Болезни Военный билет Призыв

Диапазоны излучения световых волн. Диапазоны волн в порядке убывания. Разные люди воспринимают один и тот же цвет по-разному. Восприятие цветов изменяется с возрастом, зависит от остроты зрения, от настроения и других факторов. Однако, такие различия отно

Гц), а в качестве длинноволновой - 760-780 нм (395-385 ТГц) . Электромагнитное излучение с такими длинами волн также называется видимым светом , или просто светом (в узком смысле этого слова).

История

Первые объяснения причин возникновения спектра видимого излучения дали Исаак Ньютон в книге «Оптика» и Иоганн Гёте в работе «Теория Цветов», однако ещё до них Роджер Бэкон наблюдал оптический спектр в стакане с водой. Лишь спустя четыре века после этого Ньютон открыл дисперсию света в призмах .

Ньютон первый использовал слово спектр (лат. spectrum - видение, появление) в печати в 1671 году , описывая свои оптические опыты. Он обнаружил, что, когда луч света падает на поверхность стеклянной призмы под углом к поверхности, часть света отражается, а часть проходит через стекло, образуя разноцветные полосы. Учёный предположил, что свет состоит из потока частиц (корпускул) разных цветов, и что частицы разного цвета движутся в прозрачной среде с различной скоростью. По его предположению, красный свет двигался быстрее чем фиолетовый, поэтому и красный луч отклонялся на призме не так сильно, как фиолетовый. Из-за этого и возникал видимый спектр цветов.

Ньютон разделил свет на семь цветов: красный , оранжевый , жёлтый , зелёный , голубой , индиго и фиолетовый . Число семь он выбрал из убеждения (происходящего от древнегреческих софистов), что существует связь между цветами, музыкальными нотами, объектами Солнечной системы и днями недели . Человеческий глаз относительно слабо восприимчив к частотам цвета индиго, поэтому некоторые люди не могут отличить его от голубого или фиолетового цвета. Поэтому после Ньютона часто предлагалось считать индиго не самостоятельным цветом, а лишь оттенком фиолетового или голубого (однако он до сих пор включён в спектр в западной традиции). В русской традиции индиго соответствует синему цвету.

Цвет Диапазон длин волн, нм Диапазон частот, ТГц Диапазон энергии фотонов, эВ
Фиолетовый ≤450 ≥667 ≥2,75
Синий 450-480 625-667 2,58-2,75
Сине-зелёный 480-510 588-625 2,43-2,58
Зелёный 510-550 545-588 2,25-2,43
Желто-зелёный 550-570 526-545 2,17-2,25
Жёлтый 570-590 508-526 2,10-2,17
Оранжевый 590-630 476-508 1,97-2,10
Красный ≥630 ≤476 ≤1,97

Указанные в таблице границы диапазонов носят условный характер, в действительности же цвета плавно переходят друг в друга, и расположение видимых наблюдателем границ между ними в большой степени зависит от условий наблюдения .

См. также

Примечания

  1. Гагарин А. П. Свет // Физическая энциклопедия : [в 5 т.] / Гл. ред. А. М. Прохоров . - М. : Большая российская энциклопедия, 1994. - Т. 4: Пойнтинга - Робертсона - Стримеры. - С. 460. - 704 с. - 40 000 экз. - ISBN 5-85270-087-8 .
  2. ГОСТ 8.332-78. Государственная система обеспечения единства измерений. Световые измерения. Значения относительной спектральной световой эффективности монохроматического излучения для дневного зрения

|
видимое излучение, видимое излучение применение
- электромагнитные волны, воспринимаемые человеческим глазом. Чувствительность человеческого глаза к электромагнитному излучению зависит от длины волны (частоты) излучения, при этом максимум чувствительности приходится на 555 нм (540 терагерц), в зелёной части спектра. Поскольку при удалении от точки максимума чувствительность спадает до нуля постепенно, указать точные границы спектрального диапазона видимого излучения невозможно. Обычно в качестве коротковолновой границы принимают участок 380-400 нм (750-790 ТГц), а в качестве длинноволновой - 760-780 нм (385-395 ТГц) . Электромагнитное излучение с такими длинами волн также называется видимым светом, или просто светом (в узком смысле этого слова).

