Болезни Военный билет Призыв

Дисперсия числа. Расчет и свойства дисперсии случайной величины. Математическое ожидание суммы случайных величин

В предыдущем мы привели ряд формул, позволяющих находить числовые характеристики функций, когда известны законы распределения аргументов. Однако во многих случаях для нахождения числовых характеристик функций не требуется знать даже законов распределения аргументов, а достаточно знать только некоторые их числовые характеристики; при этом мы вообще обходимся без каких бы то ни было законов распределения. Определение числовых характеристик функций по заданным числовым характеристикам аргументов широко применяется в теории вероятностей и позволяет значительно упрощать решение ряда задач. По преимуществу такие упрощенные методы относятся к линейным функциям; однако некоторые элементарные нелинейные функции также допускают подобный подход.

В настоящем мы изложим ряд теорем о числовых характеристиках функций, представляющих в своей совокупности весьма простой аппарат вычисления этих характеристик, применимый в широком круге условий.

1. Математическое ожидание неслучайной величины

Сформулированное свойство является достаточно очевидным; доказать его можно, рассматривая неслучайную величину как частный вид случайной, при одном возможном значении с вероятностью единица; тогда по общей формуле для математического ожидания:

.

2. Дисперсия неслучайной величины

Если - неслучайная величина, то

3. Вынесение неслучайной величины за знак математического ожидания

, (10.2.1)

т. е. неслучайную величину можно выносить за знак математического ожидания.

Доказательство.

а) Для прерывных величин

б) Для непрерывных величин

.

4. Вынесение неслучайной величины за знак дисперсии и среднего квадратического отклонения

Если - неслучайная величина, а - случайная, то

, (10.2.2)

т. е. неслучайную величину можно выносить за знак дисперсии, возводя ее в квадрат.

Доказательство. По определению дисперсии

Следствие

,

т. е. неслучайную величину можно выносить за знак среднего квадратического отклонения ее абсолютным значением. Доказательство получим, извлекая корень квадратный из формулы (10.2.2) и учитывая, что с.к.о. - существенно положительная величина.

5. Математическое ожидание суммы случайных величин

Докажем, что для любых двух случайных величин и

т. е. математическое ожидание суммы двух случайных величин равно сумме их математических ожиданий.

Это свойство известно под названием теоремы сложения математических ожиданий.

Доказательство.

а) Пусть - система прерывных случайных величин. Применим к сумме случайных величин общую формулу (10.1.6) для математического ожидания функции двух аргументов:

.

Ho представляет собой не что иное, как полную вероятность того, что величина примет значение :

;

следовательно,

.

Аналогично докажем, что

,

и теорема доказана.

б) Пусть - система непрерывных случайных величин. По формуле (10.1.7)

. (10.2.4)

Преобразуем первый из интегралов (10.2.4):

;

аналогично

,

и теорема доказана.

Следует специально отметить, что теорема сложения математических ожиданий справедлива для любых случайных величин - как зависимых, так и независимых.

Теорема сложения математических ожиданий обобщается на произвольное число слагаемых:

, (10.2.5)

т. е. математическое ожидание суммы нескольких случайных величин равно сумме их математических ожиданий.

Для доказательства достаточно применить метод полной индукции.

6. Математическое ожидание линейной функции

Рассмотрим линейную функцию нескольких случайных аргументов :

где - неслучайные коэффициенты. Докажем, что

, (10.2.6)

т. е. математическое ожидание линейной функции равно той же линейной функции от математических ожиданий аргументов.

Доказательство. Пользуясь теоремой сложения м. о. и правилом вынесения неслучайной величины за знак м. о., получим:

.

7. Дисп ep сия суммы случайных величин

Дисперсия суммы двух случайных величин равна сумме их дисперсий плюс удвоенный корреляционный момент:

Доказательство. Обозначим

По теореме сложения математических ожиданий

Перейдем от случайных величин к соответствующим центрированным величинам . Вычитая почленно из равенства (10.2.8) равенство (10.2.9), имеем:

По определению дисперсии

что и требовалось доказать.

