако распадается на локальные джинсовские массы, растущие до тех пор, пока наименьшая из них перестанет быть оптически прозрачной и более не может эффективно охлаждаться. Но при этом расчетная функция масс звёзд не совпадает с наблюдаемой.

Ещё одна из ранних теорий предполагала размножение коллапсирующих ядер, вследствие деформации в различные эллиптические фигуры.

Современные же теории рассматриваемого типа считают, что основная причина фрагментации - рост внутренней энергии и энергии вращения по мере сжатия облака .

Теории с промежуточным диском

В теориях с динамическим диском образование происходит в ходе фрагментации протозвёздного диска, то есть гораздо позднее, чем в теориях с промежуточным ядром. Для этого необходим довольно массивный диск, восприимчивый к гравитационным нестабильностям, и газ которого эффективно охлаждается. Тогда могут возникнуть несколько компаньонов, лежащих в одной плоскости, которые аккрецируют газ из родительского диска.

В последнее время количество компьютерных расчетов подобных теорий сильно увеличилось. В рамках подобного подхода хорошо объясняется происхождение тесных двойных систем, а также иерархических систем различной кратности.

Динамические теории

Последний механизм предполагает, что двойные звезды образовались в ходе динамических процессов, спровоцированных соревновательной аккрецией. В данном сценарии предполагается, что молекулярное облако из-за различного рода турбуленций внутри него формирует сгустки приблизительно джинсовской массы. Эти сгустки, взаимодействуя между собой, соревнуются за вещество исходного облака. В таких условиях хорошо работает как уже упомянутая модель с промежуточным диском, так и иные механизмы, речь о которых пойдет ниже. Вдобавок динамическое трение протозвёзд с окружающим газом сближает компоненты.

В качестве одного из механизмов, работающего в данных условиях, предлагается комбинация фрагментации с промежуточным ядром и динамической гипотезы. Это позволяет воспроизвести частоту кратных звёзд в звёздных скоплениях. Однако на данный момент механизм фрагментации точно не описан.

Другой механизм предполагает рост сечения гравитационного взаимодействия у диска до тех пор, пока не будет захвачена близлежащая звезда. Хотя такой механизм вполне подходит для массивных звёзд, но совершенно не годится для маломассивных и вряд ли является доминирующим при образовании двойных звёзд .

Экзопланеты в двойных системах

Из более чем 800 ныне известных экзопланет число обращающихся вокруг одиночных звёзд значительно превышает число планет найденных в звёздных системах разной кратности. По последним данным последних насчитывается 64 .

Экзопланеты в двойных системах принято разделять по конфигурациям их орбит :

  • Экзопланеты S-класса обращаются вокруг одного из компонентов (например OGLE-2013-BLG-0341LB b). Таковых 57.
  • К P-классу относят обращающихся вокруг обоих компонентов. Таковые обнаружены у NN Ser, DP Leo, HU Aqr, UZ For, Kepler-16 (AB)b, Kepler-34 (AB)b и Kepler-35 (AB)b.

Если попытаться провести статистику, то выяснится :

  1. Значительная часть планет обитают в системах, где компоненты разделены в пределах от 35 до 100 а. е., концентрируясь вокруг значения в 20 а. е.
  2. Планеты в широких системах (> 100 а. е.) имеют массу от 0,01 до 10 M J (почти как и для одиночных звёзд), в то время как массы планет для систем с меньшим разделением лежат от 0,1 до 10 M J
  3. Планеты в широких системах всегда одиночные
  4. Распределение эксцентриситетов орбиты отличается от одиночных, достигая значений e = 0,925 и e = 0,935.

Важные особенности процессов формирования

Обрезание протопланетного диска. В то время как у одиночных звёзд протопланетный диск может тянуться вплоть до пояса Койпера (30-50 а. е.), то в двойных звёзд его размер обрезается воздействием второго компонента. Таким образом протяжённость протопланетного диска в 2-5 раз меньше расстояния между компонентами.