Видимое излучение также попадает в «оптическое окно», область спектра электромагнитного излучения, практически не поглощаемая земной атмосферой. Чистый воздух рассеивает голубой свет существенно сильнее, чем свет с бо́льшими длинами волн (в красную сторону спектра), поэтому полуденное небо выглядит голубым.

Многие виды животных способны видеть излучение, не видимое человеческому глазу, то есть не входящему в видимый диапазон. Например, пчёлы и многие другие насекомые видят свет в ультрафиолетовом диапазоне, что помогает им находить нектар на цветах. Растения, опыляемые насекомыми, оказываются в более выгодном положении с точки зрения продолжения рода, если они ярки именно в ультрафиолетовом спектре. Птицы также способны видеть ультрафиолетовое излучение (300-400 нм), а некоторые виды имеют даже метки на оперении для привлечения партнёра, видимые только в ультрафиолете.

  • 1 История
  • 2 Характеристики границ видимого излучения
  • 3 Спектр видимого излучения
  • 4 См. также
  • 5 Примечания

История

Круг цветов Ньютона из книги «Оптика» (1704), показывающий взаимосвязь между цветами и музыкальными нотами. Цвета спектра от красного до фиолетового разделены нотами, начиная с ре (D). Круг составляет полную октаву. Ньютон расположил красный и фиолетовый концы спектра друг рядом с другом, подчёркивая, что из смешения красного и фиолетого цветов образуется пурпурный.

Первые объяснения спектра видимого излучения дали Исаак Ньютон в книге «Оптика» и Иоганн Гёте в работе «Теория Цветов», однако ещё до них Роджер Бэкон наблюдал оптический спектр в стакане с водой. Лишь спустя четыре века после этого Ньютон открыл дисперсию света в призмах.

Ньютон первый использовал слово спектр (лат. spectrum - видение, появление) в печати в 1671 году, описывая свои оптические опыты. Он сделал наблюдение, что когда луч света падает на поверхность стеклянной призмы под углом к поверхности, часть света отражается, а часть проходит через стекло, образуя разноцветные полосы. Учёный предположил, что свет состоит из потока частиц (корпускул) разных цветов, и что частицы разного цвета движутся с различной скоростью в прозрачной среде. По его предположению, красный свет двигался быстрее чем фиолетовый, поэтому и красный луч отклонялся на призме не так сильно, как фиолетовый. Из-за этого и возникал видимый спектр цветов.

Ньютон разделил свет на семь цветов: красный, оранжевый, жёлтый, зелёный, голубой, индиго и фиолетовый. Число семь он выбрал из убеждения (происходящего от древнегреческих софистов), что существует связь между цветами, музыкальными нотами, объектами Солнечной системы и днями недели. Человеческий глаз относительно слабо восприимчив к частотам цвета индиго, поэтому некоторые люди не могут отличить его от голубого или фиолетового цвета. Поэтому после Ньютона часто предлагалось считать индиго не самостоятельным цветом, а лишь оттенком фиолетового или голубого (однако он до сих пор включён в спектр в западной традиции). русской традиции индиго соответствует синему цвету.

Гёте, в отличие от Ньютона, считал, что спектр возникает при наложении разных составных частей света. Наблюдая за широкими лучами света, он обнаружил, что при проходе через призму на краях луча проявляются красно-желтые и голубые края, между которыми свет остаётся белым, а спектр появляется, если приблизить эти края достаточно близко друг к другу.

Длины волн, соответствующие различным цветам видимого излучения были впервые представлены 12 ноября 1801 года в Бэкеровской лекции Томасом Юнгом, они получены путём перевода в длины волн параметров колец Ньютона, измеренных самим Исааком Ньютоном. Эти кольца Ньютон получал пропусканием через линзу, лежащую на ровной поверхности, соответствующей нужному цвету части разложенного призмой в спектр света, повторяя эксперимент для каждого из цветов:30-31. Юнг оформил полученные длины волн в виде таблицы, выразив во французских дюймах (1 дюйм=27,07 мм), будучи переведёнными в нанометры, их значения неплохо соответствуют современным, принятым для различных цветов. 1821 году Йозеф Фраунгофер положил начало измерению длин волн спектральных линий, получив их от видимого излучения Солнца с помощью дифракционной решётки, измерив углы дифракции теодолитом и переведя в длины волн. Как и Юнг, он выразил их во французских дюймах, переведённые в нанометры, они отличаются от современных на единицы:39-41. Таким образом, ещё в начале XIX века стало возможным измерять длины волн видимого излучения с точностью до нескольких нанометров.