Формула (10.2.7) для дисперсии суммы может быть обобщена на любое число слагаемых:

, (10.2.10)

где - корреляционный момент величин , знак под суммой обозначает, что суммирование распространяется на все возможные попарные сочетания случайных величин .

Доказательство аналогично предыдущему и вытекает из формулы для квадрата многочлена.

Формула (10.2.10) может быть записана еще в другом виде:

, (10.2.11)

где двойная сумма распространяется на все элементы корреляционной матрицы системы величин , содержащей как корреляционные моменты, так и дисперсии.

Если все случайные величины , входящие в систему, некоррелированы (т. е. при ), формула (10.2.10) принимает вид:

, (10.2.12)

т. е. дисперсия суммы некоррелированных случайных величин равна сумме дисперсий слагаемых.

Это положение известно под названием теоремы сложения дисперсий.

8. Дисперсия линейной функции

Рассмотрим линейную функцию нескольких случайных величин.

где - неслучайные величины.

Докажем, что дисперсия этой линейной функции выражается формулой

, (10.2.13)

где - корреляционный момент величин , .

Доказательство. Введем обозначение:

. (10.2.14)

Применяя к правой части выражения (10.2.14) формулу (10.2.10) для дисперсии суммы и учитывая, что , получим:

где - корреляционный момент величин :

.

Вычислим этот момент. Имеем:

;

аналогично

Подставляя это выражение в (10.2.15), приходим к формуле (10.2.13).

В частном случае, когда все величины некоррелированны, формула (10.2.13) принимает вид:

, (10.2.16)

т. е. дисперсия линейной функции некоррелированных случайных величин равна сумме произведений квадратов коэффициентов на дисперсии соответствующих аргументов.

9. Математическое ожидание произведения случайных величин

Математическое ожидание произведения двух случайных величин равно произведению их математических ожиданий плюс корреляционный момент:

Доказательство. Будем исходить из определения корреляционного момента:

Преобразуем это выражение, пользуясь свойствами математического ожидания:

что, очевидно, равносильно формуле (10.2.17).

Если случайные величины некоррелированны , то формула (10.2.17) принимает вид:

т. е. математическое ожидание произведения двух некоррелированных случайных величин равно произведению их математических ожиданий.

Это положение известно под названием теоремы умножения математических ожиданий.

Формула (10.2.17) представляет собой не что иное, как выражение второго смешанного центрального момента системы через второй смешанный начальный момент и математические ожидания:

. (10.2.19)

Это выражение часто применяется на практике при вычислении корреляционного момента аналогично тому, как для одной случайной величины дисперсия часто вычисляется через второй начальный момент и математическое ожидание.

Теорема умножения математических ожиданий обобщается и на произвольное число сомножителей, только в этом случае для ее применения недостаточно того, чтобы величины были некоррелированны, а требуется, чтобы обращались в нуль и некоторые высшие смешанные моменты, число которых зависит от числа членов в произведении. Эти условия заведомо выполнены при независимости случайных величин, входящих в произведение. В этом случае

, (10.2.20)

т. е. математическое ожидание произведения независимых случайных величин равно произведению их математических ожиданий.

Это положение легко доказывается методом полной индукции.

10. Дисперсия произведения независимых случайных величин

Докажем, что для независимых величин

Доказательство. Обозначим . По определению дисперсии

Так как величины независимы, и

При независимых величины тоже независимы; следовательно,

,

Но есть не что иное, как второй начальный момент величины , и, следовательно, выражается через дисперсию:

;

аналогично

.

Подставляя эти выражения в формулу (10.2.22) и приводя подобные члены, приходим к формуле (10.2.21).

В случае, когда перемножаются центрированные случайные величины (величины с математическими ожиданиями, равными нулю), формула (10.2.21) принимает вид:

, (10.2.23)

т. е. дисперсия произведения независимых центрированных случайных величин равна произведению их дисперсий.

11. Высшие моменты суммы случайных величин

В некоторых случаях приходится вычислять высшие моменты суммы независимых случайных величин. Докажем некоторые относящиеся сюда соотношения.

1) Если величины независимы, то

Доказательство.