Искривление протопланетного диска. Оставшийся после обрезания диск продолжает испытывать влияние второго компонента и начинает вытягиваться, деформироваться, сплетаться и даже разрываться. Также такой диск начинает прецессировать.

Сокращения время жизни протопланетного диска Для широких двойных, как и для одиночных время жизни протопланетного диска составляет 1-10 млн лет. Одна для систем с разделением < 40 а. е. Время жизни диска должно составлять в пределах 0,1-1 млн лет.

Планетозимальный сценарий образования

Несовместные сценарии образования

Существуют сценарии в которых изначальная, сразу после формирования, конфигурация планетной системы отличается от текущей и была достигнута в ходе дальнейшей эволюции.

  • Один из таких сценариев - захват планеты у другой звезды. Так как двойная звезда имеет гораздо больше сечения взаимодействия, то и вероятность столкновения и захват планеты у другой звезды существенно выше.
  • Второй сценарий предполагает, что в ходе эволюции одного из компонентов, уже на стадиях после главной последовательности в изначальной планетарной системе возникают нестабильности. В результате которых планета покидает изначальную орбиту и становится общей для обоих компонент.

Астрономические данные и их анализ

Кривые блеска

В случае, когда двойная звезда является затменной, то становится возможным построить зависимость интегрального блеска от времени. Переменность блеска на этой кривой будет зависеть от :

  1. Самих затмений
  2. Эффектов элипсоидальности.
  3. Эффектов отражения, а вернее переработки излучения одной звезды в атмосфере другой.

Однако анализ только самих затмений, когда компоненты сферически симметричны и отсутствуют эффекты отражения, сводится к решению следующей системы уравнений :

1 − l 1 (Δ) = ∬ S (Δ) I a (ξ) I c (ρ) d σ {\displaystyle 1-l_{1}(\Delta)=\iint \limits _{S(\Delta)}I_{a}(\xi)I_{c}(\rho)d\sigma }

1 − l 2 (Δ) = ∬ S (Δ) I c (ξ) I a (ρ) d σ {\displaystyle 1-l_{2}(\Delta)=\iint \limits _{S(\Delta)}I_{c}(\xi)I_{a}(\rho)d\sigma }

∫ 0 r ξ c I c (ξ) 2 π ξ d ξ + ∫ 0 r ρ c I c (ρ) 2 π ρ d ρ = 1 {\displaystyle \int \limits _{0}^{r_{\xi c}}I_{c}(\xi)2\pi \xi d\xi +\int \limits _{0}^{r_{\rho c}}I_{c}(\rho)2\pi \rho d\rho =1}

где ξ, ρ - полярные расстояния на диске первой и второй звезды, I a - функция поглощения излучения одной звезды атмосферой другой, I c - функция яркости площадок dσ у различных компонентов, Δ - область перекрытия, r ξc ,r ρc - полные радиусы первой и второй звезды.

Решение этой системы без априорных предположений невозможно. Ровно как и анализ более сложных случаев с элипсоидальной формой компонентов и эффектами отражения, существенных в различных вариантах тесных двойных систем. Поэтому все современные способы анализа кривых блеска тем или иным образом вводят модельные предположения, параметры которых находят путём другого рода наблюдений .

Кривые лучевых скоростей

Если двойная звезда наблюдается спектроскопически, то есть является спектроскопической двойной звездой, то можно построить зависимость изменения лучевых скоростей компонентов от времени. Если предположить, что орбита круговая, то можно записать следующее :

V s = V 0 s i n (i) = 2 π P a s i n (i) {\displaystyle V_{s}=V_{0}sin(i)={\frac {2\pi }{P}}asin(i)} ,

где V s - лучевая скорость компонента, i - наклонение орбиты к лучу зрения, P - период, a - радиус орбиты компонента. Теперь, если в эту формулу подставить третий закон Кеплера, имеем:

V s = 2 π P M s M s + M 2 s i n (i) {\displaystyle V_{s}={\frac {2\pi }{P}}{\frac {M_{s}}{M_{s}+M_{2}}}sin(i)} ,

где M s - масса исследуемого компонента, M 2 - масса второго компонента. Таким образом, наблюдая оба компонента можно определить соотношение масс звёзд, составляющих двойную. Если повторно использовать третий закон Кеплера, то последние приводится к следующему:

F (M 2) = P V s 1 2 π G {\displaystyle f(M_{2})={\frac {PV_{s1}}{2\pi G}}} ,

где G -гравитационная постоянна, а f(M 2) - функция масс звезды и по определению равна:

F (M 2) ≡ (M 2 s i n (i)) 3 (M 1 + M 2) 2 {\displaystyle f(M_{2})\equiv {\frac {(M_{2}sin(i))^{3}}{(M_{1}+M_{2})^{2}}}} .

В случае, если орбита не круговая, а имеет эксцентриситет, то можно показать, что для функции масса орбитальный период P должен быть домножен на фактор (1 − e 2) 3 / 2 {\displaystyle (1-e^{2})^{3/2}} .

Если второй компонент не наблюдается, то функция f(M 2) служит нижним пределом его массы.

Стоит отметить, что изучая только кривые лучевых скоростей невозможно определить все параметры двойной системы, всегда будет присутствовать неопределённость в виде неизвестного угла наклонения орбиты .

Определение масс компонентов

Практически всегда гравитационное взаимодействие между двумя звёздами описывается с достаточной точностью законами Ньютона и законами Кеплера , являющимися следствием законов Ньютона. Но для описания двойных пульсаров (см. пульсар Тейлора-Халса) приходится привлекать ОТО . Изучая наблюдательные проявления релятивистских эффектов, можно ещё раз проверить точность теории относительности.

Третий закон Кеплера связывает период обращения с расстоянием между компонентами и массой системы:

P = 2 π a 3 G (M 1 + M 2) {\displaystyle P=2\pi {\sqrt {\frac {a^{3}}{G(M_{1}+M_{2})}}}} ,

где P {\displaystyle P} - период обращения, a {\displaystyle a} - большая полуось системы, M 1 {\displaystyle M_{1}} и M 2 {\displaystyle M_{2}} - массы компонентов, G {\displaystyle G} -

Двойные звезды или как их еще называют двойные системы — это две звезды, связанные между собой гравитационно и обращающиеся по замкнутым орбитам эллиптической формы вокруг общего центра масс. Также они по эллипсам движутся относительно друг друга. Такие две звезды притягивают друг друга. Компоненты двойной системы притягиваются с гораздо большей силой, чем с любыми другими звездами. Существуют также кратные системы. В них число звезд равно трем и более. Однако их движение в отличии от двойных звезд не устойчиво. В таких системах можно выделить двойную систему и вращающуюся вокруг этой пары третью звезду. Системы из четырех звезд чаще всего содержат две пары двойных подсистем. В качестве кратной тройной системы можно назвать ближайшую к нам Альфа Центавра с третьим компонентом Проксима Центавра. Это ближайшая к Солнцу звездная система Ригель Кентаврус. Кратной системой служит расположенная в 4,3 световых годах от Солнца Альфа Центавра (Ригиль Кентаврус). Третьей ее звездой является ближайшая к Солнцу Проксима Центавра, небольшой вспыхивающий красный карлик.

Еще одним примером сложной кратной системы является звезда В Ориона из Трапеции Ориона. В1 и В2 видятся в небольшой телескоп четырехкратной и трехкратной системой. Более мощный телескоп позволяет рассмотреть еще большее количество звезд.

Обычно компоненты звездной пары отличаются по силе свечения и яркая затмевает более тусклую. Такие пары трудно различимы и называются астрометрически двойными. К этому типу до недавнего времени относили Сириус. Однако позже мощные телескопы позволили разглядеть ранее не видимый спутник Сириус В. После этого эту пару причислили к визуально двойным.