В XIX веке, после открытия ультрафиолетового и инфракрасного излучений, понимание видимого спектра стало более точным.

В начале XIX века Томас Юнг и Герман фон Гельмгольц также исследовали взаимосвязь между спектром видимого излучения и цветным зрением. Их теория цветного зрения верно предполагала, что для определения цвета глаз использует три различных вида рецепторов.

Характеристики границ видимого излучения

Спектр видимого излучения

При разложении луча белого цвета в призме образуется спектр, в котором излучения разных длин волн преломляются под разными углами. Цвета, входящие в спектр, то есть такие цвета, которые могут быть получены с помощью света одной длины волны (точнее, с очень узким диапазоном длин волн), называются спектральными цветами. Основные спектральные цвета (имеющие собственное название), а также характеристики излучения этих цветов, представлены в таблице:

Цвет Диапазон длин волн, нм Диапазон частот, ТГц Диапазон энергии фотонов, эВ
Фиолетовый 380-440 680-790 2,82-3,26
Синий 440-485 620-680 2,56-2,82
Голубой 485-500 600-620 2,48-2,56
Зелёный 500-565 530-600 2,19-2,48
Жёлтый 565-590 510-530 2,10-2,19
Оранжевый 590-625 480-510 1,98-2,10
Красный 625-740 400-480 1,68-1,98

См. также

  • Спектральные и дополнительные цвета

Примечания

  1. 1 2 Гагарин А. П. Свет // Физическая энциклопедия / Д. М. Алексеев, А. М. Балдин, А. М. Бонч-Бруевич, А. С. Боровик-Романов, Б. К. Вайнштейн, С. В. Вонсовский, А. В. Гапонов-Грехов, С. С. Герштейн, И. И. Гуревич, А. А. Гусев, М. А. Ельяшевич, М. Е. Жаботинский, Д. Н. Зубарев, Б. Б. Кадомцев, И. С. Шапиро, Д. В. Ширков; под общ. ред. А. М. Прохорова. - М.: Советская энциклопедия, 1994. - Т. 4. - С. 460. - 704 с. - 40 000 экз.
  2. ГОСТ 8.332-78. Государственная система обеспечения единства измерений. Световые измерения. Значения относительной спектральной световой эффективности монохроматического излучения для дневного зрения
  3. ГОСТ 7601-78. Физическая оптика. Термины, буквенные обозначения и определения основных величин
  4. Cuthill Innes C. Ultraviolet vision in birds // Advances in the Study of Behavior / Peter J.B. Slater. - Oxford, England: Academic Press. - Vol. 29. - P. 161. - ISBN 978-0-12-004529-7.
  5. Jamieson Barrie G. M. Reproductive Biology and Phylogeny of Birds. - Charlottesville VA: University of Virginia. - P. 128. - ISBN 1578083869.
  6. 1 2 Ньютон И. Оптика или трактат об отражениях, преломлениях, изгибаниях и цветах света / Перевод Вавилова С. И. - изд-е 2-е. - М.: Гос. изд-во технико-теоретической литературы, 1954. - С. 131. - 367 с. - (серия «Классики естествознания»).
  7. Coffey Peter. The Science of Logic: An Inquiry Into the Principles of Accurate Thought. - Longmans, 1912.
  8. Hutchison, Niels Music For Measure: On the 300th Anniversary of Newton"s Opticks. Colour Music (2004). Проверено 11 августа 2006. Архивировано из первоисточника 20 февраля 2012.
  9. 1 2 John Charles Drury Brand. Lines Of Light: The Sources Of. - CRC Press, 1995.
  10. Thomas Young (1802). «The Bakerian Lecture. On the Theory of Light and Colours». Philosophical Transactions of the Royal Society of London for the Year 1802: 39.
  11. Fraunhofer Jos. (1824). «Neue Modifikation des Lichtes durch gegenseitige Einwirkung und Beugung der Strahlen, und Gesetze derselben». Denkschriften der Königlichen Akademie der Wissenschaften zu München für die Jahre 1821 und 1822 VIII : 1-76.
  12. Thomas J. Bruno, Paris D. N. Svoronos. CRC Handbook of Fundamental Spectroscopic Correlation Charts. CRC Press, 2005.