откуда по теореме умножения математических ожиданий

Но первый центральный момент для любой величины равен нулю; два средних члена обращаются в нуль, и формула (10.2.24) доказана.

Соотношение (10.2.24) методом индукции легко обобщается на произвольное число независимых слагаемых:

. (10.2.25)

2) Четвертый центральный момент суммы двух независимых случайных величин выражается формулой

где - дисперсии величин и .

Доказательство совершенно аналогично предыдущему.

Методом полной индукции легко доказать обобщение формулы (10.2.26) на произвольное число независимых слагаемых.

Дисперсия случайной величины характеризует меру разброса случайной величины около ее математического ожидания.

Если случайная величина x имеет математическое ожидание M x , то дисперсией случайной величины x называется величина D x =M (x - M x ) 2 .

Легко показать, что D x = M (x - M x ) 2 = M x 2 - M (x) 2 .

Эта универсальная формула одинаково хорошо применима как для дискретных случайных величин, так и для непрерывных. Величина M x 2 >для дискретных и непрерывных случайных величин соответственно вычисляется по формулам

, .

Для определения меры разброса значений случайной величины часто используется среднеквадратичное отклонение ,связанное с дисперсией соотношением .

Основные свойства дисперсии:

  • дисперсия константы равна нулю, D c =0;
  • для произвольной константы D (cx ) = c 2 D (x);
  • дисперсия суммы двух независимых случайных величинравна сумме их дисперсий: D (x ± h ) = D (x) + D (h).

51) Функцией распределения называют функцию , определяющую вероятность того, что случайная величина примет значение, которое изображается на числовой оси точкой, лежащей левее точки х, т.е.

Иногда вместо термина «Функция распределения» используют термин «Интегральная функция».

Свойства функции распределения:

1. Значения функции распределения принадлежит отрезку : 0 F(x) 1
2. F(x) - неубывающая функция, т.е. F(x 2) F(x 1), если x 2 >x 1

Следствие 1. Вероятность того, что случайная величина примет значение, заключенное в интервале (a,b), равна приращению функции распределения на этом интервале:

P(a X

Пример 9. Случайная величина Х задана функцией распределения:

Найти вероятность того, что в результате испытания Х примет значение, принадлежащее интервалу (0;2): P(0

Решение: Так как на интервале (0;2) по условию, F(x)=x/4+1/4, то F(2)-F(0)=(2/4+1/4)-(0/4+1/4)=1/2. Итак, P(0

Следствие 2. Вероятность того, что непрерывная случайная величина Х примет одно определенное значение, равна нулю.

Следствие 3. Если возможные значения случайной величины принадлежат интервалу (а;b), то: 1) F(x)=0 при x a; 2) F(x)=1 при x b.
Справедливы следующие предельные соотношения:

График функции распределения расположен в полосе, ограниченной прямыми у=0, у=1 (первое свойство). При возрастании х в интервале (а;b), в котором заключены все возможные значения случайной величины, график «подымается вверх». При x a ординаты графика равны нулю; при x b ординаты графика равны единице:

Функцией распределения случайной величины Х называется функция F(x) , выражающая для каждого х вероятность того, что случайная величина Х примет значение, меньшее х :

.

Функцию F(x) называют интегральной функцией распределения или интегральным законом распределения.

Способ задания непрерывной случайной величины с помощью функции распределения не является единственным. Необходимо определить некоторую функцию, отражающую вероятности попадания случайной точки в различные участки области возможных значений непрерывной случайной величины. Т. е. представить некоторую замену вероятностям p i для дискретной случайной величины в непрерывном случае.

Такой функцией является плотность распределения вероятностей. Плотностью вероятности (плотностью распределения, дифференциальной функцией ) случайной величины Х называется функция f(x), являющаяся первой производной интегральной функции распределения.

Дисперсией (рассеянием) дискретной случайной величины D(X) называют математическое ожидание квадрата отклонения случайной величины от ее математического ожидания

1 свойство . Дисперсия постоянной величины C равна нулю; D(C) = 0.

Доказательство. По определению дисперсии, D(C) = M{ 2 }.