Плоскость обращения некоторых двойных звезд обращена как бы ребром к нам. В таких системах звезды периодически перекрывают друг друга и меняется их блеск. Это затменно-двойные системы, а звезды, входящие в них называют затменно-переменными. Первой известной человечеству такой звездой стала Алголь из созвездия Персея.

Еще одним типом двойных звезд являются спектрально двойные системы. Об их двойственности судят по спектру звезды если в нем периодически заметны смещения линий поглощения или заметна двойственность линий.

Существуют нетесные пары с огромным расстоянием между компонентами. Они живут по законам одиночных звезд и не представляют особого интереса. Это оптические двойные звезды которые по сути двойными не являются. Таким примером может служить видный невооруженным взглядом Мицар из Большой Медведицы и Алькор. На самом деле они находятся на огромном расстоянии друг от друга и не являются двойной системой. Гораздо интереснее судьба тесных двойных звезд. Такие звездные пары в процессе эволюции способны обмениваться веществом.

Двойные звезды рождаются из единой газопылевой туманности одновременно. Каждая такая пара имеет одинаковый возраст, но очень часто компоненты пары значительно отличаются по массе. Звезды с большей массой живут как бы быстрее своих более мелких аналогов. То есть такие звезды в процессе эволюции обгоняют своих сверстников. Одна звезда из пары увеличивается и превращается в гиганта. При этом происходит процесс перетекания вещества с более крупной звезды на более мелкую. И рано или поздно масса меньшей может стать больше той, что первоначально была более тяжелой. Таким образом получаются две звезды одного возраста у одной из которых в центре продолжается процесс синтеза гелия из водорода, а в более легкой уже образовалось гелиевое ядро. Это уникальный случай, свойственный только двойным звездам и не реальный для обычных одиночных звезд.Это несоответствие возраста звезд в их массой получило название парадокс Алголя. Название было дано в честь затменно-двойной. В настоящее время еще в одной звездной паре происходит обмен массами. Это звезда Бета Лиры.

Какое-то время вещество с крупной раздувшейся звезды образует вокруг меньшей вращающийся диск и только потом попадает непосредственно на нее, оседая из-за силы трения.Это так называемый процесс аккреции. Вращающийся диск по аналогии называют аккреционным. Более массивная звезда быстро эволюционирует. Водород с ее внешних слоев перетекает на вторую звезду пары и первая вскоре образует лишь гелиевое ядро и называется белым карликом. Таким образом в двойных системах происходит смена ролей: первоначально массивная становится более мелкой и наоборот. Но и это еще не все. Далее все опять происходит в обратном направлении — большая начинает отдавать набранное назад своей соседке.

Если первой звездой является белый карлик, то при втором обмене на поверхности могут происходить яркие вспышки. Этот процесс мы называем новыми звездами. Если со второй звезды перетечет слишком много вещества на железный белый карлик, то может произойти очень мощная вспышка сверхновой. Фактически это взрыв белого карлика. В результате двойная система может распасться. Так если бы спутник Сириуса, а он является белым карликом был к Сириусу ближе, то мы смогли бы наблюдать вспышку новой. Сириус бы разгорался перед нами до такой степени, что его свечение могло бы достигнуть количеству света, равному десяти полных лун. Потом в течении года свечение Сириуса постепенно приходило бы в норму.

Однако и без такого бурного процесса двойная звезда может стать переменной. Такой системой является карликовая новая U Близнецов. Аккреционный диск вокруг белого карлика не стабилен и может стать причиной длящихся до нескольких суток кратковременных вспышек. В это время происходит скачкообразное увеличение силы свечения то есть блеска звезды на 2-6 звездных величин. Процесс эволюции в конце концов может привести к расширению второй звезды. Это приведет к перемешиванию материала обеих звезд и их звездные ядра окажутся окружены газовым шаром.