видимое излучение, видимое излучение применение, видимое излучение шкала, видимое излучение это

Видимое излучение Информацию О

Диапазоны плавно пере-ходят друг в друга, чёткой границы между ними нет. Поэтому граничные значения длин волн порой весьма условны.

1. Радиоволны (Л > 1 мм). Источниками радиоволн служат колебания зарядов в проводах, антеннах, колебательных контурах. Радиоволны излучаются также во время гроз.

Сверхдлинные волны (Л > 10 км). Хорошо распространяются в воде, поэтому исполь-зуются для связи с подводными лодками.

Длинные волны (1 км < Л < 10 км). Используются в радиосвязи, радиовещании, радионавигации.

Средние волны (100 м < Л < 1 км). Радиовещание. Радиосвязь на расстоянии не более 1500 км.

Короткие волны (10 м < Л < 100 м). Радиовещание. Хорошо отражаются от ионо-сферы; в результате многократных отражений от ионосферы и от поверхности Земли могут распространяться вокруг земного шара. Поэтому на коротких волнах можно ловить радиостанции других стран.

Метровые волны (1м < Л < 10 м). Местное радивещание в УКВ-диапазоне. Напри-мер, длина волны радиостанции «Эхо Москвы» составляет 4 м. Используются также в телевидении (федеральные каналы); так, длина волны телеканала «Россия 1» равна примерно 5 м.

Дециметровые волны (10 см < Л < 1м). Телевидение (дециметровые каналы). На-пример, длина волны телеканала «Animal Planet» приблизительно равна 42 см. Это также диапазон мобильной связи; так, стандарт GSM 1800 использует радиовол-ны с частотой примерно 1800 МГц, т. е. с длиной волны около 17 см. Есть ещё одно хорошо известное вам применение дециметровых волн — это микровол-новые печи. Стандартная частота микроволновой печи равна 2450 МГц (это частота, на которой происходит резонансное поглощение электромагнитного излучения моле-кулами воды). Она отвечает длине волны примерно 12 см. Наконец, в технологиях беспроводной связи Wi-Fi и Bluetooth используется такая же длина волны — 12 см (частота 2400 МГц).

Сантиметровые волны (1 см < Л < 10 см). Это — область радиолокации и спутни-ковых телеканалов. Например, канал НТВ+ ведёт своё телевещание на длинах волн около 2 см.

Инфракрасное излучение (780 нм < Л < 1 мм). Испускается молекулами и атомами нагретых тел. Инфракрасное излучение называется ещё тепловым — когда оно попадает на наше тело, мы чувствуем тепло. Человеческим глазом инфракрасное излучение не воспринимается Мощнейшим источником инфракрасного излучения служит Солнце. Лампы накаливания излучают наибольшее количество энергии (до 80%) в как раз в инфракрасной области спектра. Инфракрасное излучение имеет широкую область применения: инфракрасные обогревате-ли, пульты дистанционного управления, приборы ночного видения, сушка лакокрасочных покрытий и многое другое. При повышении температуры тела длина волны инфракрасного излучения уменьшается, смещаясь в сторону видимого света. Засунув гвоздь в пламя горелки, мы можем наблю-дать это воочию: в какой-то момент гвоздь «раскаляется докрасна», начиная излучать в видимом диапазоне.

Видимый свет (380 нм < Л < 780 нм). Излучение в этом промежутке длин волн воспринимается человеческим глазом. Диапазон видимого света можно разделить на семь интервалов — так называемые спек-тральные цвета.

Красный: 625 нм — 780 нм;

Оранжевый: 590 нм — 625 нм;

Жёлтый: 565 нм — 590 нм;

Зелёный: 500 нм — 565 нм;

Голубой: 485 нм — 500 нм;

Синий: 440 нм — 485 нм;

Фиолетовый: 380 нм — 440 нм.

Глаз имеет максимальную чувствительность к свету в зелёной части спектра.

Ультрафиолетовое излучение (10 нм < Л < 380 нм). Главным источником ультрафиолетового излучения является Солнце. Именно ультрафи-олетовое излучение приводит к появлению загара. Человеческим глазом оно уже не вос-принимается. В небольших дозах ультрафиолетовое излучение полезно для человека: оно повышает иммунитет, улучшает обмен веществ, имеет целый ряд других целебных воздействий и потому применяется в физиотерапии. Ультрафиолетовое излучение обладает бактерицидными свойствами. Например, в боль-ницах для дезинфекции операционных в них включаются специальные ультрафиолетовые лампы. Очень опасным является воздействие УФ излучения на сетчатку глаза — при больших дозах ультрафиолета можно получить ожог сетчатки. Поэтому для защиты глаз (высоко в горах, например) нужно надевать очки, стёкла которых поглощают ультрафиолет.