Из первого свойства математического ожидания D(C) = M[(C – C) 2 ] = M(0) = 0.

2 свойство. Постоянный множитель можно выносить за знак дисперсии, возводя его в квадрат:

D(CX) = C 2 D(X)

Доказательство. По определению дисперсии, D(CX) = M{ 2 }

Из второго свойства математического ожидания D(CX)=M{ 2 }= C 2 M{ 2 }=C 2 D(X)

3 свойство. Дисперсия суммы двух независимых случайных величин равна сумме дисперсий этих величин:

D = D[X] + D.

Доказательство. По формуле для вычисления дисперсии имеем

D(X + Y) = M[(X + Y) 2 ] − 2

Раскрыв скобки и пользуясь свойствами математического ожидания суммы нескольких величин и произведения двух независимых случайных величин, получим

D(X + Y) = M − 2 = M(X2) + 2M(X)M(Y) + M(Y2) − M2(X) − 2M(X)M(Y) − M2(Y) = {M(X2) − 2}+{M(Y2) − 2} = D(X) + D(Y). Итак, D(X + Y) = D(X) + D(Y)

4 свойство . Дисперсия разности двух независимых случайных величин равна сумме их дисперсий:

D(X − Y) = D(X) + D(Y)

Доказательство. В силу третьего свойства D(X − Y) = D(X) + D(–Y). По второму свойству

D(X − Y) = D(X) + (–1) 2 D(Y) или D(X − Y) = D(X) + D(Y)

Числовые характеристики систем случайных величин. Коэффициент корреляции, свойства коэффициента корреляции.

Корреляционный момент. Характеристикой зависимости между случайными величинами и служит математическое ожидание произведения отклонений и от их центров распределений (так иногда называют математическое ожидание случайной величины), которое называется корреляционным моментом или ковариацией:

Для вычисления корреляционного момента дискретных величин используют формулу:

а для непрерывных величин – формулу:

Коэффициентом корреляции rxy случайных величин X и Y называют отношение корреляционного момента к произведению среднеквадратичных отклонений величин:
- коэффициент корреляции;

Свойства коэффициента корреляции:

1. Если Х и У независимые случайные величины, то r =0;

2. -1≤ r ≤1 .При этом, если |r| =1, то между Х и У функциональная, а именно линейная зависимость;

3. r характеризует относительную величину отклонения М(ХУ) от М(Х)М(У), и т.к. отклонение имеет место только для зависимых величин, то rхарактеризует тесноту зависимости.

Линейная функция регрессии.

Рассмотрим двумерную случайную величину (X, Y), где X и У - зависимые случайные величины. Представим одну из величин как функцию другой. Ограничимся приближенным представлением (точное приближение, вообще говоря, невозможно) величины Y в виде линейной функции величины X:

где α и β - параметры, подлежащие определению.

Теорема. Линейная средняя квадратическая регрессия Y на X имеет вид

где m x =M(X), m y =M(Y), σ x =√D(X), σ y =√D(Y), r=µ xy /(σ x σ y)-коэффициент корреляции величин X и Y.

Коэффициент β=rσ y /σ x называют коэффициентом регрессии Y на X, а прямую

называют прямой среднеквадратической регрессии Y на X.

Неравенство Маркова.

Формулировка неравенства Маркова

Если среди значений случайной величины Х нет отрицательных, то вероятность того, что она примет какое-нибудь значение, превосходящее положительное число А, не больше дроби , т.е.

а вероятность того, что она примет какое-нибудь значение, не превосходящее положительного числа А, не меньше , т.е.

Неравенство Чебышева.

Неравенство Чебышева . Вероятность того, что отклонение случайной величины X от ее математического ожидания по абсолютной величине меньше положительного числа ε, не меньше, чем 1 −D[X]ε 2

P(|X – M(X)| < ε) ≥ 1 –D(X)ε 2

Доказательство. Так как события, состоящие в осуществлении неравенств

P(|X−M(X)| < ε) и P(|X – M(X)| ≥ε) противоположны, то сумма их вероятностей равна единице, т. е.

P(|X – M(X)| < ε) + P(|X – M(X)| ≥ ε) = 1.