Массу - одну из важнейших физических характеристик звезд - можно определить по ее воздействию на движение других тел. Такими другими телами являются спутники некоторых звезд (тоже звезды), обращающиеся с ними вокруг общего центра масс.

Если вы посмотрите на Большой Медведицы, вторую звезду с конца «ручки» ее «ковша», то при нормальном зрении вы увидите совсем близко от нее вторую слабую звездочку. Ее заметили еще древние арабы и назвали Алькор (Всадник). Яркой звезде они дали название Мицар. Их можно назвать двойной звездой. Мицар и Алькор отстоят друг от друга на . В бинокль таких звездных пар можно найти немало. Так, Лиры состоит из двух одинаковых звезд 4-й звездной величины с расстоянием между ними 5.

Рис. 80. Орбита спутника двойной звезды (v Девы) относительно главной звезды, расстояние которой от нас составляет 10 пк. (Точки отмечают измеренные положения спутника в указанные годы. Их отклонения от эллипса вызваны погрешностями наблюдений.)

Двойные звезды называются визуально-двойными, если их двойственность может быть замечена при непосредственных наблюдениях в телескоп.

В телескоп Лиры - визуально-четверная звезда. Системы с числом звезд называются кратными.

Многие из визуально-двойных звезд оказываются оптически-двойными, т. е. близость таких двух звезд является результатом случайной проекции их на небо. На самом деле в пространстве они далеки друг от друга. И в течение многолетних наблюдений можно убедиться, что одна из них проходит мимо другой, не меняя направления с постоянной скоростью. Но иногда при наблюдении звезд выясняется, что более слабая звезда-спутник обращается вокруг более яркой звезды. Систематически меняются расстояния между ними и направление соединяющей их линии. Такие звезды называются физическими двойными, они образуют единую систему и обращаются под действием сил взаимного притяжения вокруг общего центра масс.

Множество двойных звезд открыл и изучил известный русский ученый В. Я. Струве. Самый короткий из известных периодов обращения визуально-двойных звезд - 5 лет. Изучены пары с периодами обращения в десятки лет, а пары с периодами в сотни лет изучат в будущем. Ближайшая к нам звезда а Центавра является двойной. Период обращения ее составляющих (компонентов) 70 лет. Обе звезды в этой паре по массе и температуре сходны с Солнцем.

Главная звезда обычно не находится в фокусе видимого эллипса, описываемого спутником, потому что мы видим его орбиту в проекции искаженной (рис. 80). Но знание геометрии позволяет восстановить истинную форму орбиты и измерить ее большую полуось а в секундах дуги. Если известно расстояние до двойной звезды в парсеках и большая полуось орбиты звезды-спутника в секундах дуги, равная то в астрономических единицах (поскольку она будет равна:

Важнейшей характеристикой звезды наряду со светимостью является ее масса. Прямое определение массы возможно лишь для двойных звезд. По аналогии с § 9.4, сравнивая движение спутника

звезды с движением Земли вокруг Солнца (для которой период обращения 1 год, а большая полуось орбиты 1 а. е.), мы по третьему закону Кеплера можем написать:

где - массы компонентов в паре звезд, - массы Солнца и Земли, период обращения пары в годах. Пренебрегая массой Земли в сравнении с массой Солнца, мы получаем сумму масс звезд, составляющих пару, в массах Солнца:

Чтобы определить массу каждой звезды отдельно, надо изучить движение каждой из них относительно окружающих звезд и вычислить их расстояния от общего центра масс. Тогда имеем второе уравнение:

К и из системы двух уравнений находим обе массы отдельно.

Двойные звезды в телескоп нередко представляют собой красивое зрелище: главная звезда желтая или оранжевая, а спутник белый или голубой. Вообразите себе богатство красок на планете, обращающейся вокруг одной из пары звезд, где на небе сияет то красное Солнце, то голубое, то оба вместе.