Рентгеновское излучение (5 пм < Л < 10 нм). Возникает в результате торможения быстрых электронов у анода и стенок газоразряд-ных трубок (тормозное излучение), а также при некоторых переходах электронов внутри атомов с одного уровня на другой (характеристическое излучение).

Рентгеновское излучение легко проникает сквозь мягкие ткани человеческого тела, но по-глощается кальцием, входящим в состав костей. Это даёт возможность хорошо известные вам рентгеновские снимки. В аэропортах вы наверняка видели действие рентгенотелевизионных интроскопов — эти приборы просвечивают рентгеновскими лучами ручную кладь и багаж. Длина волны рентгеновского излучения сравнима с размерами атомов и межатомных рас-стояний в кристаллах; поэтому кристаллы являются естественными дифракционными ре-шётками для рентгеновских лучей. Наблюдая дифракционные картины, получаемые при прохождении рентгеновских лучей сквозь различные кристаллы, можно изучать порядок расположения атомов в кристаллических решётках и сложных молекулах. Так, именно с помощью рент,геност,рукт,урного анализа было определено устройство ряда сложных органических молекул — например, ДНК и гемоглобина. В больших дозах рентгеновское излучение опасно для человека — оно может вызывать раковые заболевания и лучевую болезнь.

Гамма-излучение (Л < 5 пм). Это излучение наиболее высокой энергии. Его проникающая способность намного выше, чем у рентгеновских лучей. Гамма-излучение возникает при переходах атомных ядер из одного состояния в другое, а также при некоторых ядерных реакциях. Некоторые насекомые и птицы способны видеть в ультрафиолете. Например, пчёлы с помощью своего уль-трафиолетового зрения находят нектар на цветах. Источниками гамма-лучей могут быть заряженные частицы, движущиеся со скоростя-ми, близкими к скорости света — в случае, если траектории таких частиц искривлены магнитным полем (так называемое синхротронное излучение). В больших дозах гамма-излучение очень опасно для человека: оно вызывает лучевую бо-лезнь и онкологические заболевания. Но в малых дозах оно может подавлять рост раковых опухолей и потому применяется в лучевой терапии. Бактерицидное действие гамма-излучения используется в сельском хозяйстве (гамма-сте-рилизация сельхозпродукции перед длительным хранением), в пищевой промышленности (консервирование продуктов), а также в медицине (стерилизация материалов).

Спектр электромагнитных волн.

Электромагнитные волны классифицируются по длине волны или связанной с ней частотой волны . Отметим также, что эти параметры характеризуют не только волновые, но и квантовые свойства электромагнитного поля. Соответственно в первом случае электромагнитная волна описывается классическими законами, изучаемыми в данном томе, а во втором - квантовыми законами, изучаемыми в томе 5 настоящего пособия.

Рассмотрим понятие спектра электромагнитных волн. Спектром электромагнитных волн называется полоса частот электромагнитных волн, существующих в природе.

Спектр электромагнитного излучения в порядке увеличения частоты составляют:

1) Радиоволны;

2) Инфракрасное излучение;

3) Световое излучение;

4) Рентгеновское излучение;

5) Гамма излучение.

Различные участки электромагнитного спектра отличаются по способу излучения и приёма волн, принадлежащих тому или иному участку спектра. По этой причине, между различными участками электромагнитного спектра нет резких границ.

Радиоволны изучает классическая электродинамика. Инфракрасное световое и ультрафиолетовое излучение изучает как классическая оптика, так и квантовая физика. Рентгеновское и гамма излучение изучается в квантовой и ядерной физике.

Рассмотрим спектр электромагнитных волн более подробно.

Радиоволны.

Радиоволны представляют собой электромагнитные волны, длины которых превосходят 0.1мм(частота меньше 3 10 12 гц = 3000 Ггц).