Отсюда интересующая нас вероятность

P(|X – M(X)| < ε) = 1 − P(|X – M(X)| > ε).

Таким образом, задача сводится к вычислению вероятности P(|X –M(X)| ≥ ε).

Напишем выражение для дисперсии случайной величины X

D(X) = 2 p1 + 2 p 2 + . . . + 2 p n

Все слагаемые этой суммы неотрицательны. Отбросим те слагаемые, у которых |x i – M(X)| < ε (для оставшихся слагаемых |x j – M(X)| ≥ ε), вследствие чего сумма может только уменьшиться. Условимся считать для определенности, что отброшено k первых слагаемых (не нарушая общности, можно считать, что в таблице распределения возможные значения занумерованы именно в таком порядке). Таким образом,

D(X) ≥ 2 p k+1 + 2 p k+2 + . . . + 2 p n

Обе части неравенства |x j –M(X)| ≥ ε (j = k+1, k+2, . . ., n) положительны, поэтому, возведя их в квадрат, получим равносильное неравенство |x j – M(X)| 2 ≥ε 2 .Заменяя в оставшейся сумме каждый из множителей

|x j – M(X)| 2 числом ε 2 (при этом неравенство может лишь усилиться), получим

D(X) ≥ ε 2 (p k+1 + p k+2 + . . . + p n)

По теореме сложения, сумма вероятностей p k+1 +p k+2 +. . .+p n есть вероятность того, что X примет одно, безразлично какое, из значений x k+1 +x k+2 +. . .+x n , а при любом из них отклонение удовлетворяет неравенству |x j – M(X)| ≥ ε. Отсюда следует, что сумма p k+1 + p k+2 + . . . + p n выражает вероятность

P(|X – M(X)| ≥ ε).

Это позволяет переписать неравенство для D(X) так

D(X) ≥ ε 2 P(|X – M(X)| ≥ ε)

P(|X – M(X)|≥ ε) ≤D(X)/ε 2

Окончательно получим

P(|X – M(X)| < ε) ≥D(X)/ε 2

Теорема Чебышева.

Теорема Чебышева . Если - попарно независимые случайные величины, причем дисперсии их равномерно ограничены (не превышают постоянного числа С), то, как бы мало ни было положительное число ε, вероятность неравенства

будет как угодно близка к единице, если число случайных величин достаточно велико.

Другими словами, в условиях теоремы

Доказательство . Введем в рассмотрение новую случайную величину - среднее арифметическое случайных величин

Найдем математическое ожидание Х. Пользуясь свойствами математического ожидания (постоянный множитель можно вынести за знак математического ожидания, математическое ожидание суммы равно сумме математических ожиданий слагаемых), получим

(1)

Применяя к величине Х неравенство Чебышева, имеем

или, учитывая соотношение (1)

Пользуясь свойствами дисперсии (постоянный множитель можно вынести за знак дисперсии, возведя его в квадрат; дисперсия суммы независимых случайных величин равна сумме дисперсий слагаемых), получим

По условию дисперсии всех случайных величин ограничены постоянным числом С, т.е. имеют место неравенства:

(2)

Подставляя правую часть (2) в неравенство (1) (отчего последнее может быть лишь усилено), имеем

Отсюда, переходя к пределу при n→∞, получим

Наконец, учитывая, что вероятность не может превышать единицу, окончательно можем написать

Теорема доказана.

Теорема Бернулли.

Теорема Бернулли . Если в каждом из n независимых испытаний вероятность p появления события A постоянна, то как угодно близка к единице вероятность того, что отклонение относительной частоты от вероятности p по абсолютной величине будет сколь угодно малым, если число испытаний достаточно велико.

Другими словами, если ε - сколь угодно малое положительное число, то при соблюдении условий теоремы имеет место равенство

Доказательство . Обозначим через X 1 дискретную случайную величину - число появлений события в первом испытании, через X 2 - во втором, ..., X n - в n -м испытании. Ясно, что каждая из величин может принять лишь два значения: 1 (событие A наступило) с вероятностью p и 0 (событие не появилось) с вероятностью .