Определенные описанными методами массы звезд различаются гораздо меньше, чем их светимости, примерно от 0,1 до 100 масс Солнца. Большие массы встречаются крайне редко. Обычно звезды обладают массой меньше пяти масс Солнца. Мы видим, что с точки зрения светимости и температуры наше Солнце является рядовой, средней звездой, ничем особым не выделяющейся.

(см. скан)

2. Спектрально-двойные звезды.

Если звезды при взаимном обращении подходят близко друг к другу, то даже в самый сильный телескоп их нельзя видеть раздельно, в этом случае двойственность может быть определена по спектру. Если плоскость орбиты такой пары почти совпадает с лучом зрения, а скорость обращения велика, то скорость каждой звезды в проекции на луч зрения будет быстро меняться. Спектры двойных звезд при этом накладываются друг на друга, а так как разница в скоростях этих

Рис. 81. Объяснение раздвоения, или колебания, линий в спектрах спектральнодвойных звезд.

звезд велика, то линии в спектре каждой из них будут смещаться в противоположные стороны Величина смещения меняется с периодом, равным периоду обращения пары Если яркости и спектры звезд, составляющих пару, сходны, то в спектре двойной звезды наблюдается периодически повторяющееся раздвоение спектральных линий (рис. 81). Пусть компоненты занимают положения или тогда один из них движется к наблюдателю, а другой - от него (рис. 81, I, III). В этом случае наблюдается раздвоение спектральных линий. У приближающейся звезды спектральные линии сместятся к синему концу спектра, а у удаляющейся - к красному. Когда же компоненты двойной звезды занимают положения или (рис 81, II, IV), то оба они движутся под прямым углом к лучу зрения и раздвоения спектральных линий не получится.

Если одна из звезд светится слабо, то будут видны линии только другой звезды, смещающиеся периодически.

Один из компонентов Мицара сам является спектрально-двойной звездой.

3. Затменно-двойные звезды - алголи.

Если луч зрения лежит почти в плоскости орбиты спектрально-двойной звезды, то звезды такой пары будут поочередно загораживать друг друга. Во время затмений общая яркость пары, компонентов которой мы по отдельности не видим, будет ослабевать (положения В и D на рис. 82). В остальное же время в промежутках между затмениями она почти постоянна (положения А и С) и тем дольше, чем короче длительность затмений и чем больше радиус орбиты. Если спутник большой, но сам дает мало света, то, когда яркая

звезда затмевает его, суммарная яркость системы будет умень шаться лишь ненамного.

Минимумы яркости затменно-двойных звезд происходят при движении их компонентов поперек луча зрения. Анализ кривой изменения видимой звездной величины в функции времени позволяет установить размеры и яркость звезд, размеры орбиты, ее форму и наклон к лучу зрения, а также массы звезд Таким образом, затменно-двойные звёзды, наблюдаемые также и в качестве спектральнодвойных, являются наиболее хорошо изученными системами. К со жалению, таких систем известно пока сравнительно мало

Затменно-двойные звезды называются еще алголями, по названию своего типичного представителя Персея. Древние арабы назвали Персея Алголем (испорченное эль гуль), что значит «дьявол». Возможно, что они заметили ее странное поведение: в течение 2 дней 11 ч яркость Алголя постоянна, затем за 5 ч она ослабевает от 2,3 до 3,5 звездной величины, а затем за 5 ч яркость ее возвращается к прежнему значению.

Периоды известных спектрально-двойных звезд и алголей в основном короткие - около нескольких суток. В общей сложности двойственность звезд очень распространенное явление Статистика показывает, что до 30% всех звезд, вероятно, являются двойными Получение разнообразных данных об отдельных звездах и их системах из анализа спектрально-двойных и затменно-двойных звезд - примеры неограниченной возможности человеческого познания

Рис. 82. Изменения видимои яркости Лиры и схема движения ее спутника (Форма звезд, близко расположенных друг к другу, вследствие их при ливного воздействия может сильно отличаться от сферической )