Радиоволны делятся на:

1. Сверхдлинные волны с длиной волны больше 10км(частота меньше 3 10 4 гц=30кгц);

2. Длинные волны в интервале длин от10км до 1км(частота в диапазоне 3 10 4 гц - 3 10 5 гц=300кгц);

3. Средние волны в интервале длин от1км до 100м(частота в диапазоне 3 10 5 гц -310 6 гц=3мгц);

4. Короткие волны в интервале длин волн от 100м до 10м (частота в диапазоне 310 6 гц-310 7 гц=30мгц);

5. Ультракороткие волны с длиной волны меньше 10м(частота больше 310 7 гц=30Мгц).

Ультракороткие волны в свою очередь делятся на:

а) метровые волны;

б) сантиметровые волны;

в) миллиметровые волны;

г) субмиллиметровые или микрометровые.

Волны с длиной волны меньше, чем 1м(частота меньше чем 300мгц) называются микроволнами или волнами сверхвысоких частот(СВЧ - волны).

Из-за больших значений длин волн радиодиапазона по сравнению с размерами атомов распространение радиоволн можно рассматривать без учета атомистического строения среды, т.е. феноменологически, как принято при построении теории Максвелла. Квантовые свойства радиоволн проявляются лишь для самых коротких волн, примыкающих к инфракрасному участку спектра и при распространении т.н. сверхкоротких импульсов с длительностью порядка 10 -12 сек- 10 -15 сек, сравнимой со временем колебаний электронов внутри атомов и молекул.

Инфракрасное и световое излучения.

Инфракрасное, световое, включая ультрафиолетовое, излучения составляют оптическую область спектра электромагнитных волн в широком смысле этого слова. Близость участков спектра перечисленных волн обусловило сходство методов и приборов, применяющихся для их исследования и практического применения. Исторически для этих целей применяли линзы, дифракционные решетки, призмы, диафрагмы, оптически активные вещества, входящие в состав различных оптических приборов (интерферометров, поляризаторов, модуляторов и пр.).

С другой стороны излучение оптической области спектра имеет общие закономерности прохождения различных сред, которые могут быть получены с помощью геометрической оптики, широко используемой для расчетов и построения, как оптических приборов, так и каналов распространения оптических сигналов.

Оптический спектр занимает диапазон длин электромагнитных волн в интервале от 210 -6 м= 2мкм до 10 -8 м=10нм (по частоте от1.510 14 гц до 310 16 гц). Верхняя граница оптического диапазона определяется длинноволновой границей инфракрасного диапазона, а нижняя коротковолновой границей ультрафиолета (рис.2.14).

Ширина оптического диапазона по частоте составляет примерно 18 октав 1 , из которых на оптический диапазон приходится примерно одна октава(); на ультрафиолет - 5 октав (), на инфракрасное излучение - 11 октав (

В оптической части спектра становятся существенными явления, обусловленные атомистическим строением вещества. По этой причине наряду с волновыми свойствами оптического излучения проявляются квантовые свойства.

Рентгеновское и гамма излучение.

В области рентгеновского и гамма излучения на первый план выступают квантовые свойства излучения.

Рентгеновское излучение возникает при торможении быстрых заряженных частиц (электронов, протонов и пр.), а также в результате процессов, происходящих внутри электронных оболочек атомов.

Гамма излучение является следствием явлений, происходящих внутри атомных ядер, а также в результате ядерных реакций. Граница между рентгеновским и гамма излучением определяются условно по величине кванта энергии 2 , соответствующего данной частоте излучения.

Рентгеновское излучение составляют электромагнитные волны с длиной от50 нм до 10 -3 нм, что соответствует энергии квантов от 20эв до 1Мэв.

Гамма излучение составляют электромагнитные волны с длиной волны меньше 10 -2 нм, что соответствует энергии квантов больше 0.1Мэв.

Электромагнитная природа света.

Свет представляет собой видимый участок спектра электромагнитных волн, длины волн которых занимают интервал от 0.4мкм до 0.76мкм. Каждой спектральной составляющей оптического излучения может быть поставлен в соответствие определённый цвет. Окраска спектральных составляющих оптического излучения определяется их длиной волны. Цвет излучения изменяется по мере уменьшения его длины волны следующим образом: красный, оранжевый, желтый, зеленый, голубой, синий, фиолетовый.

Красный свет, соответствующий наибольшей длине волны, определяет красную границу спектра. Фиолетовый свет - соответствует фиолетовой границе.

Естественный свет не окрашен и представляет суперпозицию электромагнитных волн из всего видимого спектра. Естественный свет появляется в результате испускания электромагнитных волн возбужденными атомами. Характер возбуждения может быть различным: тепловой, химический, электромагнитный и др. В результате возбуждения атомы излучают хаотическим образом электромагнитные волны примерно в течении 10 -8 сек. Поскольку энергетический спектр возбуждения атомов достаточно широкий, то излучаются электромагнитные волны из всего видимого спектра, начальная фаза, направление и поляризация которых имеет случайный характер. По этой причине естественный свет не поляризован. Это означает, что "плотность" спектральных составляющих электромагнитные волны естественного света, имеющих взаимно перпендикулярные поляризации одинаково.

Гармонические электромагнитные волны светового диапазона называются монохроматическими. Для световой монохроматической волны одной из главных характеристик является интенсивность. Интенсивность световой волны представляет собой среднее значение величины плотности потока энергии (1.25) переносимого волной:

где - вектор Пойнтинга.

Расчет интенсивности световой, плоской, монохроматической волны с амплитудой электрического поля в однородной среде с диэлектрической и магнитной проницаемостями по формуле (1.35) с учетом (1.30) и (1.32) дает:

где - коэффициент преломления среды; - волновое сопротивление вакуума.

Традиционно оптические явления рассматриваются с помощью лучей. Описание оптических явлений с помощью лучей называется геометрооптическим. Правила нахождения траекторий лучей, разработанные в геометрической оптике, широко используются на практике для анализа оптических явлений и при построении различных оптических приборов.

Дадим определение луча, исходя из электромагнитного представления световых волн. Прежде всего, лучи - это линии, вдоль которых распространяются электромагнитные волны. По этой причине луч - это линия, в каждой точке которой усредненный вектор Пойнтинга электромагнитной волны направлен по касательной к этой линии.

В однородных изотропных средах направление среднего вектора Пойнтинга совпадает с нормалью к волновой поверхности (эквифазной поверхности), т.е. вдоль волнового вектора .

Таким образом, в однородных изотропных средах лучи перпендикулярны соответствующему волновому фронту электромагнитной волны.

Для примера рассмотрим лучи, испускаемые точечным монохроматическим источником света. С точки зрения геометрической оптики из точки источника исходит множество лучей в радиальном направлении. С позиции электромагнитной сущности света из точки источника распространяется сферическая электромагнитная волна. На достаточно большом расстоянии от источника кривизной волнового фронта можно пренебречь, считая локально сферическую волну плоской. Разбивая поверхность волнового фронта на большое количество локально плоских участков, можно через центр каждого участка провести нормаль, вдоль которого распространяется плоская волна, т.е. в геометрооптической интерпретации луч. Таким образом, оба подхода дают одинаковое описание рассмотренного примера.

Основная задача геометрической оптики состоит в нахождении направления луча (траектории). Уравнение траектории находится после решения вариационной задачи нахождения минимума т.н. действия на искомых траекториях. Не вдаваясь в подробности строгой формулировки и решения указанной задачи, можно полагать, что лучи представляют собой траектории с наименьшей суммарной оптической длиной. Данное утверждение является следствием принципа Ферма.

Вариационный подход определения траектории лучей может быть применен и к неоднородным средам, т.е. таким средам, у которых показатель преломления является функция координат точек среды. Если описать функцией форму поверхности волнового фронта в неоднородной среде, то её можно найти исходя из решения уравнения в частных производных, известного как уравнение эйконала, а в аналитической механике как уравнение Гамильтона - Якоби:

Таким образом, математическую основу геометрооптического приближения электромагнитной теории составляют различные методы определения полей электромагнитных волн на лучах, исходя из уравнения эйконала или каким - либо другим способом. Геометрооптическое приближение широко используется на практике в радиоэлектронике для расчета т.н. квазиоптических систем.

В заключение заметим, что возможность описать свет одновременно и с волновых позиций путем решения уравнений Максвелла и с помощью лучей, направление которых определяется из уравнений Гамильтона - Якоби, описывающих движение частиц, является одним из проявлений дуализма света, приведшего, как известно, к формулировке основных принципов квантовой механики.

1) Октавой по определению называется диапазон частот между произвольной частотой w и её второй гармоникой, равной 2w.

2) h=6.6310 -34 Джсек - постоянная Планка.

СПЕКТРАЛЬНЫЙ СОСТАВ СВЕТА

Оптическая область спектра электромагнитные излучений состоит из трех участков: невидимых ультрафиолетовых излучений (длина волн 10-400 нм), видимых световых излучений (длина волн 400-750 нм), воспринимаемых глазом как свет и невидимых инфракрасных излучений (длина волн 740 нм - 1-2 мм).

Световые излучения, воздействующие на глаз и вызывающие ощущение цвета, подразделяют на простые (монохроматические) и сложные. Излучение с определенной длиной волны называют монохроматическим.

Простые излучения не могут быть разложены ни на какие другие цвета.

Спектр - последовательность монохроматических излучений, каждому из которых соответствует определенная длина волны электромагнитного колебания.

При разложении белого света призмой в непрерывный спектр цвета в нем постепенно переходят один в другой. Принято считать, что в некоторых границах длин волн (нм) излучения имеют следующие цвета:

390-440 – фиолетовый

440-480 - синий

480-510 – голубой

510-550 – зеленый

550-575 - желто-зеленый

575-585 - желтый

585-620 – оранжевый

630-770 – красный

Глаз человека обладает наибольшей чувствительностью к желто-зеленому излучению с длиной волны около 555 нм.

Различают три зоны излучения: сине-фиолетовая (длина волн 400-500 нм), зеленая (длина 500-600 нм) и красная (длина 600-680 нм). Эти зоны спектра являются также зонами преимущественной спектральной чувствительности приемников глаза и трех слоев цветной фотопленки. Свет, излучаемый обычными источниками, а также свет, отраженный от несветящихся тел, всегда имеет сложный спектральный состав, т. е. - состоит из суммы различных монохроматических излучений. Спектральный состав света - важнейшая характеристика освещения. Он непосредственно влияет на светопередачу при съемке на цветные фотографические материалы.

Ньютон сделал первый шаг к измерению цвета – систематезировал цвет по цветовому тону, построив цветовой круг

Кроме того, Ньютон проводил опыты по сложению излучений разного цвета, введя понятия основных и дополнительных цветов. Он экспериментально установил, что любой цвет может быть получен, как сумма излучений трёх цветов – синего, зелёного и красного – названных им основными цветами . Это утверждение легло в основу цветового уравнения, где цвет представляется суммой излучений трёх основных цветов (К, З, С) , взятых в определённой пропорции:

Ц = кК + зЗ + сС,

Где с, з, к – коэффициенты, соответствующие смешиваемым интенсивностям излучений синего, зелёного и красного цвета. В зарубежной литературе эти значения интенсивностей обозначают соответственно R , G , B .

Цветовой круг – схема, систематизирующая цвет по цветовому тону. В спектре цвета плавно переходят один в другой, однако в спектре отсутствуют пурпурные, лиловые, малиновые тона. При этом в фиолетовом цвете мы явно чувствуем присутствие красного цвета. Поэтому Исаак Ньютон расположил все цветовые тона по мере схожести друг с другом по кругу. Ньютон расположил цвета так, чтобы друг против друга лежали взаимодополнительные цвета. В дальнейшем цветовой круг несколько видоизменялся

(Цветовой круг Гёте, Цветовой круг Манселла и др.), где условие взаимодополнительности противоположных тонов не соблюдается.

Следующим этапом в развитии колориметрии полте тела цветового охвата Оствальда стал график МКО (Международной комиссии по освещению). Необходимость в его создании была вызвана тем, что не все насыщенные цвета можно получить из трёх основных цветов. Некоторые цвета, получаемые сложением основных цветов, имеют меньшую насыщенность, чем чистые спектральные цвета. И для того, чтобы действительно любой цвет можно было получить аддитивным способом, исходные основные цвета должны иметь насыщенность более 100%, то есть насыщеннее спектральных цветов. Реально таких цветов быть не может, но как математические абстракции такие цвета были введены. Их назвалиX, Y, Z – красный, зелёный и синий соответственно.

Фактически график МКО – это видоизменённый цветовой круг, на котором размещены цвета 100% насыщенности. К центру насыщенность падает до 0. График МКО часто используют для указания цветности излучения различных источников света.

Кроме графика МКО в настоящее время применяются и другие колориметрические системы, например Lab . Величина L определяет яркость цвета, а – близость цвета к красному или зелёному цветовому тону, b – близость цвета к синему или жёлтому.

Надо отметить, что ни одна из существующих колориметрических систем не отражают в полной мере все феномены цветового зрения. Поэтому колориметрические системы продолжают развиваться и совершенствоваться.